Package ‘bnbc’

May 3, 2024

Version 1.26.0

Title Bandwise normalization and batch correction of Hi-C data

Description Tools to normalize (several) Hi-C data from replicates.

Depends R (>= 3.5.0), methods, BiocGenerics, SummarizedExperiment, GenomicRanges

Suggests BiocStyle, knitr, rmarkdown, RUnit, BSgenome.Hsapiens.UCSC.hg19

Imports Rcpp (>= 0.12.12), IRanges, rhdf5, data.table, GenomeInfoDb, S4Vectors, matrixStats, preprocessCore, sva, parallel, EBImage, utils, HiCBricks

LinkingTo Rcpp

VignetteBuilder knitr

License Artistic-2.0

URL https://github.com/hansenlab/bnbc

BugReports https://github.com/hansenlab/bnbc/issues

biocViews HiC, Preprocessing, Normalization, Software

git_url https://git.bioconductor.org/packages/bnbc

git_branch RELEASE_3_19

git_last_commit f8fbdeb

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-03

Author Kipper Fletez-Brant [cre, aut], Kasper Daniel Hansen [aut]

Maintainer Kipper Fletez-Brant <cafletezbrant@gmail.com>
bnbc-package

Contents

bnbc-package ... 2
band ... 3
bnbc ... 4
cgApply ... 5
cgEx ... 7
ContactGroup-class ... 7
cooler_methods ... 9
getBandIdx ... 11
getBandMatrix ... 12
groupZeros ... 13
smoothing ... 14

Index 15

bnbc-package

Bandwise normalization and batch correction of Hi-C data

Description

Tools to normalize (several) Hi-C data from replicates.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

The package implements the bnbc method for normalizing Hi-C data across samples. The name is short for band-wise normalization and batch correction. The main workhorse is the bnbc function. We recommend using smoothing and library size normalization first.

The package implements the ContactGroup class for storing multiple Hi-C contact matrices. This is most naturally done with one object per chromosome, which is ugly.

We also have functions for applying over a ContactGroup (cgApply) and working with matrix bands band, getBandIdx.

Author(s)

Kipper Fletez-Brant [cre, aut], Kasper Daniel Hansen [aut]

Maintainer: Kipper Fletez-Brant <cafletezbrant@gmail.com>

References

Fletez-Brant et al. Distance-dependent between-sample normalization for Hi-C experiments. In preparation.
See Also

`bnbc`, `ContactGroup`, `band`, `cgApply`.

Examples

data(cgEx)
batches <- colData(cgEx)$Batch
cgEx.cpm <- logCPM(cgEx)
cgEx.smooth <- boxSmoother(cgEx, 5, mc.cores=1)
cgEx.bnbc <- bnbc(cgEx.smooth, batches, 1e7, 4e4, bstart=2, nbands=4)

band

Get Band

Description

Get or set band from matrix.

Usage

```r
band(mat, band.no)
band(mat, band.no) <- value
```

Arguments

- `mat` A matrix.
- `band.no` Integer specifying which matrix band. `band.no = 1` retrieves the main diagonal.
- `value` A scalar or vector equal in length to the matrix band.

Details

A matrix band is the set of elements in a matrix from a specific off-diagonal.

Value

A matrix band in the form of a vector.

See Also

`getBandIdx`
Examples

```r
mat <- matrix(1:9, 3, 3)
bond(mat, band.no = 2)
mat
bond(mat, band.no = 2) <- c(9,10)
mat
data(cgEx)
tact.1 <- contacts(cgEx)[[1]]
b2 <- bond(tact.1, 2)
bond(tact.1, 2) <- b2
```

bnbc

Normalize Contact Matrices with BNBC

Description

Applies BNBC method to normalize contact matrices.

