Package ‘clusterProfiler’

March 29, 2024

Type Package

Title A universal enrichment tool for interpreting omics data

Version 4.10.1

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package supports functional characteristics of both coding and non-coding genomics data for thousands of species with up-to-date gene annotation. It provides a universal interface for gene functional annotation from a variety of sources and thus can be applied in diverse scenarios. It provides a tidy interface to access, manipulate, and visualize enrichment results to help users achieve efficient data interpretation. Datasets obtained from multiple treatments and time points can be analyzed and compared in a single run, easily revealing functional consensus and differences among distinct conditions.

Depends R (>= 3.5.0)

Imports AnnotationDbi, downloader, DOSE (>= 3.23.2), dplyr, enrichplot
(>= 1.9.3), GO.db, GOSemSim (>= 2.27.2), gson (>= 0.0.7), httr,
igraph, magrittr, methods, plyr, qvalue, rlang, stats, tidyr,
utils, yulab.utils (>= 0.0.7)

Suggests AnnotationHub, knitr, jsonlite, readr, rmarkdown,
org.Hs.eG.db, prettydoc, BiocManager, testthat

VignetteBuilder knitr

ByteCompile true

License Artistic-2.0

URL https://yulab-smu.top/biomedical-knowledge-mining-book/ (docs),
https://doi.org/10.1016/j.xinn.2021.100141 (paper)

BugReports https://github.com/GuangchuangYu/clusterProfiler/issues

biocViews Annotation, Clustering, GeneSetEnrichment, GO, KEGG,
MultipleComparison, Pathways, Reactome, Visualization

Encoding UTF-8

RoxygenNote 7.2.3

git_url https://git.bioconductor.org/packages/clusterProfiler

git_branch RELEASE_3_18
R topics documented:

- `clusterProfiler-package` .. 3
- `append_kegg_category` .. 3
- `bitr` .. 4
- `bitr_kegg` .. 5
- `browseKEGG` .. 5
- `compareCluster` ... 6
- `DataSet` .. 7
- `download_KEGG` .. 7
- `dropGO` ... 8
- `enrichDAVID` ... 9
- `enricher` .. 10
- `enrichGO` ... 11
- `enrichKEGG` ... 12
- `enrichMKEGG` ... 14
- `enrichPC` .. 15
- `enrichWP` .. 15
- `getPPI` .. 16
- `getTaxID` ... 17
- `getTaxInfo` ... 18
- `get_wp_organisms` ... 18
- `Gff2GeneTable` .. 19
- `go2ont` .. 19
- `go2term` .. 20
- `gofilter` ... 20
- `groupGO` ... 21
- `groupGOResult-class` .. 22
- `GSEA` .. 22
- `gseGO` ... 24
- `gseKEGG` ... 25
- `gseMKEGG` ... 26
Description

The package implements methods to analyze and visualize functional profiles of gene and gene clusters.

append_kegg_category
append_kegg_category

Description

add KEGG pathway category information

Usage

```r
append_kegg_category(x)
```

Arguments

- `x`
 KEGG enrichment result

Details

This function appends the KEGG pathway category information to KEGG enrichment result (either output of `enrichKEGG` or `gseKEGG`
Value

update KEGG enrichment result with category information

Author(s)

Guangchuang Yu

Description

Biological Id TRanslator

Usage

bitr(geneID, fromType, toType, OrgDb, drop = TRUE)

Arguments

geneID input gene id
fromType input id type
toType output id type
OrgDb annotation db
drop drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu
bitr_kegg

Description

convert biological ID using KEGG API

Usage

`bitr_kegg(geneID, fromType, toType, organism, drop = TRUE)`

Arguments

- `geneID`: input gene id
- `fromType`: input id type
- `toType`: output id type
- `organism`: supported organism, can be search using `search_kegg_organism` function
- `drop`: drop NA or not

Value

data.frame

Author(s)

Guangchuang Yu

browseKEGG

Description

open KEGG pathway with web browser

Usage

`browseKEGG(x, pathID)`

Arguments

- `x`: an instance of enrichResult or gseaResult
- `pathID`: pathway ID
compareCluster

Value
url

Author(s)
Guangchuang Yu

compareCluster

Compare gene clusters functional profile

Description

Given a list of gene set, this function will compute profiles of each gene cluster.

