Package ‘clusterProfiler’

May 3, 2024

Type Package
Title A universal enrichment tool for interpreting omics data
Version 4.12.0
Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a universal interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.

Depends R (>= 3.5.0)
Imports AnnotationDbi, downloader, DOSE (>= 3.23.2), dplyr, enrichplot
 (>= 1.9.3), GO.db, GOSemSim (>= 2.27.2), gson (>= 0.0.7), httr,
 igraph, magrittr, methods, plyr, qvalue, rlang, stats, tidyr,
 utils, yulab.utils (>= 0.0.7)
Suggests AnnotationHub, knitr, jsonlite, readr, rmarkdown,
 org.Hs.eg.db, prettydoc, BiocManager, testthat

VignetteBuilder knitr
ByteCompile true
License Artistic-2.0

URL https://yulab-smu.top/biomedical-knowledge-mining-book/ (docs),
 https://doi.org/10.1016/j.xinn.2021.100141 (paper)

BugReports https://github.com/GuangchuangYu/clusterProfiler/issues
biocViews Annotation, Clustering, GeneSetEnrichment, GO, KEGG,
 MultipleComparison, Pathways, Reactome, Visualization
Encoding UTF-8
RoxygenNote 7.3.1

git_url https://git.bioconductor.org/packages/clusterProfiler

git_branch RELEASE_3_19
Contents

clusterProfiler-package ... 3
append_kegg_category .. 4
bitr ... 5
bitr_kegg .. 5
browseKEGG .. 6
compareCluster ... 6
DataSet .. 8
download_KEGG .. 8
dropGO .. 9
enrichDAVID .. 9
enricher .. 10
enrichGO ... 11
enrichKEGG .. 13
enrichMKEGG ... 14
enrichPC ... 15
enrichWP ... 16
getPPI ... 16
getTaxID .. 18
getTaxInfo ... 18
get_wp_organisms ... 19
Gff2GeneTable ... 19
go2ont ... 20
go2term ... 20
gofilter ... 21
groupGO ... 21
groupGOREsult-class ... 22
GSEA ... 23
gseGO ... 24
gseKEGG .. 25
gseMKEGG ... 26
clusterProfiler-package

This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a univeral interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.

Author(s)

Maintainer: Guangchuang Yu <guangchuangyu@gmail.com> (ORCID) [copyright holder]

Other contributors:

- Li-Gen Wang <reeganwang020@gmail.com> [contributor]
- Erqiang Hu <woshihuerqiang@qq.com> [contributor]
- Xiao Luo <l77880853349@163.com> [contributor]
- Meijun Chen <mjchen1996@outlook.com> [contributor]
- Giovanni Dall’Olio <giovanni.dallolio@upf.edu> [contributor]
- Wanqian Wei <altair_wei@outlook.com> [contributor]
- Chun-Hui Gao <gaospecial@gmail.com> (ORCID) [contributor]
See Also

Useful links:

- Report bugs at https://github.com/GuangchuangYu/clusterProfiler/issues

Description

add KEGG pathway category information

Usage

append_kegg_category(x)

Arguments

x
 KEGG enrichment result

Details

This function appends the KEGG pathway category information to KEGG enrichment result (either output of `enrichKEGG` or `gseKEGG`)

Value

update KEGG enrichment result with category information

Author(s)

Guangchuang Yu
bitr

Description

Biological Id TRanslator

Usage

```r
bitr(geneID, fromType, toType, OrgDb, drop = TRUE)
```

Arguments

- **geneID**: input gene id
- **fromType**: input id type
- **toType**: output id type
- **OrgDb**: annotation db
- **drop**: drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu

bitr_kegg

Description

convert biological ID using KEGG API

Usage

```r
bitr_kegg(geneID, fromType, toType, organism, drop = TRUE)
```

Arguments

- **geneID**: input gene id
- **fromType**: input id type
- **toType**: output id type
- **organism**: supported organism, can be search using search_kegg_organism function
- **drop**: drop NA or not
Value
data.frame

Author(s)
Guangchuang Yu

browseKEGG

Description
open KEGG pathway with web browser

Usage
browseKEGG(x, pathID)

Arguments
- x: an instance of enrichResult or gseaResult
- pathID: pathway ID

Value
url

Author(s)
Guangchuang Yu

compareCluster

Description
Given a list of gene set, this function will compute profiles of each gene cluster.

