Package ‘chromPlot’

February 2, 2024

Type Package
Title Global visualization tool of genomic data
Version 1.30.0
Date 2017-03-08
Author Ricardo A. Verdugo and Karen Y. Orostica
Maintainer Karen Y. Orostica <korostica09@gmail.com>
Description Package designed to visualize genomic data along the chromosomes, where the vertical chromosomes are sorted by number, with sex chromosomes at the end.
License GPL (>= 2)
LazyLoad yes
LazyData yes
Depends stats, utils, graphics, grDevices, datasets, base, biomaRt, GenomicRanges, R (>= 3.1.0)
Suggests qtl, GenomicFeatures, TxDb.Hsapiens.UCSC.hg19.knownGene
biocViews DataRepresentation, FunctionalGenomics, Genetics, Sequencing, Annotation, Visualization
git_url https://git.bioconductor.org/packages/chromPlot
git_branch RELEASE_3_18
git_last_commit 7747c74
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-02-02

R topics documented:

 chromPlot-package ... 2
 chromPlot .. 2
 hg_cytoBandIdeo ... 5
 hg_gap ... 6
 mm10_cytoBandIdeo ... 7
 mm10_gap .. 8
chromPlot-package
Global visualization tool of genomic data

Description

Package designed to visualize genomic data along the chromosomes, where the vertical chromosomes are sorted by number, with sex chromosomes at the end.

Details

Package: chromPlot
Type: Package
Version: 0.0.1
Date: 2016-01-05
License: GPL (>= 2)
LazyLoad: yes

Author(s)

Author: Ricardo Verdugo and Karen Orostica
Maintainer: Karen Orostica <korostica09@alumnos.utalca.cl>

Usage

Arguments

- **annot1**: Genome annotations
- **annot2**: Genome annotations, subset of annot1
- **annot3**: Genome annotations, subset of annot2
- **annot4**: Genome annotations, subset of annot3
- **stat**: Genome annotations associated to quantitative values
- **stat2**: Second track of genome annotations associated to quantitative values
- **statCol**: Name column in stat with the values to plot
- **statCol2**: Name column in stat2 with the values to plot
- **statTyp**: Type of plot for stat ("l", "p", NULL)
- **statName**: Description for stat (default="Statistic")
- **statName2**: Description for stat2 (default="Statistic")
- **bands**: Genome annotations to be plotted on chromosomal body (e.g G bands)
- **bandsDesc**: Description for bands
- **gaps**: Chromosome alignment gaps (only centromers and telomers used)
- **gapsDesc**: Description for gaps
- **segment**: Genomic segments. Can contain a 'Group' column with categories
- **segmentDesc**: Description for segment
- **segment2**: Second track of genomic segments. Can contain a 'Group' column with categories
- **segment2Desc**: Description for segment2
- **chr**: Vector of chromosome names to plotted (optional)
- **bin**: Bin size for histograms in base pairs
- **yAxis**: Should I draw the y-axis (logical)
- **figCols**: Maximum number of chromosomes in a row
- **colBand**: Color for chromosome bands
- **colAnnot1**: Color for histograms for annot1
- **colAnnot2**: Color for histograms for annot2
- **colAnnot3**: Color for histograms for annot3
- **colAnnot4**: Color for histograms for annot4
- **colSegments**: Color for chromosome segment (ignored if segment are grouped (see details)
- **colSegments2**: Color for chromosome segment2 (ignored if segment2 are grouped (See details)
- **colStat**: Color for stat

```r
colSegments2=colSegments[-1L], colStat="blue", colStat2="orange", title=NULL,
plotRndchr=FALSE, maxSegs=200, noHist=FALSE, segLwd=3, sortSegs=TRUE,
chrSide=c(-1, -1, -1, -1, 1, -1, -1, 1), cex=0.75, legChrom, org=NULL, strand=NULL,
stack=TRUE, statThreshold=NULL, statThreshold2=NULL, statSumm="none")
```
colStat2: Color for stat2

title: Plot title

plotRndchr: Include random scaffolds

maxSegs: Maximum number of segments. If the segment or segment2 tracks contain more
segments than this value, a histogram of segments is drawn instead

noHist: If TRUE, segments are never drawn as histograms, even if they are more than
maxSegs or if the largest segment is smaller than the bin size.

segLwd: Line width for segments

sortSegs: Sort overlapping segments by size

chrSide: Chromosome side where to draw annot1, annot2, annot3, annot4, segments,
segments2, stat and stat2, respectively. 1=right, -1=left

cex: Cex for plot (see ?par for details)

legChrom: Legend chromosome (character string). Place legend after this chromosome

scale.title: Title for histograms scales

scex: Cex for stat track

spty: A character specifying the type of plot region to be used in stat

org: Organism name, e.g. mmusculus, hsapiens

strand: Strand "+" or "+" for local view using GenomeGraphs

stack: Stack overlapping segments in segment and segment2 in clusters

statThreshold: Only plot segments in stat with values above this threshold

statThreshold2: Only plot segments in stat2 with values above this threshold

statSumm: Type of statistical function for apply to the data ("mean", "median", "sum", "none"),
if the value is ‘none’, chromPlot will not apply some statistical function.

Details

chromPlot package creates an idiogram with all chromosomes including the sex chromosomes. The package is able to plot genomic data on both sides of chromosome as histograms or vertical segments. Histograms represent the number of genomic elements in each bin of size bin. The parameters annot1, annot2, annot3, annot4, segment, segment2, stat, stat2, band, gaps should be data.frames with at least these columns: ‘Chrom’, ‘Start’, ‘End’. The gaps and bands arguments are used to plot the chromosomal ideogram. The argument band should also have a ‘Group’ column with categories for classifying each annotation element. Arguments stat and stat2 should have a statCol and stat2Col column respectively with continuous values.