Usage

```r
compareCluster(
  geneClusters,
  fun = "enrichGO",
  data = "",
  source_from = NULL,
  ...
)
```

Arguments

- `geneClusters`: a list of entrez gene id. Alternatively, a formula of type `Entrez ~ group` or a formula of type `Entrez | logFC ~ group` for "gseGO", "gseKEGG" and "GSEA".
- `fun`: One of "groupGO", "enrichGO", "enrichKEGG", "enrichDO" or "enrichPathway". Users can also supply their own function.
- `data`: if `geneClusters` is a formula, the data from which the clusters must be extracted.
- `source_from`: If using a custom function in "fun", provide the source package as a string here. Otherwise, the function will be obtained from the global environment.
- `...`: Other arguments.

Value

A `clusterProfResult` instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

`compareClusterResult-class`, `groupGO`, `enrichGO`
Examples

```r
### Not run:
data(gcSample)
xx <- compareCluster(gcSample, fun="enrichKEGG",
                     organism="hsa", pvalueCutoff=0.05)
as.data.frame(xx)
# plot(xx, type="dot", caption="KEGG Enrichment Comparison")
dotplot(xx)

### formula interface
mydf <- data.frame(Entrez=c('1', '100', '1000', '100101467',
                             '100127206', '100128071'),
                   logFC = c(1.1, -0.5, 5, 2.5, -3, 3),
                   group = c('A', 'A', 'A', 'B', 'B', 'B'),
                   othergroup = c('good', 'good', 'bad', 'good', 'bad'))
xx.formula <- compareCluster(Entrez~group, data=mydf,
                              fun='groupGO', OrgDb='org.Hs.eg.db')
as.data.frame(xx.formula)

### formula interface with more than one grouping variable
xx.formula.twogroups <- compareCluster(Entrez~group+othergroup, data=mydf,
                                       fun='groupGO', OrgDb='org.Hs.eg.db')
as.data.frame(xx.formula.twogroups)

### End(Not run)
```

Description

Datasets gcSample contains a sample of gene clusters.

Datasets kegg_species contains kegg species information

Datasets kegg_category contains kegg pathway category information

Datasets DE_GSE8057 contains differential expressed genes obtained from GSE8057 dataset

download_KEGG

Description

download the latest version of KEGG pathway/module

Usage

```r
download_KEGG(species, keggType = "KEGG", keyType = "kegg")
```
Arguments

- species: species
- keggType: one of 'KEGG' or 'MKEGG'
- keyType: supported keyType, see bitr_kegg

Value

- list

Author(s)

- Guangchuang Yu

Description

drop GO term of specific level or specific terms (mostly too general).

Usage

dropGO(x, level = NULL, term = NULL)

Arguments

- x: an instance of 'enrichResult' or 'compareClusterResult'
- level: GO level
- term: GO term

Value

- modified version of x

Author(s)

- Guangchuang Yu
Description

enrichment analysis by DAVID

Usage

enrichDAVID(
 gene,
 idType = "ENTREZ_GENE_ID",
 universe,
 minGSSize = 10,
 maxGSSize = 500,
 annotation = "GOTERM_BP_FAT",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 qvalueCutoff = 0.2,
 species = NA,
 david.user
)

Arguments

 gene input gene
 idType id type
 universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
 minGSSize minimal size of genes annotated for testing
 maxGSSize maximal size of genes annotated for testing
 annotation david annotation
 pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
 pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
 qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
 species species
 david.user david user

Value

 A enrichResult instance
Author(s)

Guangchuang Yu

Description

A universal enrichment analyzer

Usage

enricher(
 gene,
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe = NULL,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2,
 gson = NULL,
 TERM2GENE,
 TERM2NAME = NA
)

Arguments

- **gene**: a vector of gene id
- **pvalueCutoff**: adjusted pvalue cutoff on enrichment tests to report
- **pAdjustMethod**: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- **universe**: background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
- **minGSSize**: minimal size of genes annotated for testing
- **maxGSSize**: maximal size of genes annotated for testing
- **qvalueCutoff**: qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
- **gson**: a GSON object, if not NULL, use it as annotation data.
- **TERM2GENE**: user input annotation of TERM TO GENES mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.
- **TERM2NAME**: user input of TERM TO NAMES mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.
enrichGO

Value

A enrichResult instance

Author(s)

Guangchuang Yu https://yulab-smu.top

enrichGO

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Description

GO Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment GO categories after FDR control.