Usage

```r
bnbc(cg, batch, threshold = NULL, step = NULL, qn = TRUE, nbands = NULL, mod = NULL, mean.only = FALSE, tol = 5, bstart = 2, verbose = TRUE)
```

Arguments

- `cg` A ContactGroup object.
- `batch` A single batch indicator variable.
- `threshold` The maximum distance interacting loci are allowed to be separated by.
- `step` The step size, or the number of bases a contact matrix cell represents.
- `qn` Whether to apply quantile normalization on each band matrix. Defaults to TRUE.
- `bstart` The first band to normalize. Defaults to 2.
- `nbands` The last band to normalize. Defaults to nrow(cg) - 1.
- `mod` A model matrix specifying which sample information is to be preserved by ComBat. Optional.
- `mean.only` Whether ComBat should not correct for batch effect in the variances of band matrix rows. Defaults to FALSE, which means variances are corrected. Set to TRUE if there is only one observation per batch.
- `tol` The number of significant digits for which the mean value of a band matrix must be greater than 0 to be processed by ComBat.
- `verbose` Should the function print progress?
Details

Normalization and batch correction is performed in a band-wise manner, correcting all samples’ observations of one matrix off-diagonal (which we refer to as a matrix “band”) at a time. For each matrix band, we collect all samples’ observations into a single matrix. We then apply quantile normalization to ensure distributional similarity across samples. Finally, we perform batch effect correction using ComBat on this matrix. Each samples’ matrix band is then replaced with its corrected version. We refer to this process of Band-Wise Normalization and Batch Correction as BNBC.

This function applies BNBC to the set of contact matrices and returns a ContactGroup object with matrix bands bstart:nbands corrected. For those rows in the matrix bands which cannot be corrected we set all elements to 0.

Very high bands contain little data in Hi-C experiments, and we don’t recommend to analyze those or apply this function to high bands, see the nbands argument to the function.

We recommend performing bnbc on contact matrices which have been converted to log-CPM and smoothed, see the example.

Value

A ContactGroup object for which matrix bands bstart:nbands have had BNBC applied.

References

Fletez-Brant et al. Distance-dependent between-sample normalization for Hi-C experiments. In preparation.

See Also

ContactGroup, logCPM, boxSmoother, band

Examples

data(cgEx)
batches <- colData(cgEx)$Batch
cgEx.cpm <- logCPM(cgEx)

cgEx.smooth <- boxSmoother(cgEx, 5, mc.cores=1)
cgEx.bnbc <- bnbc(cgEx.smooth, batches, 1e7, 4e4, bstart=2, nbands=4)

cgApply Apply-type methods

Description

These functions are apply-type functions for ContactGroup objects.
Usage

```r
cgApply(cg, FUN, mc.cores=1, ...)
cgBandApply(cg, FUN, nbands=NULL, mc.cores=1, bstart=2, ...)
```

Arguments

- `cg`: A ContactGroup object.
- `FUN`: A function to be applied. For `cgApply` this function should operate on a square matrix. For `cgBandApply` this function should operate on a band, i.e. a vector (see `band`).
- `mc.cores`: The number of cores to be used. Defaults to 1.
- `bstart`: The first band to apply a function to. Defaults to 2. Only applicable to `cgBandApply`.
- `nbands`: The last band to apply a function to. Default is `nrow(cg) - 1`. Only applicable to `cgBandApply`.
- `...`: Passed to `mclapply`.

Details

These methods make it easy to apply functions to either all contact matrices or a set of bands in all contact matrices. Both methods accept a function `FUN`. For `cgApply`, the first argument should be `cg`, the contact group itself. For `cgBandApply`, the first argument should also be `cg`, and the second argument should be a specific band number. Additionally, the bands to be iterated are specified through `bstart:nbands`: `bstart` indicates the starting band, and `nbands` indicates the last band.

Value

- For `cgApply`, a ContactGroup object.
- For `cgBandApply`, a list whose elements are the returned value of `FUN`.

See Also

`ContactGroup`, `getBandMatrix`, `band`

Examples

```r
data(cgEx)
cgEx.1 <- cgApply(cgEx, FUN=function(xx){ xx + 1 })
band.matrix.list <- cgBandApply(cgEx, FUN=getBandMatrix, bstart=2, nbands=5)
```
Description

This is a sample ContactGroup object representing observations on chr22 from 3 1k Genomes trios’ lymphoblastoid cell lines (LCL). colData(cgEx) gives the cell line name (CellLine), the ethnicity of the individual (Population), the family (Family), the gender (Gender), the relationship of the individuals within a trio (Role), the replicate number (Tech) and each sample’s batch (Batch).