Usage
compareCluster(
 geneClusters,
 fun = "enrichGO",
 data = "",
 source_from = NULL,
 ...
)
compareCluster

Arguments

- `geneClusters`: a list of entrez gene id. Alternatively, a formula of type Entrez~group or a formula of type Entrez | logFC ~ group for "gseGO", "gseKEGG" and "GSEA".
- `fun`: One of "groupGO", "enrichGO", "enrichKEGG", "enrichDO" or "enrichPathway". Users can also supply their own function.
- `data`: if `geneClusters` is a formula, the data from which the clusters must be extracted.
- `source_from`: If using a custom function in "fun", provide the source package as a string here. Otherwise, the function will be obtained from the global environment.

Value

A clusterProfResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

- compareClusterResult-class
- groupGO
- enrichGO

Examples

```r
## Not run:
data(gcSample)
x <- compareCluster(gcSample, fun="enrichKEGG", organism="hsa", pvalueCutoff=0.05)
as.data.frame(xx)
# plot(xx, type="dot", caption="KEGG Enrichment Comparison")
dotplot(xx)

## formula interface
mydf <- data.frame(Entrez=c('1', '100', '1000', '100101467', '100127206', '100128071'),
                   logFC = c(1.1, -0.5, 5, 2.5, -3, 3),
                   group = c('A', 'A', 'A', 'B', 'B', 'B'),
                   othergroup = c('good', 'good', 'bad', 'bad', 'good', 'bad'))
x.formula <- compareCluster(Entrez+group+othergroup, data=mydf, fun='groupGO', OrgDb='org.Hs.eg.db')
as.data.frame(x.formula)

## formula interface with more than one grouping variable
x.formula.twogroups <- compareCluster(Entrez+group+othergroup, data=mydf, fun='groupGO', OrgDb='org.Hs.eg.db')
as.data.frame(x.formula.twogroups)

## End(Not run)
```
DataSet

Datasets gcSample contains a sample of gene clusters.

Datasets kegg_species contains kegg species information

Datasets kegg_category contains kegg pathway category information

Datasets DE_GSE8057 contains differential expressed genes obtained from GSE8057 dataset

download_KEGG

Description

download the latest version of KEGG pathway/module

Usage

download_KEGG(species, keggType = "KEGG", keyType = "kegg")

Arguments

- `species` species
- `keggType` one of 'KEGG' or 'MKEGG'
- `keyType` supported keyType, see bitr_kegg

Value

list

Author(s)

Guangchuang Yu
dropGO

Description

drop GO term of specific level or specific terms (mostly too general).

Usage

dropGO(x, level = NULL, term = NULL)

Arguments

x
a instance of 'enrichResult' or 'compareClusterResult'
level
GO level
term
GO term

Value

modified version of x

Author(s)

Guangchuang Yu

enrichDAVID

Description

enrichment analysis by DAVID

Usage

enrichDAVID(
gene,
idType = "ENTREZ_GENE_ID",
universe,
minGSSize = 10,
maxGSSize = 500,
annotation = "GOTERM_BP_FAT",
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
qvalueCutoff = 0.2,
species = NA,
david.user
)

Arguments

- **gene**: input gene
- **idType**: id type
- **universe**: background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
- **minGSSize**: minimal size of genes annotated for testing
- **maxGSSize**: maximal size of genes annotated for testing
- **annotation**: david annotation
- **pvalueCutoff**: adjusted pvalue cutoff on enrichment tests to report
- **pAdjustMethod**: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- **qvalueCutoff**: qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
- **species**: species
- **david.user**: david user

Value

A enrichResult instance

Author(s)

Guangchuang Yu

Description

A universal enrichment analyzer

Usage

enricher(
 gene,
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe = NULL,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2,
 gson = NULL,
 TERM2GENE,
 TERM2NAME = NA
)
Arguments

gene a vector of gene id
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
minGSSize minimal size of genes annotated for testing
maxGSSize maximal size of genes annotated for testing
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
gson a GSON object, if not NULL, use it as annotation data.
TERM2GENE user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.
TERM2NAME user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.