Usage

enrichGO(
 gene,
 OrgDb,
 keyType = "ENTREZID",
 ont = "MF",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe,
 qvalueCutoff = 0.2,
 minGSSize = 10,
 maxGSSize = 500,
 readable = FALSE,
 pool = FALSE
)

Arguments

gene a vector of entrez gene id.
OrgDb OrgDb
keyType keytype of input gene
ont One of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.

minGSSize minimal size of genes annotated by Ontology term for testing.

maxGSSize maximal size of genes annotated for testing

readable whether mapping gene ID to gene Name

pool If ont='ALL', whether pool 3 GO sub-ontologies

Value
An enrichResult instance.

Author(s)
Guangchuang Yu https://yulab-smu.top

See Also
enrichResult-class,compareCluster

Examples
Not run:
data(geneList, package = "DOSE")
de <- names(geneList)[1:100]
yy <- enrichGO(de, 'org.Hs.eg.db', ont="BP", pvalueCutoff=0.01)
head(yy)

End(Not run)

enrichKEGG

KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Description
KEGG Enrichment Analysis of a gene set. Given a vector of genes, this function will return the enrichment KEGG categories with FDR control.

Usage
enrichKEGG(
gene,
organism = "hsa",
keyType = "kegg",
pvalueCutoff = 0.05,
)
enrichKEGG

pAdjustMethod = "BH",
universe,
minGSSize = 10,
maxGSSize = 500,
qvalueCutoff = 0.2,
use_internal_data = FALSE
)

Arguments

gene a vector of entrez gene id.
organism supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
pvalueCutoff adjusted pvalue cutoff on enrichment tests to report
pAdjustMethod one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
universe background genes. If missing, the all genes listed in the database (eg TERM2GENE table) will be used as background.
minGSSize minimal size of genes annotated by Ontology term for testing.
maxGSSize maximal size of genes annotated for testing
qvalueCutoff qvalue cutoff on enrichment tests to report as significant. Tests must pass i) pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues and iii) qvalueCutoff on qvalues to be reported.
use_internal_data logical, use KEGG.db or latest online KEGG data

Value

A enrichResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

enrichResult-class, compareCluster

Examples

```r
## Not run:
data(geneList, package='DOSE')
de <- names(geneList)[1:100]
yy <- enrichKEGG(de, pvalueCutoff=0.01)
head(yy)

## End(Not run)
```
enrichMKEGG

KEGG Module Enrichment Analysis of a gene set. Given a vector of
genes, this function will return the enrichment KEGG Module cate-
gories with FDR control.

Description

KEGG Module Enrichment Analysis of a gene set. Given a vector of genes, this function will return
the enrichment KEGG Module categories with FDR control.

Usage

`enrichMKEGG(
 gene,
 organism = "hsa",
 keyType = "kegg",
 pvalueCutoff = 0.05,
 pAdjustMethod = "BH",
 universe,
 minGSSize = 10,
 maxGSSize = 500,
 qvalueCutoff = 0.2
)

Arguments

- `gene`: a vector of entrez gene id.
- `organism`: supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
- `keyType`: one of "kegg", 'ncbi-geneid', 'ncbi-proteinid' and 'uniprot'
- `pvalueCutoff`: adjusted pvalue cutoff on enrichment tests to report
- `pAdjustMethod`: one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
- `universe`: background genes. If missing, the all genes listed in the database (eg TERM2GENE
table) will be used as background.
- `minGSSize`: minimal size of genes annotated by Ontology term for testing.
- `maxGSSize`: maximal size of genes annotated for testing
- `qvalueCutoff`: qvalue cutoff on enrichment tests to report as significant. Tests must pass i)
pvalueCutoff on unadjusted pvalues, ii) pvalueCutoff on adjusted pvalues
and iii) qvalueCutoff on qvalues to be reported.

