Title Cross Platform Meta-Analysis of Microarray Data
Version 1.30.0
Author Alex Pickering
Maintainer Alex Pickering <alexvpickering@gmail.com>
Description Implements cross-platform and cross-species meta-analyses of Affymetrix, Illumina, and Agilent microarray data. This package automates common tasks such as downloading, normalizing, and annotating raw GEO data. The user then selects control and treatment samples in order to perform differential expression analyses for all comparisons. After analysing each contrast seperately, the user can select tissue sources for each contrast and specify any tissue sources that should be grouped for the subsequent meta-analyses.
Depends R (>= 4.0)
SystemRequirements libxml2: libxml2-dev (deb), libxml2-devel (rpm)
libcurl: libcurl4-openssl-dev (deb), libcurl-devel (rpm)
openssl: libssl-dev (deb), openssl-devel (rpm), libssl_dev (csw), openssl@1.1 (brew)
License MIT + file LICENSE
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.1.2
VignetteBuilder knitr
URL https://github.com/alexvpickering/crossmeta
BugReports https://github.com/alexvpickering/crossmeta/issues
Suggests knitr, rmarkdown, lydata, org.Hs.eg.db, testthat
Imports affy (>= 1.52.0), affxparser (>= 1.46.0), AnnotationDbi (>= 1.36.2), Biobase (>= 2.34.0), BiocGenerics (>= 0.20.0), BiocManager (>= 1.30.4), DT (>= 0.2), DBI (>= 1.0.0), data.table (>= 1.10.4), edgeR, fdrtool (>= 1.2.15), GEOquery (>= 2.40.0), limma (>= 3.30.13), matrixStats (>= 0.51.0), metaMA (>= 3.1.2), miniUI (>= 0.1.1), methods, oligo (>= 1.38.0), reader(>= 1.0.6), RCurl (>= 1.95.4.11), RSQLite (>=
2.1.1), stringr (>= 1.2.0), sva (>= 3.22.0), shiny (>= 1.0.0),
shinyjs (>= 2.0.0), shinyBS (>= 0.61), shinyWidgets (>= 0.5.3),
shinypanel (>= 0.1.0), tibble, XML (>= 3.98.1.17), readxl (>=
1.3.1)

biocViews GeneExpression, Transcription, DifferentialExpression,
Microarray, TissueMicroarray, OneChannel, Annotation,
BatchEffect, Preprocessing, GUI

git_url https://git.bioconductor.org/packages/crossmeta

git_branch RELEASE_3_19

git_last_commit 7500c56

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Contents

addContrastInput .. 3
add_adjusted .. 4
add_sources ... 4
add_vsd ... 5
bulkAnnot .. 6
bulkAnnotInput ... 6
bulkForm ... 6
bulkFormInput .. 7
bulkPage ... 7
bulkPageUI .. 7
bulkTable ... 8
bulkTableOutput ... 8
ch2_subset ... 8
clean_y ... 9
delContrastsInput .. 9
diff_expr ... 10
es_meta ... 11
exprs.MA ... 13
filter_genes ... 13
fit_ebayes .. 14
fit_lm ... 15
fix_illum_headers ... 15
format_dl_annot ... 16
format_up_annot ... 16
get_ch2_mod ... 16
get_group_levels ... 17
get_palette ... 17
get_raw ... 18
get_svaMods .. 18
get_top_table ... 19
addContrastInput

Add contrast input

Description

Add contrast input

Usage

```r
addContrastInput(id)
```
```r
add_adjusted

Add expression data adjusted for pairs/surrogate variables

Description
Add expression data adjusted for pairs/surrogate variables

Usage
add_adjusted(eset, svobj = list(sv = NULL), numsv = 0)

Arguments
- eset: ExpressionSet
- svobj: surrogate variable object
- numsv: Number of surrogate variables to adjust for

Value
eset with adjusted element added
```

```r
add_sources

Add sample source information for meta-analysis.

Description
User selects a tissue source for each contrast and indicates any sources that should be paired. This step is required if you would like to perform source-specific effect-size/pathway meta-analyses.

Usage
add_sources(diff_exprs, data_dir = getwd(), postfix = NULL)

Arguments
- diff_exprs: Previous result of `diff_expr`, which can be reloaded using `load_diff`.
- data_dir: String specifying directory of GSE folders.
- postfix: Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.
```
add_vsd

Details

The **Sources** tab is used to add a source for each contrast. To do so: click the relevant contrast rows, search for a source in the Sample source dropdown box, and then click the **Add** button.

The **Pairs** tab is used to indicate sources that should be paired (treated as the same source for subsequent effect-size and pathway meta-analyses). To do so: select at least two sources from the Paired sources dropdown box, and then click the **Add** button.

For each GSE, analysis results with added sources/pairs are saved in the corresponding GSE folder (in data_dir) that was created by `get_raw`.