These data were generated by the dilution Hi-C method using HindIII (Lieberman-Aiden et al.). Hi-C contact matrices were generated by tiling the genome into 40kb bins and counting the number of interactions between bins.

These data have undergone no preprocessing.

Format

The data is an object of class ContactGroup.

Source

Raw data are available from the 4D nucleome data portal (https://data.4dnucleome.org) under accessions 4DNESYUYFD6H, 4DNESVKLYDOH, 4DNESHGL976U, 4DNESJ1VX52C, 4DNESI2UKI7P, 4DNESTAPSPUC, 4DNES4GSP9S4, 4DNESJIYRA44, 4DNESE3ICNE1.

References

See Also

ContactGroup

ContactGroup-class

Class “ContactGroup”

Description

The ContactGroup class represents a collection of contact matrices which are observations from different samples on the same set of genomic loci.

Usage

ContactGroup(rowData, contacts, colData)
ContactGroup-class

Arguments

rowData
Object of class GenomicRanges equal in length to the number of rows/columns in contact matrices.

contacts
Object of class list that contains all contact matrices.

colData
Object of class DataFrame containing sample-level information.

Details

The ContactGroup class contains a set of contact matrices in the slot ‘contacts’. All matrices are required to be of the same dimensionality. ‘ContactGroup()’ expects a list of symmetric matrices to be passed to the constructor. Data about these contact matrices is held in two other slots. Data about the genomic loci represented in the ContactGroup is found in the ‘rowData’ slot as a GenomicRanges objects, and sample-level information is located in the ‘colData’ slot as a DataFrame.

Value

A ContactGroup object.

Methods

In the code snippets below, x is a ContactGroup object.

\[
\text{signature}(x = "ContactGroup", i = \text{ANY}, j = \text{ANY}, \text{drop} = \text{ANY})
\]: Allows for subsetting the contact matrices through use of i or of samples through j.

\text{colData}\; \text{signature}(x = \"ContactGroup\")
: Get sample-level information about samples in x

\text{colData<-}\; \text{signature}(x = \"ContactGroup\", \text{value} = \"DataFrame\")
: Set sample-level information about samples in x. \text{value} is expected to be a DataFrame object.

\text{dim}\; \text{signature}(x = \"ContactGroup\")
: Obtain the dimensions of a ContactGroup. Returns 2 values: one representing the number of bins in the contact matrices and another representing the number of samples.

\text{rowData}\; \text{signature}(x = \"ContactGroup\")
: Get the GenomicRanges object describing the loci in the ContactGroup. \text{value} is expected to be a GenomicRanges object.

\text{rowData<-}\; \text{signature}(x = \"ContactGroup\")
: Set the GenomicRanges object describing the bins in the ContactGroup. \text{value} is expected to be a GenomicRanges object.

\text{show}\; \text{signature}(\text{object} = \"ContactGroup\")
: Method to display summary information about a ContactGroup: the number of bins, the width of the bins and the number of samples.

\text{librarySize}\; \text{signature}(x = \"ContactGroup\")
: Method to compute the library size of each contact matrix in x. Library size is defined to be the sum of the upper triangle of a contact matrix.

\text{logCPM}\; \text{signature}(x = \"ContactGroup\")
: Method to transform each contact matrix to logCPM scale.

Utilities

\text{contacts}\; \text{contacts}(x), \text{contacts}(x) <- \text{value}
: Method to extract the list of contact matrices from a ContactGroup. \text{value} is expected to be a list object.