Value

A enrichResult instance

Author(s)

Guangchuang Yu https://yulab-smu.top

Description

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Usage

enrichGO(
gene,
OrgDb,
keyType = "ENTREZID",
ont = "MF",
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
universe,
enrichGO

qvalueCutoff = 0.2,
minGSSize = 10,
maxGSSize = 500,
readable = FALSE,
pool = FALSE
)

Arguments

gene a vector of entrez gene id.
OrgDb OrgDb
keyType keytype of input gene
ont One of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
minGSSize minimal size of genes annotated by Ontology term for testing.
maxGSSize maximal size of genes annotated for testing
readable whether mapping gene ID to gene Name
pool If ont='ALL', whether pool 3 GO sub-ontologies

Value

An enrichResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

enrichResult-class, compareCluster

Examples

Not run:
data(geneList, package = "DOSE")
de <- names(geneList)[1:100]
yy <- enrichGO(de, 'org.Hs.eg.db', ont="BP", pvalueCutoff=0.01)
head(yy)

End(Not run)
enrichKEGG

enrichKEGG

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Description

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Usage

```r
enrichKEGG(
  gene,
  organism = "hsa",
  keyType = "kegg",
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  universe,
  minGSSize = 10,
  maxGSSize = 500,
  qvalueCutoff = 0.2,
  use_internal_data = FALSE
)
```

Arguments

- `gene` a vector of entrez gene id.
- `organism` supported organism listed in `https://www.genome.jp/kegg/catalog/org_list.html`
- `keyType` one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
- `pvalueCutoff` adjusted pvalue cutoff on enrichment tests to report
- `pAdjustMethod` one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- `universe` background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
- `minGSSize` minimal size of genes annotated by Ontology term for testing.
- `maxGSSize` maximal size of genes annotated for testing
- `qvalueCutoff` qvalue cutoff on enrichment tests to report as significant. Tests must pass i) `pvalueCutoff` on unadjusted pvalues, ii) `pvalueCutoff` on adjusted pvalues and iii) `qvalueCutoff` on qvalues to be reported.
- `use_internal_data` logical, use KEGG.db or latest online KEGG data

Value

A `enrichResult` instance.
enrichMKEGG

KEGG Module Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG Module categories with FDR control.

Usage

enrichMKEGG(
 gene,
 organism = "hsa",
 keyType = "kegg",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2
)

Arguments

gene a vector of entrez gene id.
organism supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report

Examples

Not run:
data(geneList, package='DOSE')
de <- names(geneList)[1:100]
yy <- enrichKEGG(de, pvalueCutoff=0.01)
head(yy)

End(Not run)
enrichPC

Description
ORA analysis for Pathway Commons

Usage
enrichPC(gene, source, keyType = "hgnc", ...)

Arguments
gene a vector of genes (either hgnc symbols or uniprot IDs)
source Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'net-path', 'panther', etc.
keyType specify the type of input 'gene' (one of 'hgnc' or 'uniprot')
... additional parameters, see also the parameters supported by the enricher() function

Details
This function performs over-representation analysis using Pathway Commons

Value
A enrichResult instance
Description

ORA analysis for WikiPathways

Usage

enrichWP(gene, organism, ...)

Arguments

gene a vector of entrez gene id
organism supported organisms, which can be accessed via the get_wp_organisms() function
... additional parameters, see also the parameters supported by the enricher() function

Details

This function performs over-representation analysis using WikiPathways

Value

A enrichResult instance

Author(s)

Guangchuang Yu
getPPI

Usage

```r
getPPI(
  x,
  ID = 1,
  taxID = "auto",
  required_score = NULL,
  network_type = "functional",
  add_nodes = 0,
  show_query_node_labels = 0,
  output = "igraph"
)
```

Arguments

- `x`: an `enrichResult` object or a vector of proteins, e.g. `c("PTCH1", "TP53", "BRCA1", "BRCA2")`
- `ID`: ID or index to extract genes in the enriched term(s) if `x` is an `enrichResult` object
- `taxID`: NCBI taxon identifiers (e.g. Human is 9606, see: [STRING organisms](https://string-db.org/cgi/input.pl?input_page_active_form=organisms)).
- `required_score`: threshold of significance to include a interaction, a number between 0 and 1000 (default depends on the network)
- `network_type`: network type: functional (default), physical
- `add_nodes`: adds a number of proteins with to the network based on their confidence score (default:1)
- `show_query_node_labels`: when available use submitted names in the preferredName column when (0 or 1) (default:0)
- `output`: one of `data.frame` or `igraph`

Details

[Getting the STRING network interactions](https://string-db.org/cgi/help.pl?sessionId=btsvnCeNrBk7).