Value

Same as **diff_expr** with added slots for each GSE in diff_exprs:

- **sources**
 - Named vector specifying selected sample source for each contrast. Vector names identify the contrast.
- **pairs**
 - List of character vectors indicating tissue sources that should be treated as the same source for subsequent effect-size and pathway meta-analyses.

Examples

```r
library(lydata)

# load result of previous call to diff_expr:
data_dir <- system.file("extdata", package = "lydata")
gse_names <- c("GSE9601", "GSE34817")
anals <- load_diff(gse_names, data_dir)

# run shiny GUI to add tissue sources
# anals <- add_sources(anals, data_dir)
```

add_vsd

Add VST normalized assay data element to expression set

Description

For microarray datasets duplicates exprs slot into vsd slot.

Usage

```r
add_vsd(eset, rna_seq = TRUE)
```

Arguments

- **eset**
 - ExpressionSet with group column in pData(eset)
- **rna_seq**
 - Is this an RNA-seq eset? Default is TRUE.
Value

eset with 'vsd' assayDataElement added.

bulkAnnot
Logic for downloading and uploading bulk annotation

Description

Logic for downloading and uploading bulk annotation

Usage

bulkAnnot(input, output, session, dataset_name, pdata)

bulkAnnotInput
UI for Bulk Data annotation upload/download

Description

UI for Bulk Data annotation upload/download

Usage

bulkAnnotInput(id)

bulkForm
Logic for Bulk Data form

Description

Logic for Bulk Data form

Usage

bulkForm(input, output, session, pdata, prev)
bulkFormInput

Description

Input form for Bulk Data page

Usage

`bulkFormInput(id)`

bulkPage

Description

Logic for Select Contrasts Interface

Usage

`bulkPage(input, output, session, eset, gse_name, prev)`

Arguments

- `input, output, session` shiny module boilerplate
- `eset` ExpressionSet
- `gse_name` GEO accession for the series.
- `prev` Previous result of `diff_expr`. Used to allow rechecking previous selections.

bulkPageUI

Description

UI for Select Contrasts Interface

Usage

`bulkPageUI(id)`

Arguments

- `id` The id string to be namespaced.
bulkTable

Logic for pdata table

Description
Logic for pdata table

Usage
bulkTable(input, output, session, eset, prev, up_annot)

bulkTableOutput

Tables for datasets page

Description
Tables for datasets page

Usage
bulkTableOutput(id)

ch2_subset

Subset for Paired Two-Channel ExpressionSet

Description
Two-channel esets use intraspotCorrelation and lmscFit so can’t use duplicateCorrelation. If not using one channel in contrasts (e.g. because all reference RNA) and have paired design, better to treat as single channel so that can use duplicateCorrelation.

Usage
ch2_subset(eset, prev_anal)

Arguments
- `eset` : Annotated ExpressionSet. Created by `load_raw`
- `prev_anal` : One item (for eset) from previous result of `diff_expr`

Value
ExpressionSet. If two-channel, paired and one channel not used will subset to used channel.
clean_y

Adjusts expression data for surrogate variables.

Description

Factors out effect of surrogate variables discovered during surrogate variable analysis.

Usage

```r
clean_y(y, mod, mod.clean)
```

Arguments

- `y`: Expression data of eset.
- `mod`: Full model matrix supplied to sva.
- `mod.clean`: Model matrix with factors to clean.

Value

Expression data with effects of svs removed.

delContrastsInput

Delete contrasts input

Description

Delete contrasts input

Usage

```r
delContrastsInput(id)
```
diff_expr

Differential expression analysis of esets.

Description

After selecting control and test samples for each contrast, surrogate variable analysis (sva) and differential expression analysis is performed.

Usage

```r
diff_expr(
  esets,
  data_dir = getwd(),
  annot = "SYMBOL",
  prev_anals = list(NULL),
  svanal = TRUE,
  recheck = FALSE,
  postfix = NULL,
  port = 3838
)
```

Arguments

- `esets` List of annotated esets. Created by `load_raw`.
- `data_dir` String specifying directory of GSE folders.
- `annot` String, column name in fData common to all esets. For duplicated values in this column, the row with the highest interquartile range across selected samples will be kept. If meta-analysis will follow, appropriate values are "SYMBOL" (default - for gene level analysis) or, if all esets are from the same platform, "PROBE" (for probe level analysis).
- `prev_anals` Previous result of `diff_expr`, which can be reloaded using `load_diff`. If present, previous selections, names, and pairs will be reused.
- `svanal` Use surrogate variable analysis? Default is TRUE.
- `recheck` Would you like to recheck previous group/contrast annotations? Requires `prev_anals`. Default is FALSE.
- `postfix` Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.
- `port` See `runApp()`.

Details

Click the Download icon and fill in the _Group name_ column and optionally the _Pairs_ column. Then save and upload the filled in metadata csv. After doing so, select a test and control group to compare and click the + icon to add the contrast. Repeat previous step to add additional contrasts.
es_meta

After control and test samples have been added for all contrasts that you wish to include, click the Done button. Repeat for all GSEs.