Value

A enrichResult instance.
enrichPC

Description
ORA analysis for Pathway Commons

Usage
enrichPC(gene, source, keyType = "hgnc", ...)

Arguments
gene a vector of genes (either hgnc symbols or uniprot IDs)
source Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'net-path', 'panther', etc.
keyType specify the type of input 'gene' (one of 'hgnc' or 'uniprot')
... additional parameters, see also the parameters supported by the enricher() function

Details
This function performs over-representation analysis using Pathway Commons

Value
A enrichResult instance

enrichWP

Description
ORA analysis for WikiPathways

Usage
enrichWP(gene, organism, ...)

Arguments
gene a vector of entrez gene id
organism supported organisms, which can be accessed via the get_wp_organisms() function
... additional parameters, see also the parameters supported by the enricher() function
getPPI

Details

This function performs over-representation analysis using WikiPathways

Value

A enrichResult instance

Author(s)

Guangchuang Yu

Usage

getPPI(
 x,
 ID = 1,
 taxID = "auto",
 required_score = NULL,
 network_type = "functional",
 add_nodes = 0,
 show_query_node_labels = 0,
 output = "igraph"
)

Arguments

x
 an ‘enrichResult‘ object or a vector of proteins, e.g. ‘c("PTCH1", "TP53",
 "BRCA1", "BRCA2")’
ID
 ID or index to extract genes in the enriched term(s) if ‘x’ is an ‘enrichResult’
 object
 taxID
 NCBI taxon identifiers (e.g. Human is 9606, see: [STRING organisms](https://string-
 db.org/cgi/input.pl?input_page_active_form=organisms)).
 required_score
 threshold of significance to include a interaction, a number between 0 and 1000
 (default depends on the network)
 network_type
 network type: functional (default), physical
 add_nodes
 adds a number of proteins with to the network based on their confidence score
 (default:1)
getTaxID

```
show_query_node_labels
  when available use submitted names in the preferredName column when (0 or
  1) (default:0)
output
  one of `data.frame` or `igraph`

Details

[Getting the STRING network interactions](https://string-db.org/cgi/help.pl?sessionId=btsvnCeNrBk7).

Value

a `data.frame` or an `igraph` object

Author(s)

Yonghe Xia and modified by Guangchuang Yu

---

**getTaxID**

**Description**

Convert species scientific name to taxonomic ID

**Usage**

```r
getTaxID(species)
```

**Arguments**

- `species` scientific name of a species

**Value**

- taxonomic ID

**Author(s)**

- Guangchuang Yu
getTaxInfo

Description
Query taxonomy information from 'stringdb' or 'ensembl' web services

Usage
getTaxInfo(species, source = "stringdb")

Arguments
- species: scientific name of a species
- source: one of 'stringdb' or 'ensembl'

Value
a 'data.frame' of query information

Author(s)
Guangchuang Yu

get_wp_organisms

description
list supported organism of WikiPathways

Usage
get_wp_organisms()

Details
This function extracts information from 'https://wikipathways-data.wmcloud.org/current/gmt/' and lists all supported organisms

Value
supported organism list

Author(s)
Guangchuang Yu
Gff2GeneTable

Description
read GFF file and build gene information table

Usage
Gff2GeneTable(gffFile, compress = TRUE)

Arguments
- gffFile: GFF file
- compress: compress file or not

Details
given a GFF file, this function extracts information from it and save it in working directory

Value
file save.

Author(s)
Yu Guangchuang

go2ont

Description
convert goid to ontology (BP, CC, MF)

Usage
go2ont(goid)

Arguments
- goid: a vector of GO IDs

Value
data.frame
**go2term**

**Description**
convert goid to descriptive term

**Usage**
go2term(goid)

**Arguments**
goid a vector of GO IDs

**Value**
data.frame

**Author(s)**
Guangchuang Yu

---

**gofilter**

**Description**
filter GO enriched result at specific level

**Usage**
gofilter(x, level = 4)

**Arguments**
x output from enrichGO or compareCluster
level GO level

**Value**
updated object
Functional Profile of a gene set at specific GO level. Given a vector of genes, this function will return the GO profile at a specific level.

Usage

groupGO(
gene,
OrgDb,
keyType = "ENTREZID",
ont = "CC",
level = 2,
readable = FALSE
)

Arguments

gene a vector of entrez gene id.
OrgDb OrgDb
keyType key type of input gene
ont One of "MF", "BP", and "CC" subontologies.
level Specific GO Level.
readable if readable is TRUE, the gene IDs will mapping to gene symbols.

Value

A groupGOResult instance.

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

groupGOResult-class, compareCluster
Examples