Value

a `data.frame` or an `igraph` object

Author(s)

Yonghe Xia and modified by Guangchuang Yu
```r
getTaxID

Description
Convert species scientific name to taxonomic ID

Usage
getTaxID(species)

Arguments
species scientific name of a species

Value
taxonomic ID

Author(s)
Guangchuang Yu
```

```r
getTaxInfo

Description
Query taxonomy information from 'stringdb' or 'ensembl' web services

Usage
getTaxInfo(species, source = "stringdb")

Arguments
species scientific name of a species
source one of 'stringdb' or 'ensembl'

Value
a 'data.frame' of query information

Author(s)
Guangchuang Yu
```
get_wp_organisms

get_wp_organisms
get_wp_organism

Description
list supported organism of WikiPathways

Usage
get_wp_organisms()

Details
This function extracts information from 'https://data.wikipathways.org/current/gmt/' and lists all supported organisms

Value
supported organism list

Author(s)
Guangchuang Yu

Gff2GeneTable
Gff2GeneTable

Description
read GFF file and build gene information table

Usage
Gff2GeneTable(gffFile, compress = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gffFile</td>
<td>GFF file</td>
</tr>
<tr>
<td>compress</td>
<td>compress file or not</td>
</tr>
</tbody>
</table>

Details
given a GFF file, this function extracts information from it and save it in working directory

Value
file save.
Author(s)

Yu Guangchuang

go2ont
go2ont

Description

convert goid to ontology (BP, CC, MF)

Usage

go2ont(goid)

Arguments

| goid | a vector of GO IDs |

Value

data.frame

Author(s)

Guangchuang Yu

go2term
go2term

Description

convert goid to descriptive term

Usage

go2term(goid)

Arguments

| goid | a vector of GO IDs |

Value

data.frame

Author(s)

Guangchuang Yu
gofilter

Description

filter GO enriched result at specific level

Usage

gofilter(x, level = 4)

Arguments

- **x**: output from enrichGO or compareCluster
- **level**: GO level

Value

updated object

Author(s)

Guangchuang Yu

groupGO

Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.

Description

Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.

Usage

groupGO(
 gene,
 OrgDb,
 keyType = "ENTREZID",
 ont = "CC",
 level = 2,
 readable = FALSE
)

Arguments
- **gene**: a vector of entrez gene id.
- **OrgDb**: OrgDb
- **keyType**: key type of input gene
- **ont**: One of "MF", "BP", and "CC" subontologies.
- **level**: Specific GO Level.
- **readable**: if readable is TRUE, the gene IDs will mapping to gene symbols.

Value
- A `groupGOResult` instance.

Author(s)
- Guangchuang Yu https://yulab-smu.top

See Also
- `groupGOResult-class`, `compareCluster`

Examples
```r
data(gcSample)
yy <- groupGO(gcSample[[1]], 'org.Hs.eg.db', ont="BP", level=2)
head(summary(yy))
#plot(yy)
```

groupGOResult-class

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Description

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Slots
- **result**: GO classification result
- **ontology**: Ontology
- **level**: GO level
- **organism**: one of "human", "mouse" and "yeast"
- **gene**: Gene IDs
- **readable**: logical flag of gene ID in symbol or not.
GSEA

Author(s)
Guangchuang Yu https://yulab-smu.top

See Also
compareClusterResult compareCluster groupGO

Description
a universal gene set enrichment analysis tools

Usage
GSEA(
geneList,
exponent = 1,
minGSSize = 10,
maxGSSize = 500,
eps = 1e-10,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
gson = NULL,
TERM2GENE,
TERM2NAME = NA,
verbose = TRUE,
seed = FALSE,
by = "fgsea",
...
)

Arguments
geneList order ranked geneList
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff adjusted pvalue cutoff
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
gson a GSON object, if not NULL, use it as annotation data.
TERM2GENE user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.
Description