Paired samples (e.g. the same subject before and after treatment) can be specified by filling out the Pairs column before uploading the metadata.

For each GSE, analysis results are saved in the corresponding GSE folder in data_dir that was created by get_raw. If analyses needs to be repeated, previous results can be reloaded with load_diff and supplied to the prev_anals parameter. In this case, previous selections, names, and pairs will be reused.

Value

List of named lists, one for each GSE. Each named list contains:

- pdata: data.frame with phenotype data for selected samples. Columns treatment ('ctrl' or 'test'), group, and pair are added based on user selections.
- top_tables: List with results of topTable call (one per contrast). These results account for the effects of nuisance variables discovered by surrogate variable analysis.
- ebayes_sv: Results of call to eBayes with surrogate variables included in the model matrix.
- annot: Value of annot variable.

Examples

```r
library(lydata)

# location of raw data
data_dir <- system.file("extdata", package = "lydata")

# gather GSE names
gse_names <- c("GSE9601", "GSE15069", "GSE50841", "GSE34817", "GSE29689")

# load first eset
esets <- load_raw(gse_names[1], data_dir)

# run analysis (opens GUI)
# anals_old <- diff_expr(esets, data_dir)

# re-run analysis on first eset
prev <- load_diff(gse_names[1], data_dir)
anals <- diff_expr(esets[1], data_dir, prev_anals = prev)
```

es_meta **Effect size combination meta analysis.**

Description

Performs effect-size meta-analyses across all studies and separately for each tissue source.
Usage

```
es_meta(diff_exprs, cutoff = 0.3, by_source = FALSE)
```

Arguments

- `diff_exprs` Previous result of `diff_expr`, which can be reloaded using `load_diff`
- `cutoff` Minimum fraction of contrasts that must have measured each gene. Between 0 and 1.
- `by_source` Should separate meta-analyses be performed for each tissue source added with `add_sources`?

Details

Builds on `zScores` function from GeneMeta by allowing for genes that were not measured in all studies. This implementation also uses moderated unbiased effect sizes calculated by `effectsize` from metaMA and determines false discovery rates using `fdrtool`.

Value

A list of named lists, one for each tissue source. Each list contains two named data.frames. The first, `filt`, has all the columns below for genes present in cutoff or more fraction of contrasts. The second, `raw`, has only `dprime` and `vardprime` columns, but for all genes (NAs for genes not measured by a given contrast).

- `dprime` Unbiased effect sizes (one column per contrast).
- `vardprime` Variances of unbiased effect sizes (one column per contrast).
- `mu` Overall mean effect sizes.
- `var` Variances of overall mean effect sizes.
- `z` Overall z score = \(\frac{\mu}{\sqrt{\text{var}}} \).
- `fdr` False discovery rates calculated from column `z` using `fdrtool`.
- `pval` p-values calculated from column `z` using `fdrtool`.

Examples

```
library(lydata)

# location of data
data_dir <- system.file("extdata", package = "lydata")

# gather GSE names
gse_names <- c("GSE9601", "GSE15069", "GSE50841", "GSE34817", "GSE29689")

# load previous analysis
analns <- load_diff(gse_names, data_dir)

# add tissue sources to perform separate meta-analyses for each source (optional)
# analys <- add_sources(analns, data_dir)
```
perform meta-analysis
es <- es_meta(anals, by_source = TRUE)

exprs.MA

Extract Log-Expression Matrix from MAList

Description

Converts M and A-values to log-expression values. The output matrix will have two columns for each array, in the order all red then all green. Adapted from plotDensities.MAList instead of exprs.MA so that order is same as phenoData.ch2.

Usage

```r
exprs.MA(MA)
```

Arguments

- `MA`: an MAList object.

Value

A numeric matrix with twice the columns of the input.

filter_genes

Filter genes in RNA-seq ExpressionSet

Description

Uses `filterByExpr` to filter based on 'counts' assay or 'exprs' assay if 'counts' isn't available (for ARCHS4 data).

Usage

```r
filter_genes(eset)
```

Arguments

- `eset`: ExpressionSet with 'counts' assayDataElement and group column in pData

Value

`filtered eset`
See Also

filterByExpr

Examples

example ExpressionSet
eset <- makeExampleCountsEset()
eset <- filter_genes(eset)

Description

Fit eBayes model

Usage

```r
fit_ebayes(
  lm_fit,
  contrasts,
  robust = TRUE,
  trend = FALSE,
  allow.no.resid = FALSE
)
```

Arguments

- **lm_fit**: Result of call to `run_limma`
- **contrasts**: Character vector of contrasts to fit.
- **robust**: logical, should the estimation of `df.prior` and `var.prior` be robustified against outlier sample variances?
- **trend**: logical, should an intensity-dependent trend be allowed for the prior variance? If `FALSE` then the prior variance is constant. Alternatively, `trend` can be a row-wise numeric vector, which will be used as the covariate for the prior variance.
- **allow.no.resid**: Allow no residual degrees of freedom? If `TRUE` and the fit contrast matrix has no residual degrees of freedom, eBayes fit is skipped and the result of `contrasts.fit` is returned.