```r
data(gcSample)
yy <- groupGO(gcSample[[1]], 'org.Hs.eg.db', ont="BP", level=2)
head(summary(yy))
#plot(yy)
```

groupGOResult-class

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Description

Class "groupGOResult" This class represents the result of functional Profiles of a set of gene at specific GO level.

Slots

- result: GO classification result
- ontology: Ontology
- level: GO level
- organism: one of "human", "mouse" and "yeast"
- gene: Gene IDs
- readable: logical flag of gene ID in symbol or not.

Author(s)

Guangchuang Yu [https://yulab-smu.top](https://yulab-smu.top)

See Also

- `compareClusterResult`
- `compareCluster`
- `groupGO`

GSEA

GSEA

Description

a universal gene set enrichment analysis tools
GSEA

Usage

GSEA(
  geneList,
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  gson = NULL,
  TERM2GENE,
  TERM2NAME = NA,
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList  order ranked geneList
exponent  weight of each step
minGSSize  minimal size of each geneSet for analyzing
maxGSSize  maximal size of genes annotated for testing
eps  This parameter sets the boundary for calculating the p value.
pvalueCutoff  adjusted pvalue cutoff
pAdjustMethod  one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
gson  a GSON object, if not NULL, use it as annotation data.
TERM2GENE  user input annotation of TERM TO GENE mapping, a data.frame of 2 column with term and gene. Only used when gson is NULL.
TERM2NAME  user input of TERM TO NAME mapping, a data.frame of 2 column with term and name. Only used when gson is NULL.
verbose  logical
seed  logical
by  one of 'fgsea' or 'DOSE'

Value

gseaResult object

Author(s)

Guangchuang Yu https://yulab-smu.top
Description

Gene Set Enrichment Analysis of Gene Ontology

Usage

gseGO(
geneList,
ont = "BP",
OrgDb,
keyType = "ENTREZID",
exponent = 1,
minGSSize = 10,
maxGSSize = 500,
eps = 1e-10,
pvalueCutoff = 0.05,
pAdjustMethod = "BH",
verbose = TRUE,
seed = FALSE,
by = "fgsea",
...)

Arguments

geneList order ranked geneList
ont one of "BP", "MF", and "CC" subontologies, or "ALL" for all three.
OrgDb OrgDb
keyType keytype of gene
exponent weight of each step
minGSSize minimal size of each geneSet for analyzing
maxGSSize maximal size of genes annotated for testing
eps This parameter sets the boundary for calculating the p value.
pvalueCutoff pvalue Cutoff
pAdjustMethod pvalue adjustment method
verbose print message or not
seed logical
by one of 'fgsea' or 'DOSE'
... other parameter
gseKEGG

Value

gseaResult object

Author(s)

Yu Guangchuang

Description

Gene Set Enrichment Analysis of KEGG

Usage

gseKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  use_internal_data = FALSE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList  
  order ranked geneList
organism  
  supported organism listed in 'https://www.genome.jp/kegg/catalog/org_list.html'
keyType  
  one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent  
  weight of each step
minGSSize  
  minimal size of each geneSet for analyzing
maxGSSize  
  maximal size of genes annotated for testing
eps  
  This parameter sets the boundary for calculating the p value.
pvalueCutoff  
  pvalue Cutoff
pAdjustMethod  
  pvalue adjustment method
verbose

use_internal_data

logical, use KEGG.db or latest online KEGG data

seed

logical

by

one of 'fgsea' or 'DOSE'

Value

gseaResult object

Author(s)

Yu Guangchuang

description

Gene Set Enrichment Analysis of KEGG Module

Usage

gseMKEGG(
  geneList,
  organism = "hsa",
  keyType = "kegg",
  exponent = 1,
  minGSSize = 10,
  maxGSSize = 500,
  eps = 1e-10,
  pvalueCutoff = 0.05,
  pAdjustMethod = "BH",
  verbose = TRUE,
  seed = FALSE,
  by = "fgsea",
  ...
)

Arguments

geneList order ranked geneList
organism supported organism listed in "https://www.genome.jp/kegg/catalog/org_list.html"
