Package ‘a4Classif’

May 29, 2024

Type Package

Title Automated Affymetrix Array Analysis Classification Package

Version 1.52.0

Date 2021-07-13

Description Functionalities for classification of Affymetrix microarray data, integrating within the Automated Affymetrix Array Analysis set of packages.

Depends a4Core, a4Preproc

Imports methods, Biobase, ROCR, pamr, glmnet, varSelRF, utils, graphics, stats

Suggests ALL, hgu95av2.db, knitr, rmarkdown

License GPL-3

biocViews Microarray, GeneExpression, Classification

VignetteBuilder knitr

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/a4Classif

git_branch RELEASE_3_19

git_last_commit 0366c84

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29

Author Willem Talloen [aut], Tobias Verbeke [aut], Laure Cougnaud [cre]

Maintainer Laure Cougnaud <laure.cougnaud@openanalytics.eu>

Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>lassoClass</td>
<td>2</td>
</tr>
<tr>
<td>pamClass</td>
<td>3</td>
</tr>
</tbody>
</table>
lassoClass

Classify using the Lasso

Description

Classify using the Lasso

Usage

lassoClass(object, groups)

Arguments

object object containing the expression measurements; currently the only method supported is one for ExpressionSet objects

groups character string indicating the column containing the class membership

Value

object of class glmnet

Author(s)

Willem Talloen

References

See Also

glmnet
Examples

```r
if (require(ALL)){
    data(ALL, package = "ALL")
    ALL <- addGeneInfo(ALL)
    ALL$BTtype <- as.factor(substr(ALL$BT, 0, 1))

    resultLasso <- lassoClass(object = ALL, groups = "BTtype")
    plot(resultLasso, label = TRUE,
         main = "Lasso coefficients in relation to degree of
               penalization.")
    topTable(resultLasso, n = 15)
}
```

pamClass

Classify using Prediction Analysis for MicroArrays

Description

Classify using the Prediction Analysis for MicroArrays (PAM) algorithm as implemented in the pamr package

Usage

```r
pamClass(object, groups, probe2gene = TRUE)
```

Arguments

- `object`: object containing the expression measurements; currently the only method supported is one for ExpressionSet objects
- `groups`: character string indicating the column containing the class membership
- `probe2gene`: logical; if TRUE Affymetrix probeset IDs are translated into gene symbols; if FALSE no such translation is conducted

Value

object of class pamClass

Author(s)

Willem Talloen

References

rfClass

Classify using Random Forests

Description

Classify using the Random Forest algorithm of Breiman (2001)

Usage

rfClass(object, groups, probe2gene = TRUE)

Arguments

object

object containing the expression measurements; currently the only method supported is one for ExpressionSet objects

groups

character string indicating the column containing the class membership

probe2gene

logical; if TRUE Affymetrix probeset IDs are translated into gene symbols in the output object; if FALSE no such translation is conducted

Value

Object of class ’rfClass’

Note

topTable and plot methods are available for ’rfClass’ objects.

Author(s)

Tobias Verbeke and Willem Talloen

See Also

pamr.train

Examples

if(require(ALL)){
 data(ALL, package = "ALL")
 ALL <- addGeneInfo(ALL)
 ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
 resultPam <- pamClass(object = ALL, groups = "BTtype")
 plot(resultPam)
 topTable(resultPam, n = 5)
 confusionMatrix(resultPam)
}
ROCcurve

References

See Also

randomForest

Examples

if(require(ALL)){
 data(ALL, package = "ALL")
 ALL <- addGeneInfo(ALL)
 ALL$BTtype <- as.factor(substr(ALL$BT,0,1))
 # select only a subset of the data for computation time reason
 ALLSubset <- ALL[sample.int(n = nrow(ALL), size = 100, replace = TRUE),]
 resultRf <- rfClass(object = ALLSubset, groups = "BTtype")
 plot(resultRf)
 topTable(resultRf, n = 15)
}

ROCcurve

Receiver operating curve

Description

A ROC curve plots the fraction of true positives (TPR = true positive rate) versus the fraction of false positives (FPR = false positive rate) for a binary classifier when the discrimination threshold is varied. Equivalently, one can also plot sensitivity versus (1 - specificity).

Usage

ROCcurve(
 object,
 groups,
 probesetId = NULL,
 geneSymbol = NULL,
 main = NULL,
 probe2gene = TRUE,
 ...
)

Arguments

object ExpressionSet object for the experiment

groups String containing the name of the grouping variable. This should be a the name of a column in the pData of the expressionSet object.

probesetId The probeset ID. These should be stored in the featureNames of the expressionSet object.
The gene symbol. These should be stored in the column `Gene Symbol` in the featureData of the expressionSet object.

Main title on top of the graph

Boolean indicating whether the probeset should be translated to a gene symbol (used for the default title of the plot)

Possibility to add extra plot options. See `par`

Value

a plot is drawn in the current device. prediction object is returned invisibly.

Author(s)

Willem Talloen

References

Some explanation about ROC can be found on http://en.wikipedia.org/wiki/ROC_curve and http://www.anaesthetist.com/mmm/stats/roc/Findex.htm. The latter has at the bottom a nice interactive tool to scroll the cut-off and to see how it affects the FP/TP table and the ROC curve.

Examples

```r
# simulated data set
esSim <- simulateData()
ROCcurve(probesetId = 'Gene.1', object = esSim, groups = 'type', addLegend = FALSE)
```

Description

Top table for pamClass object

Usage

```r
## S4 method for signature 'pamClass'
topTable(fit, n)
```

Arguments

- `fit`: object for which to obtain a top table, generally a fit object for a given model class
- `n`: number of features (variables) to list in the top table, ranked by importance
Value

 topTablePam object

Description

Top table for rfClass object

Usage

S4 method for signature 'rfClass'
 topTable(fit, n)

Arguments

 fit object for which to obtain a top table, generally a fit object for a given model class
 n number of features (variables) to list in the top table, ranked by importance

Value

 topTableRfClass object
Index

* models
 lassoClass, 2
 pamClass, 3
 rfClass, 4

glmnet, 2
lassoClass, 2
pamClass, 3
pamr.train, 4
par, 6
randomForest, 5
rfClass, 4
ROCcurve, 5

topTable, pamClass-method, 6
topTable, rfClass-method, 7