Value

result of eBayes
fit_lm
Run limma analysis.

Description

Runs limma differential expression analysis on all contrasts selected by `add_contrast`. Analysis performed with and without surrogate variables discovered by `diff_setup`. Also prints MDS plot and saves results.

Usage

```r
fit_lm(eset, svobj = list(sv = NULL), numsv = 0, rna_seq = TRUE)
```

Arguments

- `eset` Annotated eset created by `load_raw`. Replicate features and non-selected samples removed by `iqr_replicates`.
- `svobj` Surrogate variable analysis results. Returned from `run_sva`.
- `numsv` Number of surrogate variables to model.
- `rna_seq` Is this an RNA-seq eset? Default is `TRUE`.

Value

List with slots:
- `fit` Result of `lmFit`
- `mod` model matrix used for fit.

fix_illum_headers
Attempts to fix Illumina raw data header

Description

Reads raw data files and tries to fix them up so that they can be loaded by `read.ilmn`.

Usage

```r
fix_illum_headers(elist_paths, eset = NULL)
```

Arguments

- `elist_paths` Path to Illumina raw data files. Usually contain patterns: `non_normalized.txt`, `raw.txt`, or `_supplementary_.txt`
- `eset` ExpressionSet from `getGEO`.

Value

Character vector for annotation argument to `read.ilmn`. Fixed raw data files are saved with filename ending in `_fixed.txt`
get_ch2_mod

format_dl_annot

Format downloaded annotation

Description

Format downloaded annotation

Usage

`format_dl_annot(annot)`

format_up_annot

Format uploaded annotation

Description

Format uploaded annotation

Usage

`format_up_annot(up, ref)`

get_ch2_mod

Get design matrix for two-channel array

Description

Get design matrix for two-channel array

Usage

`get_ch2_mod(eset)`

Arguments

- `eset` ExpressionSet with colnames that end in `_red` and `_green` indicating channel and `eset$group` indicating group membership.

Value

model matrix for use by `intraspotCorrelation` and `lmseFit`
get_group_levels

Get group levels for bulk data plots

Description

Get group levels for bulk data plots

Usage

get_group_levels(pdata)

Arguments

pdata Data.frame of phenotype data

get_palette

Get a Pallete to Distinguish Groups

Description

Get a Pallete to Distinguish Groups

Usage

get_palette(levs, dark = FALSE, with_all = FALSE)

Arguments

levs Character vector of levels to get colour pallete for.

Value

Character vector with colour codes of length(levs).
get_raw

Download and unpack microarray supplementary files from GEO.

Description
Downloads and unpacks microarray supplementary files from GEO. Files are stored in the supplied data directory under the GSE name.

Usage
get_raw(gse_names, data_dir = getwd())

Arguments
- gse_names: Character vector of GSE names to download.
- data_dir: String specifying directory for GSE folders.

Value
NULL (for download/unpack only).

See Also
load_raw.

Examples
get_raw("GSE41845")

get_svaMods

Get model matrices for surrogate variable analysis

Description
Used by add_adjusted to create model matrix with surrogate variables.

Usage
get_svaMods(pdata)

Arguments
- pdata: data.frame of phenotype data with column 'group' and 'pair' (optional).

Value
List with model matrix(mod) and null model matrix (mod0) used for sva.
Description

Get top table

Usage

get_top_table(
 lm_fit,
 groups = c("test", "ctrl"),
 with.es = TRUE,
 robust = FALSE,
 trend = FALSE,
 allow.no.resid = FALSE
)

Arguments

- **lm_fit**: Result of `run_limma`
- **groups**: Test and Control group as strings.
- **with.es**: Add 'dprime' and 'vardprime' from `effectsize`? Default is TRUE.
- **robust**: logical, should the estimation of df.prior and var.prior be robustified against outlier sample variances?
- **trend**: logical, should an intensity-dependent trend be allowed for the prior variance? If FALSE then the prior variance is constant. Alternatively, trend can be a row-wise numeric vector, which will be used as the covariate for the prior variance.
- **allow.no.resid**: Allow no residual degrees of freedom? if TRUE and the fit contrast matrix has no residual degrees of freedom, eBayes fit is skipped and the result of `contrasts.fit` is returned.

Value

result of `toptable`
get_vsd

Get variance stabilized data for exploratory data analysis

Description

Get variance stabilized data for exploratory data analysis

Usage

`get_vsd(eset)`

Arguments

- `eset`: ExpressionSet loaded with `load_raw`.

Value

Matrix with variance stabilized expression data.

`gs.names`

Map between KEGG pathway numbers and names.

Description

Used to map human KEGG pathway numbers to names. Updated Feb 2017.

Usage

`data(gs.names)`

Format

An object of class character of length 310.

Value

A named character vector of human KEGG pathway names. Names of vector are KEGG pathway numbers.
gslist

KEGG human pathway genes.