keyType one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'
exponent weight of each step
\textbf{gsePC} \hfill 27

- \texttt{minGSSize} minimal size of each geneSet for analyzing
- \texttt{maxGSSize} maximal size of genes annotated for testing
- \texttt{eps} This parameter sets the boundary for calculating the p value.
- \texttt{pvalueCutoff} pvalue Cutoff
- \texttt{pAdjustMethod} pvalue adjustment method
- \texttt{verbose} print message or not
- \texttt{seed} logical
- \texttt{by} one of 'fgsea' or 'DOSE'
- \ldots other parameter

\textbf{Value}

gseaResult object

\textbf{Author(s)}

Yu Guangchuang

\textbf{Description}

GSEA analysis for Pathway Commons

\textbf{Usage}

gsePC(geneList, source, keyType, ...)

\textbf{Arguments}

- \texttt{geneList} a ranked gene list
- \texttt{source} Data source of Pathway Commons, e.g., 'reactome', 'kegg', 'pathbank', 'net-path', 'panther', etc.
- \texttt{keyType} specify the type of input 'gene' (one of 'hgnc' or 'uniprot')
- \ldots additional parameters, see also the parameters supported by the GSEA() function

\textbf{Details}

This function performs GSEA using Pathway Commons

\textbf{Value}

A gseaResult instance
Description

GSEA analysis for WikiPathways

Usage

gseWP(geneList, organism, ...)

Arguments

geneList  ranked gene list
organism   supported organisms, which can be accessed via the get_wp_organisms() function
...        additional parameters, see also the parameters supported by the GSEA() function

Details

This function performs GSEA using WikiPathways

Value

A gseaResult instance

Author(s)

Guangchuang Yu

description
download the latest version of KEGG pathway and stored in a 'GSON' object

Usage

gson.GO(OrgDb, keytype = "ENTREZID", ont = "BP")
Arguments

OrgDb
keytype
ont

keytype of genes.
one of "BP", "MF", "CC", and "ALL"

Value

a 'GSON' object

Description

download the latest version of KEGG pathway and stored in a 'GSON' object

Usage

gson_KEGG(species, KEGG_Type = "KEGG", keyType = "kegg")

Arguments

species
KEGG_Type
keyType

species
one of "KEGG" and "MKEGG"
one of "kegg", 'ncbi-geneid', 'ncib-proteinid' and 'uniprot'.

Value

a 'GSON' object

Author(s)

Guangchuang Yu
gson_KEGG_mapper

Build KEGG annotation for novel species using KEGG Mapper

Description

KEGG Mapper service can annotate protein sequences for novel species with KO database, and KO annotation need to be converted into Pathway or Module annotation, which can then be used in 'clusterProfiler'.

Usage

gson_KEGG_mapper(
  file,
  format = c("BLAST", "Ghost", "Kofam"),
  type = c("pathway", "module"),
  species = NULL,
  ...
)

Arguments

file the name of the file which comes from the KEGG Mapper service, see Details for file format
format string indicate format of KEGG Mapper result
type string indicate annotation database
species your species, NULL if ignored
... pass to gson::gson()

Details

File is a two-column dataset with K numbers in the second column, optionally preceded by the user's identifiers in the first column. This is consistent with the output files of automatic annotation servers, BlastKOALA, GhostKOALA, and KofamKOALA. KOALA (KEGG Orthology And Links Annotation) is KEGG’s internal annotation tool for K number assignment of KEGG GENES using SSEARCH computation. BlastKOALA and GhostKOALA assign K numbers to the user’s sequence data by BLAST and GHOSTX searches, respectively, against a nonredundant set of KEGG GENES. KofamKOALA is a new member of the KOALA family available at GenomeNet using the HMM profile search, rather than the sequence similarity search, for K number assignment. see https://www.kegg.jp/blastkoala/, https://www.kegg.jp/ghostkoala/ and https://www.genome.jp/tools/kofamkoala/ for more information.

Value

a gson instance
Examples