\text{distanceIdx}\; \text{signature}(cg = \"ContactGroup\", \text{threshold} = \"ANY\", \text{step} = \"ANY\")
: Method to identify which matrix bands are no more than \text{threshold} bins apart, where each bin represents \text{step} base pairs.
cooler_methods

References

Examples

data(cgEx)

cgEx[1,]
cgEx[,1]

cd <- colData(cgEx)
colData(cgEx) <- cd

gr <- rowData(cgEx)
rowData(cgEx) <- gr

cgEx

c1 <- contacts(cgEx)
contacts(cgEx) <- c1

d.idx <- distanceIdx(cgEx, 1e7, 4e4)

libs <- librarySize(cgEx)

cgEx.cpm <- logCPM(cgEx)

below, upper.mats.list is a list of upper triangular matrices
SampleData is a DataFrame of sample data and LociData is a GenomicRanges object
Not run:
MatsList <- lapply(upper.mats.list, function(M) M[lower.tri(M)] = M[upper.tri(M)])
cg <- ContactGroup(LociData, MatsList, SampleData)

End(Not run)

cooler_methods

Methods for manipulating cooler files

Description

These are a set of methods for working with data in cooler file format.

Usage

getChrIdx(chr.length, chr, step)
getChrCGFromCools(files, chr, step, index.gr, work.dir, exp.name, coldata, norm.factor=NULL)
cg2bedgraph2(cg, out.dir, prefix)
Arguments

- `chr.length`: The length of a chromosome.
- `step`: The resolution of the data inside the cooler file.
- `files`: A vector of cooler file names.
- `chr`: The target chromosome to be read.
- `index.gr`: A GRanges object, can be output from `getChrIdx`.
- `work.dir`: Directory for saving temporary files.
- `exp.name`: The name of the experiment, will be appended all output file names.
- `coldata`: A data.frame or DataFrame of metadata for the ContactGroup object.
- `cg`: A ContactGroup object.
- `out.dir`: A directory in which individual bedgraph2 (BG2) files are to be written.
- `prefix`: A prefix for all output files; e.g. "treatment_study_".
- `norm.factor`: The normalization factor

Details

These methods allow for the normalization of cooler files. Users must create their own index, for which we provide `getChrIdx`, which is an input into `getChrCGFromCools`, which uses HiCBricks to access the cooler files, and returns a ContactGroup object. Users can then follow the standard pipeline, and save their data in bedgraph2 (BG2) format using `cg2bedgraph2`. cooler provides a tool to convert this format to cooler and users are encouraged to make use of this tool. Note that HiCBricks expects multiple resolutions in the cooler file.

Value

For `getChrIdx` a GRanges object with coordinates for each bin. For `getChrCGFromCools`, a ContactGroup object. There is nothing returned by `cg2bedgraph2`.

See Also

- `ContactGroup`

Examples

```r
## Not run:
coolerDir <- system.file("cooler", package = "bnbc")
cools <- list.files(coolerDir, pattern="cool$", full.names=TRUE)

step <- 4e4

ixns <- bnbc:::getGenomeIdx(seqlengths(BSgenome.Hsapiens.UCSC.hg19)["chr22"], step)

data(cgEx)
cool.cg <- bnbc:::getChrCGFromCools(files = cools,
chr = "chr22",
step=step,
```
getBandIdx

Description
Get the indices corresponding to a matrix band.

Usage
getBandIdx(n, band.no)

Arguments
n The number of rows/columns of a contact matrix
band.no Integer specifying which matrix band. band.no = 1 retrieves the main diagonal.

Details
This function is used in subsetting contact matrices, primarily in getBandMatrix. However, users wishing to extract band matrices directly may find this useful.

Value
A matrix with 2 columns and as many rows as entries in the matrix band.

See Also
ContactGroup, getBandMatrix, band

Examples
data(cgEx)
b2.idx <- getBandIdx(nrow(cgEx), 2)
getBandMatrix

Get Band Matrix

Description
Get band matrix from ContactGroup.

Usage
getBandMatrix(cg, band.no=1)

Arguments
cg A ContactGroup object.
band.no Integer specifying which matrix band. band.no = 1 retrieves the main diagonal.

Details
A band matrix is a matrix whose columns are the \(\text{band.no} \)-th off-diagonal of each sample's contact matrix. If there are \(k \) samples and matrix band \(\text{band.no} \) has \(r \) entries, then the returned band matrix is of dimension \(r \times k \).