Description

Usage

data(gslist)

Format

An object of class list of length 310.

Value

A named list with entrez ids of genes for human KEGG pathways. List names are KEGG pathway numbers.

ilmn.nnum

Count numeric columns in raw Illumina data files

Description

Excludes probe ID cols

Usage

ilmn.nnum(elist_paths)

Arguments

- elist_paths: Paths to raw illumina data files

Value

Number of numeric columns in elist_paths excluding probe ID columns.
iqr_replicates Remove features with replicated annotation.

Description

For rows with duplicated annot, highested IQR retained.

Usage

iqr_replicates(eset, annot = "SYMBOL", rm.dup = FALSE)

Arguments

- eset: Annotated set created by loadRaw.
- annot: Feature to use to remove replicates.
- rm.dup: Remove duplicates (same measure, multiple ids)? Used for Pathway analysis so that doesn’t treat probes that map to multiple genes as distinct measures.

Value

Expression set with unique features at probe or gene level.

is_invertible Check uploaded bulk pdata to make sure the study design is invertible

Description

Check uploaded bulk pdata to make sure the study design is invertible.

Usage

is_invertible(pdata)
load_agil_plat Load Agilent raw data

Description
Load Agilent raw data

Usage
load_agil_plat(eset, gse_name, gse_dir, ensql)

Arguments
- eset: ExpressionSet from getGEO.
- gse_name: Accession name for eset.
- gse_dir: Direction with Agilent raw data.
- ensql: For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.

Value
ExpressionSet

load_diff Load previous differential expression analyses.

Description
Loads previous differential expression analyses.

Usage
load_diff(gse_names, data_dir = getwd(), annot = "SYMBOL", postfix = NULL)

Arguments
- gse_names: Character vector specifying GSE names to be loaded.
- data_dir: String specifying directory of GSE folders.
- annot: Level of previous analysis (e.g. "SYMBOL" or "PROBE").
- postfix: Optional string to append to saved results. Useful if need to run multiple meta-analyses on the same series but with different contrasts.

Value
Result of previous call to diff_expr.
Examples

```r
library(lydata)

data_dir <- system.file("extdata", package = "lydata")
gse_names <- c("GSE9601", "GSE34817")
prev <- load_diff(gse_names, data_dir)
```

load_illum_plat
Illumina loader utility for load_plat.

Description

Used by load_plat to load an eset.

Usage

```r
load_illum_plat(eset, gse_name, gse_dir, ensql)
```

Arguments

- `eset`
 Expression set obtained by `getGEO`.
- `gse_name`
 String specifying GSE name.
- `gse_dir`
 String specifying path to GSE folder.

Value

Annotated eset.

See Also

load_plat.

load_plat
Load and pre-process raw Affymetrix, Illumina, and Agilent microarrays.

Description

Load raw files previously downloaded with `get_raw`. Used by `load_raw`.

Usage

```r
load_plat(gse_name, data_dir, gpl_dir, ensql)
```
load_raw

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gse_names</td>
<td>GSE names.</td>
</tr>
<tr>
<td>data_dir</td>
<td>String specifying directory with GSE folder.</td>
</tr>
<tr>
<td>gpl_dir</td>
<td>String specifying parent directory to search for previously downloaded GPL.soft files.</td>
</tr>
<tr>
<td>ensql</td>
<td>For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.</td>
</tr>
</tbody>
</table>

Details

Data is normalized, SYMBOL and PROBE annotation are added to fData slot.

Value

List of annotated esets, one for each platform in gse_name.

See Also

get_raw to obtain raw data.

load_raw

Load and annotate raw data downloaded from GEO.

Description

Loads and annotates raw data previously downloaded with get_raw. Supported platforms include Affymetrix, Agilent, and Illumina.

Usage

```r
load_raw(
  gse_names,
  data_dir = getwd(),
  gpl_dir = "..",
  overwrite = FALSE,
  ensql = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gse_names</td>
<td>Character vector of GSE names.</td>
</tr>
<tr>
<td>data_dir</td>
<td>String specifying directory with GSE folders.</td>
</tr>
<tr>
<td>gpl_dir</td>
<td>String specifying parent directory to search for previously downloaded GPL.soft files.</td>
</tr>
<tr>
<td>overwrite</td>
<td>Do you want to overwrite saved esets from previous load_raw?</td>
</tr>
<tr>
<td>ensql</td>
<td>For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.</td>
</tr>
</tbody>
</table>
Value

List of annotated esets.

Examples

```r
library(lydata)
data_dir <- system.file("extdata", package = "lydata")
eset <- load_raw("GSE9601", data_dir = data_dir)
```

Description

adapted from DESeq2::makeExampleDESeqDataSet

Usage