```r
Not run:
file = system.file('extdata', "kegg_mapper_blast.txt", package='clusterProfiler')
gson KEgg_mapper(file, format = "BLAST", type = "pathway")
End(Not run)
```

Description

Download the latest version of WikiPathways data and stored in a 'GSON' object

Usage

```r
gson_WP(organism)
```

Arguments

- `organism` supported organism, which can be accessed via the `get_wp_organisms()` function.

idType

```r
idType(OrgDb = "org.Hs.eg.db")
```

Arguments

- `OrgDb` annotation db

Value

character vector

Author(s)

Guangchuang Yu
### ko2name

**Description**  
convert ko ID to descriptive name

**Usage**  
ko2name(ko)

**Arguments**  
ko  
ko ID

**Value**  
data.frame

**Author(s)**  
guangchuang yu

---

### merge_result

**Description**  
merge a list of enrichResult objects to compareClusterResult

**Usage**  
merge_result(enrichResultList)

**Arguments**  
enrichResultList  
a list of enrichResult objects

**Value**  
a compareClusterResult instance

**Author(s)**  
Guangchuang Yu
Description

plot GO graph

Usage

plotGOgraph(
  x,
  firstSigNodes = 10,
  useInfo = "all",
  sigForAll = TRUE,
  useFullNames = TRUE,
  ...
)

Arguments

  x            output of enrichGO or gseGO
  firstSigNodes number of significant nodes (rectangle nodes in the graph)
  useInfo      additional info
  sigForAll    if TRUE the score/p-value of all nodes in the DAG is shown, otherwise only
                score will be shown
  useFullNames logical
  ...          additional parameter of showSigOfNodes, please refer to topGO

Value

GO DAG graph

Author(s)

Guangchuang Yu
Description

Parse gmt file from Pathway Common

Usage

read.gmt.pc(gmtfile, output = "data.frame")

Arguments

gmtfile  A gmt file
output   one of `data.frame` or `GSON`

Details

This function parse gmt file downloaded from Pathway common

Value

A data.frame or A GSON object depends on the value of `output`

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

- **DOSE**  geneID, geneInCategory, gsfilter, setReadable
- **dplyr**  arrange, filter, group_by, mutate, n, rename, select, slice, summarise
- **enrichplot**  cnetplot, dotplot, emapplot, goplot, gseaplot, heatplot, ridgeplot
- **GOSemSim**  buildGOmap, read.blast2go, read.gaf
- **gson**  read.gmt, read.gmt.wp
- **magrittr**  %<>%, %>%
search_kegg_organism

Description

search kegg organism, listed in https://www.genome.jp/kegg/catalog/org_list.html

Usage

search_kegg_organism(
  str,
  by = "scientific_name",
  ignore.case = FALSE,
  use_internal_data = TRUE
)

Arguments

str      string
by       one of 'kegg.code', 'scientific_name' and 'common_name'
ignore.case  TRUE or FALSE
use_internal_data  logical, use kegg_species.rda or latest online KEGG data

Value

data.frame

Author(s)

Guangchuang Yu

describe simplify

simplify

describe simplify method
Usage

```r
S4 method for signature 'enrichResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)

S4 method for signature 'gseaResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)