Gene Set Enrichment Analysis of Gene Ontology

Usage

```r
gseGO(
  geneList,
  ont = "BP",
  OrgDb,
  keyType = "ENTREZID",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...)
)```

**Value**

gseaResult object

**Author(s)**

Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)
Arguments

geneList order ranked geneList
ont one of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
OrgDb OrgDb
keyType keytype of gene
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
verbose print message or not
seed logical
by one of 'fgsea' or 'DOSE'
... other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang

Description

Gene Set Enrichment Analysis of KEGG

Usage

gseKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
)
Arguments

geneList order ranked geneList
organism supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
verbose print message or not
use_internal_data logical, use KEGG.db or latest online KEGG data
seed logical
by one of 'fgsea' or 'DOSE'
... other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang

Description

Gene Set Enrichment Analysis of KEGG Module
Usage

gseMKEGG(
  geneList, 
  organism = "hsa", 
  keyType = "kegg", 
  exponent = 1, 
  minGSSize = 10, 
  maxGSSize = 500, 
  eps = 1e-10, 
  pvalueCutoff = 0.05, 
  pAdjustMethod = "BH", 
  verbose = TRUE, 
  seed = FALSE, 
  by = "fgsea", 
  ...
)

Arguments

geneList order ranked geneList
organism supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
verbose print message or not
seed logical
by one of 'fgsea' or 'DOSE'
... other parameter

Value

gseaResult object

Author(s)

Yu Guangchuang
### gsePC

**Description**

GSEA analysis for Pathway Commons

**Usage**

```r
GSEA(geneList, source, keyType, ...)
```

**Arguments**

- `geneList`: a ranked gene list
- `source`: Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'net-path', 'panther', etc.
- `keyType`: specify the type of input 'gene' (one of 'hgnc' or 'uniprot')
- `...`: additional parameters, see also the parameters supported by the GSEA() function

**Details**

This function performs GSEA using Pathway Commons

**Value**

A gseaResult instance

---

### gseWP

**Description**

GSEA analysis for WikiPathways

**Usage**

```r
GSEA(geneList, organism, ...)
```

**Arguments**

- `geneList`: ranked gene list
- `organism`: supported organisms, which can be accessed via the get_wp_organisms() function
- `...`: additional parameters, see also the parameters supported by the GSEA() function
Details

This function performs GSEA using WikiPathways

Value

A `gseaResult` instance

Author(s)

Guangchuang Yu

gson_GO  gson_KEGG

description

download the latest version of KEGG pathway and stored in a ‘GSON’ object

Usage

gson_GO(OrgDb, keytype = "ENTREZID", ont = "BP")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OrgDb</td>
<td>OrgDb</td>
</tr>
<tr>
<td>keytype</td>
<td>keytype of genes.</td>
</tr>
<tr>
<td>ont</td>
<td>one of &quot;BP&quot;, &quot;MF&quot;, &quot;CC&quot;, and &quot;ALL&quot;</td>
</tr>
</tbody>
</table>

Value

a ‘GSON’ object

gson_KEGG  gson_KEGG

description

download the latest version of KEGG pathway and stored in a ‘GSON’ object

Usage

gson_KEGG(species, KEGG_Type = "KEGG", keyType = "kegg")
Arguments

species species
KEGG_Type one of "KEGG" and "MKEGG"
keyType one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'.

Value

a 'GSON' object

Author(s)

Guangchuang Yu

gson_KEGG_mapper Build KEGG annotation for novel species using KEGG Mapper

Description

KEGG Mapper service can annotate protein sequences for novel species with KO database, and KO annotation need to be converted into Pathway or Module annotation, which can then be used in 'clusterProfiler'

Usage

```r
gson_KEGG_mapper(
 file,
 format = c("BLAST", "Ghost", "Kofam"),
 type = c("pathway", "module"),
 species = NULL,
 ...
)
```

Arguments

file the name of the file which comes from the KEGG Mapper service, see Details for file format
format string indicate format of KEGGMapper result
type string indicate annotation database
species your species, NULL if ignored
... pass to gson::gson()
Details

File is a two-column dataset with K numbers in the second column, optionally preceded by the user’s identifiers in the first column. This is consistent with the output files of automatic annotation servers, BlastKOALA, GhostKOALA, and KofamKOALA. KOALA (KEGG Orthology And Links Annotation) is KEGG’s internal annotation tool for K number assignment of KEGG GENES using SSEARCH computation. BlastKOALA and GhostKOALA assign K numbers to the user’s sequence data by BLAST and GHOSTX searches, respectively, against a nonredundant set of KEGG GENES. KofamKOALA is a new member of the KOALA family available at GenomeNet using the HMM profile search, rather than the sequence similarity search, for K number assignment. see https://www.kegg.jp/blastkoala/, https://www.kegg.jp/ghostkoala/ and https://www.genome.jp/tools/kofamkoala/ for more information.

Value

a gson instance

Examples