```r
makeExampleCountsEset(
  n = 1000,
  m = 12,
  betaSD = 0,
  interceptMean = 4,
  interceptSD = 2,
  dispMeanRel = function(x) 4/x + 0.1,
  sizeFactors = rep(1, m)
)
```

Arguments

- `n` number of rows
- `m` number of columns
- `betaSD` the standard deviation for non-intercept betas, i.e. $\beta \sim N(0,\text{betaSD})$
- `interceptMean` the mean of the intercept betas (log2 scale)
- `interceptSD` the standard deviation of the intercept betas (log2 scale)
- `dispMeanRel` a function specifying the relationship of the dispersions on $2^{\text{trueIntercept}}$
- `sizeFactors` multiplicative factors for each sample

Examples

```r
eset <- makeExampleCountsEset()
```
match_prev_eset

Reuse contrast selections from previous analysis.

Description

Transfers user-supplied selections from previous call of `diff_expr`.

Usage

```r
match_prev_eset(eset, prev_anal)
```

Arguments

- `eset`: Annotated eset. Created by `load_raw`.
- `prev_anal`: One item (for eset) from previous result of `diff_expr`. If present, previous selections and names will be reused.

Value

Expression set with samples and pData as in `prev_anal`.

See Also

`diff_expr`

open_raw_illum

Open raw Illumina microarray files.

Description

Helper function to open raw Illumina microarray files in order to check that they are formatted correctly. For details on correct format, please see 'Checking Raw Illumina Data' in vignette.

Usage

```r
open_raw_illum(gse_names, data_dir = getwd())
```

Arguments

- `gse_names`: Character vector of Illumina GSE names to open.
- `data_dir`: String specifying directory with GSE folders.

Value

Character vector of successfully formated Illumina GSE names.
Examples

library(lydata)

Illumina GSE names
illum_names <- c("GSE50841", "GSE34817", "GSE29689")

location of raw data
data_dir <- system.file("extdata", package = "lydata")

open raw data files with default text editor
open_raw_illum(illum_names)

phenoData.ch2

Construct AnnotatedDataFrame from Two-Channel ExpressionSet

Description

Construct AnnotatedDataFrame from Two-Channel ExpressionSet

Usage

phenoData.ch2(eset)

Arguments

eset ExpressionSet with pData for two-channel Agilent array.

Value

AnnotatedDataFrame with twice as many rows as eset, one for each channel of each array in order all red then all green.

prefix_illum_headers

Run prefix on Illumina raw data files

Description

Run prefix on Illumina raw data files

Usage

prefix_illum_headers(elist_paths)

Arguments

elist_paths Paths to raw Illumina data files
query_ref

Value

Paths to fixed versions of elist_paths

query_ref

Get correlation between query and reference signatures.

Description

Determines the pearson correlation between the query and each reference signature.

Usage

```
query_ref(query, ref, sorted = TRUE, ngenes = 200)
```

Arguments

- `query`: Named numeric vector of differential expression values for query genes. Usually 'meta' slot of get_dprimes result.
- `ref`: A matrix of differential expression to query against (rows are genes, columns are samples).
- `sorted`: Would you like the results sorted by decreasing similarity? Default is TRUE.
- `ngenes`: The number of top differentially-regulated (up and down) query genes to use.

Value

Vector of pearson correlations between query and reference signatures.

remove_autonamed

Remove columns that are autonamed by data.table

Description

Auto-named columns start with 'V' followed by the column number.

Usage

```
remove_autonamed(ex)
```

Arguments

- `ex`: data.frame loaded with fread

Value

ex with auto-named columns removed.
run_limma

Linear model fitting of eset with limma.

Description

After selecting control and test samples for a contrast, surrogate variable analysis (sva) and linear model fitting with lmFit is performed.

Usage