Value
A matrix with one column per sample in the ContactGroup and number of rows equal to the length of the matrix band.

See Also
ContactGroup, getBandIdx, band

Examples
```r
data(cgEx)
b2 <- getBandMatrix(cgEx, 2)
```
Description

These functions find and remove rows in the set of contact matrices for which all elements in the row are 0 in all samples.

Usage

getGroupZeros(cg)
dropGroupZeros(cg, g0s)

Arguments

cg A ContactGroup object.
g0s A list of elements identified as group zeros.

Details

Group zeros are those rows for which all elements of the row in all samples are 0. These can impact estimation of features such as A/B compartment status and so should be removed for many analyses.

Value

A ContactGroup object with the group zeros removed from all rows in all contact matrices.

See Also

ContactGroup

Examples

data(cgEx)
g0s <- getGroupZeros(cgEx)
cgEx <- dropGroupZeros(cgEx, g0s)
Smoothing Operations

Description
These functions apply a smoothing kernel to all contact matrices in a ContactGroup object.

Usage
boxSmoother(cg, h, mc.cores)
gaussSmoother(cg, radius, sigma, mc.cores)

Arguments
- **cg**: A ContactGroup object.
- **h**: The desired smoother radius. Only applies to box smoother. This is an integer.
- **radius**: The desired smoother width. Only applies to Gaussian smoother. This is an integer.
- **sigma**: The desired smoother standard deviation. Only applies to Gaussian smoother. This is a positive number.
- **mc.cores**: The number of cores to be used.

Details
boxSmoother applies a square smoothing kernel of radius h to all contact matrices in a ContactGroup object. Specifying radius h implies that the width of the kernel is $2 \times h + 1$ matrix cells.
gaussSmoother applies a square Gaussian smoothing kernel of width radius with standard deviation sigma to all contact matrices in a ContactGroup object.

Value
A ContactGroup object is returned that contains the smoothed matrices.

See Also
ContactGroup

Examples
```r
data(cgEx)
cgEx.smooth <- boxSmoother(cgEx, h=5, mc.cores=1)
cgEx.smooth <- gaussSmoother(cgEx, radius=3, sigma=0.5, mc.cores=1)
```
Index

* classes
 ContactGroup-class, 7

* datasets
 cgEx, 7

* package
 bnbc-package, 2

[,ContactGroup,ANY,ANY,ANY-method
 (ContactGroup-class), 7

band, 3, 3, 5, 6, 11, 12
band<-(band), 3
bnbc, 3, 4
bnbc-package, 2
boxSmother, 5
boxSmother (smoothing), 14

cg2bedgraph2 (cooler_methods), 9
cgApply, 3, 5
cgBandApply (cgApply), 5
cgEx, 7
colData,ContactGroup-method
 (ContactGroup-class), 7
colData<-,ContactGroup,DataFrame-method
 (ContactGroup-class), 7
ContactGroup, 3, 5–7, 10–14
ContactGroup (ContactGroup-class), 7
ContactGroup-class, 7
contacts (ContactGroup-class), 7
contacts<-(ContactGroup-class), 7
cooler_methods, 9
dim,ContactGroup-method
 (ContactGroup-class), 7
distanceIdx (ContactGroup-class), 7
dropGroupZeros (groupZeros), 13
gaussSmother (smoothing), 14
getBandIdx, 3, 11, 12
getBandMatrix, 6, 11, 12
getChrCGFromCools (cooler_methods), 9

getChrIdx (cooler_methods), 9
getGenomeIdx (cooler_methods), 9
getGroupZeros (groupZeros), 13
groupZeros, 13

librarySize (ContactGroup-class), 7
logCPM, 5
logCPM (ContactGroup-class), 7

rowData,ContactGroup-method
 (ContactGroup-class), 7
rowData<-,ContactGroup-method
 (ContactGroup-class), 7

show,ContactGroup-method
 (ContactGroup-class), 7
smoothing, 14