```r
Not run:
file = system.file('extdata', "kegg_mapper_blast.txt", package='clusterProfiler')
gson_KEGG_mapper(file, format = "BLAST", type = "pathway")

End(Not run)
```

Descripion

Download the latest version of WikiPathways data and stored in a 'GSON' object

Usage

gson_WP(organism)

Arguments

organism supported organism, which can be accessed via the get_wp_organisms() function.
### idType

**Description**

list ID types supported by annoDb

**Usage**

```
idType(OrgDb = "org.Hs.eg.db")
```

**Arguments**

- **OrgDb**: annotation db

**Value**

character vector

**Author(s)**

Guangchuang Yu

---

### ko2name

**Description**

convert ko ID to descriptive name

**Usage**

```
ko2name(ko)
```

**Arguments**

- **ko**: ko ID

**Value**

data.frame

**Author(s)**

guangchuang yu
merge_result

Description
merge a list of enrichResult objects to compareClusterResult

Usage
merge_result(enrichResultList)

Arguments
enrichResultList
a list of enrichResult objects

Value
a compareClusterResult instance

Author(s)
Guangchuang Yu

plotGOgraph

Description
plot GO graph

Usage
plotGOgraph(
x,  
firstSigNodes = 10,  
useInfo = "all",  
sigForAll = TRUE,  
useFullNames = TRUE,  
...  
)
Arguments

- x: output of enrichGO or gseGO
- firstSigNodes: number of significant nodes (rectangle nodes in the graph)
- useInfo: additional info
- sigForAll: if TRUE the score/p-value of all nodes in the DAG is shown, otherwise only score will be shown
- useFullNames: logical
- ...: additional parameter of showSigOfNodes, please refer to topGO

Value

GO DAG graph

Author(s)

Guangchuang Yu

---

**Description**

Parse gmt file from Pathway Common

**Usage**

```r
read.gmt.pc(gmtfile, output = "data.frame")
```

**Arguments**

- gmtfile: A gmt file
- output: one of 'data.frame' or 'GSON'

**Details**

This function parse gmt file downloaded from Pathway common

**Value**

A data.frame or A GSON object depends on the value of 'output'
**Description**

These objects are imported from other packages. Follow the links below to see their documentation.

- **DOSE** `geneID, geneInCategory, gsfilter, setReadable`
- **dplyr** `arrange, filter, group_by, mutate, n, rename, select, slice, summarise`
- **enrichplot** `cnetplot, dotplot, emapplot, goplot, gseaplot, heatplot, ridgeplot`
- **GOSemSim** `buildGOMap, read.blast2go, read.gaf`
- **gson** `read.gmt, read.gmt.wp`
- **magrittr** `%<>%, %>%`

**search_kegg_organism**

**Description**

search kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html

**Usage**

```r
search_kegg_organism(
 str,
 by = "scientific_name",
 ignore.case = FALSE,
 use_internal_data = TRUE
)
```

**Arguments**

- `str` string
- `by` one of 'kegg.code', 'scientific_name' and 'common_name'
- `ignore.case` TRUE or FALSE
- `use_internal_data` logical, use kegg_species.rda or latest online KEGG data

**Value**

data.frame

**Author(s)**

Guangchuang Yu
**simplify**

**simplify method**

**Description**

simplify output from enrichGO and gseGO by removing redundancy of enriched GO terms
simplify output from compareCluster by removing redundancy of enriched GO terms

**Usage**

```r
S4 method for signature 'enrichResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)

S4 method for signature 'gseaResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)