```r
run_limma(
  eset,
  annot = "SYMBOL",
  svobj = list(sv = NULL),
  numsv = 0,
  filter = TRUE
)
```

Arguments

- **eset** Annotated eset created by load_raw.
- **annot** String, column name in fData. For duplicated values in this column, the row with the highest interquartile range across selected samples will be kept. Appropriate values are "SYMBOL" (default - for gene level analysis) or "ENTREZID_HS" (for probe level analysis).
- **svobj** Surrogate variable analysis results. Returned from run_sva.
- **numsv** Number of surrogate variables to model.
- **filter** For RNA-seq. Should genes with low counts be filtered? dseqr shiny app performs this step separately. Should be TRUE (default) if used outside of dseqr shiny app.

Details

If analyses need to be repeated, previous results can be reloaded with readRDS and supplied to the prev_anal parameter. In this case, previous selections will be reused.

Value

List with:

- **fit** result of lmFit.
- **mod** model.matrix used for fit
run_limma_setup

Setup ExpressionSet for running limma analysis

Description

Setup ExpressionSet for running limma analysis

Usage

run_limma_setup(eset, prev)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eset</td>
<td>ExpressionSet</td>
</tr>
<tr>
<td>prev</td>
<td>previous result of call to diff_expr</td>
</tr>
</tbody>
</table>

Value

eset ready for run_limma

run_lmfit

Perform lmFit analysis from limma.

Description

If paired samples, runs duplicateCorrelation to estimate intra-patient variance.

Usage

run_lmfit(eset, mod, rna_seq = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eset</td>
<td>Annotated eset created by load_raw. Non-selected samples and duplicate features removed by add_contrasts and iqr_replicates.</td>
</tr>
<tr>
<td>mod</td>
<td>Model matrix generated by diff_setup. With or without surrogate variables.</td>
</tr>
<tr>
<td>rna_seq</td>
<td>Is this an RNA-seq eset? Default is TRUE.</td>
</tr>
</tbody>
</table>

Value

result from call to limma lmFit.
run_select_contrasts Shiny gadget to upload groups and select contrasts

Description
Shiny gadget to upload groups and select contrasts

Usage
run_select_contrasts(
eset,
gse_name,
prev = NULL,
app_dir = system.file("select_contrasts", package = "crossmeta", mustWork = TRUE),
port = 3838
)

Arguments

eset ExpressionSet

gse_name GEO accession for the series.

prev Previous result of diff_expr. Used to allow rechecking previous selections.

app_dir Directory to shiny app. For local development use 'inst/select_contrasts'. Default is in 'select_contrasts' sub directory of crossmeta package.

port See runApp().

Value
result of setup_prev. Used to specify sample groups and contrasts for differential expression analysis.

run_sva Run surrogate variable analysis

Description
Run surrogate variable analysis

Usage
run_sva(mods, eset, svanal = TRUE)
setup_prev

Arguments

mods
result of get_sva.mods

eset
ExpressionSet

svanal
Should surrogate variable analysis be run? If FALSE, returns dummy result.

Description

Function is useful when number of samples makes manual selection with diff_expr error prone and time-consuming. This is often true for large clinical data sets.

Usage

setup_prev(eset, contrasts)

Arguments

eset
List containing one expression set with pData 'group' and 'pair' (optional) columns. Name of eset should be the GSE name.

contrasts
Character vector specifying contrasts to analyse. Each contrast must take the form "B-A" where both "B" and "A" are present in eset pData 'group' column. "B" is the treatment group and "A" is the control group.

Value

List containing necessary information for prev_anal parameter of diff_expr.

Examples

library(lydata)
library(Biobase)

data_dir <- system.file("extdata", package = "lydata")

location of raw data
data_dir <- system.file("extdata", package = "lydata")

load eset
gse_name <- c("GSE34817")
eset <- load_raw(gse_name, data_dir)

inspect pData of eset
head(pData(eset$GSE34817)) # if using RStudio
head(pData(eset$GSE34817)) # otherwise

get group info from pData (differs based on eset)
group <- pData(eset$GSE34817)$characteristics.ch1.1
make group names concise and valid
group <- gsub("treatment: ", "", group)
group <- make.names(group)

add group to eset pData
pData(eset$GSE34817)$group <- group

setup selections
sel <- setup_prev(eset, contrasts = "LY-DMSO")

run differential expression analysis
anal <- diff_expr(eset, data_dir, prev_anal = sel)

symbol_annot

Add hgnc symbol to expression set.

Description

Function first maps entrez gene ids to homologous human entrez gene ids and then to hgnc symbols.

Usage

symbol_annot(eset, gse_name = "", ensql = NULL)

Arguments

eset Expression set to annotate.
gse_name GSE name for eset.
ensql For development. Path to sqlite file with ENTREZID and SYMBOL columns created in data-raw/entrezdt.

Details

Initial entrez gene ids are obtained from bioconductor annotation data packages or from feature data of supplied expression set. Homologous human entrez ids are obtained from homologene and then mapped to hgnc symbols using org.Hs.eg.db. Expression set is expanded if 1:many mappings occur.

Value

Expression set with hgnc symbols ("SYMBOL") and row names ("PROBE") added to fData slot.

See Also

load_raw.
Examples

```r
library(lydata)
  
  # location of raw data
data_dir <- system.file("extdata", package = "lydata")

  # load eset
eset <- load_raw("GSE9601", data_dir)[[1]]

  # annotate eset (need if load_raw failed to annotate)
eset <- symbol_annot(eset)
```

to_eset
Convert limma object to ExpressionSet

Description

Convert limma object to ExpressionSet

Usage

```r
to_eset(object, eset)
```

Arguments

- `object`: an EList of MAList object containing expression data.
- `eset`: ExpressionSet from `getGEO`. Used for annotation.

Value

ExpressionSet using expression data from `object` and annotation from `eset`.

to_ma
Convert expression values to MAList

Description

Convert expression values to MAList

Usage

```r
to_ma(y)
```

Arguments

- `y`: Expression values from two-channel agilent array in order all red then all green.
which_max_iqr

Description

Groups by `group_by` and determines row with maximum IQR.

Usage

```
which_max_iqr(eset, group_by, x = exprs(eset))
```

Arguments

- `eset` : ExpressionSet
- `group_by` : Column in `fData(eset)` to group by
- `x` : Matrix of expression values to use for IQR

Value

Integer vector of row numbers representing rows with the maximum IQR after grouping by `group_by`

validate_up_annot

Validate uploaded bulk annotation

Usage