S4 method for signature 'compareClusterResult'
simplify(
 x,
 cutoff = 0.7,
 by = "p.adjust",
 select_fun = min,
 measure = "Wang",
 semData = NULL
)
```

Arguments

- `x` output of enrichGO
- `cutoff` similarity cutoff
- `by` feature to select representative term, selected by `select_fun` function
- `select_fun` function to select feature passed by `by` parameter
- `measure` method to measure similarity
- `semData` GOSemSimDATA object

Value

- updated enrichResult object
- updated compareClusterResult object
Author(s)
Guangchuang Yu
Gwang-Jin Kim and Guangchuang Yu

References
issue #28 https://github.com/GuangchuangYu/clusterProfiler/issues/28
issue #162 https://github.com/GuangchuangYu/clusterProfiler/issues/162

Description
retrive annotation data from uniprot

Usage
uniprot_get(taxID)

Arguments
taxID taxonomy ID

Value
gene table data frame

Author(s)
guangchuang yu
Index

* classes
  groupGOResult-class, 22
* datasets
  DataSet, 7
* internal
  reexports, 34
* manip
  compareCluster, 6
  enrichGO, 11
  enrichKEGG, 12
  groupGO, 21
  %<>%(reexports), 34
  %%(reexports), 34
  %<>%, 34
  %%, 34
  append_kegg_category, 3
  arrange, 34
  arrange(reexports), 34

bitr, 4
bitr_kegg, 5
browseKEGG, 5
buildGOmap, 34
buildGOmap(reexports), 34

clusterProfiler
  (clusterProfiler-package), 3
  clusterProfiler-package, 3
  cnetplot, 34
  cnetplot(reexports), 34
  compareCluster, 6, 12, 13, 21, 22
  compareClusterResult, 22

DataSet, 7
DE_GSE8057(DataSet), 7
dotplot, 34
dotplot(reexports), 34
download_KEGG, 7
dropGO, 8

eamapplot, 34
eamapplot(reexports), 34
enrichDAVID, 9
enricher, 10
enrichGO, 6, 11
enrichKEGG, 12
enrichMKEGG, 14
enrichPC, 15
enrichWP, 15

filter, 34
filter(reexports), 34

gcSample(DataSet), 7
geneID, 34
geneID(reexports), 34
geneInCategory, 34
geneInCategory(reexports), 34
get_wp_organisms, 18
getPPI, 16
getTaxID, 17
getTaxInfo, 18
Gff2GeneTable, 19
go2ont, 19
go2term, 20
gofilter, 20
goplot, 34
goplot(reexports), 34
group_by, 34
group_by(reexports), 34
groupGO, 6, 21, 22
groupGOResult-class, 22
GSEA, 22
gsaeaplot, 34
gsaeaplot(reexports), 34
gseGO, 24
gseKEGG, 25
gseMKEGG, 26
gsePC, 27
gseWP, 28
gsfilter, 34
gsfilter (reexports), 34
gson_GO, 28
gson_KEGG, 29
gson_KEGG_mapper, 30
gson_WP, 31

heatplot, 34
heatplot (reexports), 34

idType, 31

kegg_category (DataSet), 7
kegg_species (DataSet), 7
ko2name, 32

merge_result, 32
mutate, 34
mutate (reexports), 34

n, 34
n (reexports), 34

plotGOgraph, 33

read.blast2go, 34
read.blast2go (reexports), 34
read.gaf, 34
read.gaf (reexports), 34
read.gmt, 34
read.gmt (reexports), 34
read.gmt.pc, 34
read.gmt.wp, 34
reexports, 34
rename, 34
rename (reexports), 34
ridgeplot, 34
ridgeplot (reexports), 34

search_kegg_organism, 35
select, 34
select (reexports), 34
setReadable, 34
setReadable (reexports), 34
show, groupGOResult-method
  (groupGOResult-class), 22
simplify, 35
simplify, compareClusterResult-method
  (simplify), 35
simplify, enrichResult-method
  (simplify), 35
simplify, gseaResult-method (simplify), 35
slice, 34
slice (reexports), 34
summarise, 34
summarise (reexports), 34
uniprot_get, 37