If plotted on the same chromosomal side, tracks will be plotted on top of each other, in the order they are in the function’s syntax. This can be used for plotting stacked barplots if, for instance, annot1, annot2, annot3, and annot4 are supersets of each other. This, however, is not enforced nor checked. An alternative way to create a stacked histogram is providing a single track with Group category. The user can modify the side tracks are plotted on by modifying chrSide.

The segment and segment2 tracks are plotted as vertical bars by default. However, their elements exceed in number given to maxSegs or if the maximum segment size is smaller than bin, they are plotted as histograms. This behavior can be modified by setting noHist = TRUE.

For more details and usage examples see the vignette.
Value

Karyotype diagram in device.

Author(s)

Ricardo Verdugo and Karen Orostica

Examples

```r
data(hg_cytoBandIdeo)
data(hg_gap)
chromPlot(bands=hg_cytoBandIdeo, gaps=hg_gap)
```

Description

Describes the positions of cytogenetic bands with a chromosome of human.

Usage

```r
data(hg_cytoBandIdeo)
```

Format

A data frame with 862 observations on the following 5 variables.

- Chrom: a character vector
- Start: a numeric vector
- End: a numeric vector
- Name: a character vector
- gieStain: a character vector

Details

This file describes the cytogenetics positions on chromosomes of human. Specifically, it has 5 columns Chrom, Start, End, Name and Group. Chrom referenced to the chromosomes, the Start and End columns indicated the start and end positions, while that Name indicated the name of cytogenetics Bands, finally, Group column contains informations associated to the Giemsa stain results.

Value

data.frame that contain the positions of cytogenetic bands with a chromosome of human.
Examples

```r
data(hg_cytoBandIdeo)
## maybe str(hg_cytoBandIdeo) ; plot(hg_cytoBandIdeo) ...
```

hg_gap
Human Gap

Description

This track depicts gaps in the assembly of the human genome.

Usage

```r
data(hg_gap)
```

Format

A data frame with 457 observations on the following 4 variables.

- **Chrom** a character vector
- **Start** a numeric vector
- **End** a numeric vector
- **Name** a character vector

Details

This track depicts gaps in the assembly of human genome. Gaps are represented as black boxes in this track. This assembly contains the following principal types of gaps: (In this context, a contig is a set of overlapping sequence reads.) Clone - gaps between clones (114 gaps). Contig - gaps between map contigs, various sizes (104 gaps). Telomere - 42 gaps for telomeres (100,000 Ns) Centromere - 20 gaps for centromeres (size: 2,890,000 Ns) Short_arm - 21 gaps for the short arm (10,000 Ns) at base positions 100, 001-110,000 of each chromosome. other - sequence of Ns in the assembly that were not marked as gaps in the AGP assembly definition file, various sizes (384 gaps). Fragment - a single gap of 31 bases in chrX_GL456233_random.

Value

data.frame that contain the gaps in the assembly of the human genome.

Examples

```r
data(hg_gap)
## maybe str(hg_gap) ; plot(hg_gap) ...
```
Description

Describes the positions of cytogenetic bands with a chromosome of mouse.

Usage

```r
data(mm10_cytoBandIdeo)
```

Format

A data frame with 448 observations on the following 5 variables.

- **Chrom** a character vector
- **Start** a numeric vector
- **End** a numeric vector
- **Name** a character vector
- **gieStain** a character vector

Details

This file describes the cytogenetics positions on chromosomes of mouse. Specifically, it has 5 columns: Chrom, Start, End, Name and Group. Chrom referenced to the chromosomes, the Start and End columns indicated the start and end positions, while that Name indicated the name of cytogenetics Bands, finally, Group column contains informations associated to the Giemsa stain results.

Value

A data.frame that contain the positions of cytogenetic bands with a chromosome of mouse.

Examples

```r
data(mm10_cytoBandIdeo)
## maybe str(mm10_cytoBandIdeo) ; plot(mm10_cytoBandIdeo) ...```
**Description**

This track depicts gaps in the assembly of the mouse genome.

**Usage**

data(mm10_gap)

**Format**

A data frame with 686 observations on the following 4 variables.

- **Chrom** a character vector
- **Start** a numeric vector
- **End** a numeric vector
- **Name** a character vector

**Details**

This track depicts gaps in the assembly (Dec. 2011, Genome Reference Consortium Mouse Build 38 (GCA_000001635.2)) of the mouse genome. Gaps are represented as black boxes in this track. This assembly contains the following principal types of gaps: (In this context, a contig is a set of overlapping sequence reads.) Clone - gaps between clones (114 gaps). Contig - gaps between map contigs, various sizes (104 gaps). Telomere - 42 gaps for telomeres (100,000 Ns) Centromere - 20 gaps for centromeres (size: 2,890,000 Ns) Short_arm - 21 gaps for the short arm (10,000 Ns) at base positions 100,001-110,000 of each chromosome. other - sequence of Ns in the assembly that were not marked as gaps in the AGP assembly definition file, various sizes (384 gaps). Fragment - a single gap of 31 bases in chrX_GL456233_random.

**Value**

data.frame that contain the gaps in the assembly of the mouse genome.

**Examples**

data(mm10_gap)

## maybe str(mm10_gap) ; plot(mm10_gap) ...
Index

* Histograms
  chromPlot, 2
* chromPlot
  chromPlot-package, 2
* datasets
  hg_cytoBandIdeo, 5
  hg_gap, 6
  mm10_cytoBandIdeo, 7
  mm10_gap, 8

chromPlot, 2
chromPlot-package, 2

hg_cytoBandIdeo, 5
hg_gap, 6

mm10_cytoBandIdeo, 7
mm10_gap, 8