```
validate_up_annot(up, ref)
```

Examples

A <- matrix(rnorm(100), ncol = 5)
M <- matrix(rnorm(100), ncol = 5)
MA <- new('MAList', list(M=M, A=A))
colnames(MA) <- letters[1:5]
y <- exprs.MA(MA)
MA2 <- crossmeta::to_ma(y)
all.equal(MA, MA2)
xls_to_txt

Covert .xls files to .txt

Description

For converting Illumina _Supplementary_* .xls files to .txt for load_illum_plat.

Usage

```plaintext
xls_to_txt(xls_paths)
```

Arguments

- **xls_paths**
 - Paths to .xls files
Index

* <-
 run_select_contrasts, 32
* =
 run_select_contrasts, 32
* GSE
 run_select_contrasts, 32
* #
 run_select_contrasts, 32
* analysis
 run_select_contrasts, 32
* data_dir)[[1]]
 run_select_contrasts, 32
* data_dir
 run_select_contrasts, 32
* datasets
 gs.names, 20
 gslist, 21
* data
 run_select_contrasts, 32
* eset
 run_select_contrasts, 32
* gather
 run_select_contrasts, 32
* gse_name)
 run_select_contrasts, 32
* gse_name
 run_select_contrasts, 32
* internal
 addContrastInput, 3
 bulkAnnot, 6
 bulkAnnotInput, 6
 bulkForm, 6
 bulkFormInput, 7
 bulkTable, 8
 bulkTableOutuput, 8
 ch2_subset, 8
 clean_y, 9
 delContrastsInput, 9
 fit_lm, 15
 format_dl_annot, 16
 format_up_annot, 16
 get_ch2_mod, 16
 get_group_levels, 17
 get_palette, 17
 is_invertible, 22
 load_illum_plat, 24
 load_plat, 24
 match_prev_eset, 27
 query_ref, 29
 run_lmfit, 31
 run_select_contrasts, 32
 to_eset, 35
 to_ma, 35
 validate_up_annot, 36
 which_max_iqr, 36
 xls_to_txt, 37
* library(lydata)
 run_select_contrasts, 32
* load_raw(gse_name),
 run_select_contrasts, 32
* load
 run_select_contrasts, 32
* location
 run_select_contrasts, 32
* lydata)
 run_select_contrasts, 32
* names
 run_select_contrasts, 32
* of
 run_select_contrasts, 32
* package
 run_select_contrasts, 32
* previous
 run_select_contrasts, 32
* run_select_contrasts(eset,
 run_select_contrasts, 32
* system.file(extdata,
 run_select_contrasts, 32
INDEX

* z
 run_select_contrasts, 32

add_adjusted, 4
add_sources, 4, 12
add_vsd, 5
addContrastInput, 3

bulkAnnot, 6
bulkAnnotInput, 6
bulkForm, 6
bulkFormInput, 7
bulkPage, 7
bulkPageUI, 7
bulkTable, 8
bulkTableOutput, 8

ch2_subset, 8
clean_y, 9
contrasts.fit, 14, 19
delContrastInput, 9
diff_expr, 4, 5, 10, 12, 23, 27, 33
duplicateCorrelation, 31
eBayes, 11, 14, 19
effectsize, 12, 19
es_meta, 11
exprs.MA, 13, 13

fdrtool, 12
filter_genes, 13
filterByExpr, 13, 14
fit_ebayes, 14
fit_lm, 15
fix_illum_headers, 15
format_dl_annot, 16
format_up_annot, 16
fred, 29

get_ch2_mod, 16
get_group_levels, 17
get_palette, 17
get_raw, 5, 11, 18, 25
get_sva_mods, 18, 33
get_top_table, 19
get_vsd, 20
getGEO, 15, 23, 35
gs.names, 20
gslist, 21

ilmn.nnum, 21
intraspotCorrelation, 16
iqr_repli, 22
is_invertible, 22

lmFit, 15, 30
lmmscFit, 16
load_agil_plat, 23
load_diff, 4, 10–12, 23
load_illum_plat, 24
load_plat, 24, 24
load_raw, 10, 18, 20, 25, 34

makeExampleCountsEset, 26
match_prev_eset, 27

open_raw_illum, 27

phenoData.ch2, 13, 28
plotDensities.MAList, 13
prefix_illum_headers, 28

query_ref, 29

read.ilmn, 15
readRDS, 30
remove_autonamed, 29
run_limma, 14, 19, 30
run_limma_setup, 31
run_lmfit, 31
run_select_contrasts, 32
run_sva, 15, 30, 32
runApp(), 10, 32

setup_prev, 32, 33
sva, 10, 30
symbol_annot, 34

to_eset, 35
to_ma, 35
to_table, 11
toptable, 19

validate_up_annot, 36

which_max_iqr, 36

xls_to_txt, 37

zScores, 12