S4 method for signature 'compareClusterResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)
```

**Arguments**

- **x**: output of enrichGO
- **cutoff**: similarity cutoff
- **by**: feature to select representative term, selected by 'select_fun' function
- **select_fun**: function to select feature passed by 'by' parameter
**uniprot_get**

- **measure**: method to measure similarity
- **semData**: GOSemSimDATA object

**Value**
- updated enrichResult object
- updated compareClusterResult object

**Author(s)**
- Guangchuang Yu
- Gwang-Jin Kim and Guangchuang Yu

**References**
- issue #28 [https://github.com/GuangchuangYu/clusterProfiler/issues/28](https://github.com/GuangchuangYu/clusterProfiler/issues/28)
- issue #162 [https://github.com/GuangchuangYu/clusterProfiler/issues/162](https://github.com/GuangchuangYu/clusterProfiler/issues/162)

---

**uniprot_get**

**uniprot_get**

---

**Description**
- retrieve annotation data from uniprot

**Usage**
- `uniprot_get(taxID)`

**Arguments**
- **taxID**: taxonomy ID

**Value**
- gene table data frame

**Author(s)**
- guangchuang yu
Index

* **classes**
  - `groupGOResult-class`, 22

* **datasets**
  - `DataSet`, 8

* **internal**
  - `clusterProfiler-package`, 3
    - `reexports`, 35

* **manip**
  - `compareCluster`, 6
  - `enrichGO`, 11
  - `enrichKEGG`, 13
  - `groupGO`, 21
    - `%<>%`(reexports), 35
    - `>`%(reexports), 35
    - `<%`, 35
    - `<%`, 35

  - `append_kegg_category`, 4
  - `arrange`, 35
  - `arrange`(reexports), 35

  - `bitr`, 5
  - `bitr_kegg`, 5
  - `browseKEGG`, 6
  - `buildGOmap`, 35
  - `buildGOmap`(reexports), 35

  - `clusterProfiler`
    - (clusterProfiler-package), 3
  - `clusterProfiler-package`, 3
  - `cnetplot`, 35
  - `cnetplot`(reexports), 35
  - `compareCluster`, 6, 12, 14, 22, 23
  - `compareClusterResult`, 23

  - `DataSet`, 8
  - `DE_GSE8057`(DataSet), 8
  - `dotplot`, 35
  - `dotplot`(reexports), 35
  - `download_KEGG`, 8

  - `dropGO`, 9
  - `emapplot`, 35
  - `emapplot`(reexports), 35
  - `enrichDAVID`, 9
  - `enricher`, 10
  - `enrichGO`, 7, 11
  - `enrichKEGG`, 13
  - `enrichMKEGG`, 14
  - `enrichPC`, 15
  - `enrichWP`, 16

  - `filter`, 35
  - `filter`(reexports), 35

  - `gcSample`(DataSet), 8
  - `geneID`, 35
  - `geneID`(reexports), 35
  - `geneInCategory`, 35
  - `geneInCategory`(reexports), 35
  - `get_wp_organisms`, 19
  - `getPPI`, 16
  - `getTaxID`, 18
  - `getTaxInfo`, 18
  - `Gff2GeneTable`, 19
  - `go2ont`, 20
  - `go2term`, 20

  - `gofilter`, 21
  - `goplot`, 35
  - `goplot`(reexports), 35
  - `goplot`(reexports), 35
  - `group_by`, 35
  - `group_by`(reexports), 35
  - `groupGO`, 7, 21, 23
  - `groupGOResult-class`, 22
  - `GSEA`, 23
  - `gseaplot`, 35
  - `gseaplot`(reexports), 35
  - `gseGO`, 24
  - `gseKEGG`, 25
  - `gseMKEGG`, 26
INDEX

39

gsePC, 28

35

gseWP, 28


gsfilter, 35

gsfilter (reexports), 35


gson_GO, 29

gson_KEGG, 29

gson_KEGG_mapper, 30

gson_WP, 31


heatplot, 35

heatplot (reexports), 35


idType, 32


kegg_category (DataSet), 8


kegg_species (DataSet), 8

ko2name, 32


merge_result, 33

mutate, 35

mutate (reexports), 35


n, 35

n (reexports), 35


plotGOgraph, 33


read.blast2go, 35

read.blast2go (reexports), 35


	nread.gaf, 35
	nread.gaf (reexports), 35


	nread.gmt, 35
	nread.gmt (reexports), 35
	nread.gmt.pc, 34
	nread.gmt.wp, 35

	nreexports, 35
	nrename, 35
	nrename (reexports), 35


	ridgeplot, 35
	ridgeplot (reexports), 35


search_kegg_organism, 35

select, 35

select (reexports), 35


setReadable, 35

setReadable (reexports), 35


show, groupGOResult-method (groupGOResult-class), 22


simplify, 36