Package ‘ZygosityPredictor’

May 11, 2024

Type Package

Title Package for prediction of zygosity for variants/genes in NGS data

Version 1.4.0

Date 2023-12-08

Imports GenomicAlignments, GenomicRanges, Rsamtools, IRanges, VariantAnnotation, DelayedArray, dplyr, stringr, purrr, tibble, methods, knitr, igraph, readr, stats, magrittr, rlang

License GPL-2

Description The ZygosityPredictor allows to predict how many copies of a gene are affected by small variants. In addition to the basic calculations of the affected copy number of a variant, the Zygosity-Predictor can integrate the influence of several variants on a gene and ultimately make a statement if and how many wild-type copies of the gene are left. This information proves to be of particular use in the context of translational medicine. For example, in cancer genomes, the Zygosity-Predictor can address whether unmutated copies of tumor-suppressor genes are present. Beyond this, it is possible to make this statement for all genes of an organism. The Zygosity-Predictor was primarily developed to handle SNVs and INDELs (later addressed as small-variants) of somatic and germline origin. In order not to overlook severe effects outside of the small-variant context, it has been extended with the assessment of large scale deletions, which cause losses of whole genes or parts of them.

RoxygenNote 7.2.3

Encoding UTF-8

biocViews BiomedicalInformatics, FunctionalPrediction, SomaticMutation, GenePrediction

Depends R (>= 4.3.0)

LazyData false

Suggests rmarkdown, testthat, BiocStyle

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/ZygosityPredictor

git_branch RELEASE_3_19
aff_germ_copies calculates how many copies are affected by a germline small variant

Description

calculates how many copies are affected by a germline small variant

Usage

aff_germ_copies(chr, af, tcn, purity, sex, c_normal = NULL, af_normal = 0.5)

Arguments

chr chromosome of the variant (either format 1,2,...,X,Y or chr1,...,chrX)
af Allele-frequency of the variant (numeric value between 0 and 1)
tcn total-copynumber at position of the variant (numeric value >0)
purity purity of the sample (numeric value between 0 and 1 indicating the fraction of relevant sample with control/unrelevant tissue)
aff_som_copies

sex
	ext{sex of the sample (character: "male", "female", "m", "f")}

c_normal

expected copy number at position of the variant in normal tissue, 1 for gosomes in male samples, and 2 for male autosomes and all chromosomes in female samples. (The function can also assess the c_normal parameter by itself, but then the following two inputs must be provided: chr and sex)

af_normal

Allele-frequency in normal tissue (numeric value between 0 and 1) 0.5 represents heterozygous variants in diploid genome, 1 would be homozygous. Could be relevant if germline CNVs are present at the position. Then also the c_normal parameter would have to be adjusted.

Value

A numeric value indicating the affecting copies for the variant

Examples

library(dplyr)
library(purrr)
library(stringr)
aff_germcopies(af=0.67, tcn=2, purity=0.9, chr="chrX", sex="female")

aff_som_copies

calculates how many copies are affected by a somatic small variant

Description

calculates how many copies are affected by a somatic small variant

Usage

aff_som_copies(chr, af, tcn, purity, sex, c_normal = NULL)

Arguments

chr

c chromosome of the variant (either format 1,2,...,X,Y or chr1,...,chrX)

af

Allele-frequency of the variant (numeric value between 0 and 1)

tcn

total-copynumber at position of the variant (numeric value >0)

purity

purity of the sample (numeric value between 0 and 1 indicating the fraction of relevant sample with control/unrelevant tissue)

sex

sex of the sample (character: "male", "female", "m", "f")

c_normal

expected copy number at the position of the variant in normal tissue, 1 for gosomes in male samples, and 2 for male autosomes and all chromosomes in female samples. (The function can also assess the c_normal parameter by itself, but then the following two inputs must be provided: chr and sex)
Value
A numeric value indicating the affecting copies for the variant

Examples
library(dplyr)
library(purrr)
library(stringr)
aff_som_copies(chr="chrX", af=0.67, tcn=2, purity=0.9, sex="female")

gene_ov
accessor for gene predictions printing detailed info about how a gene status was assigned

Description
accessor for gene predictions printing detailed info about how a gene status was assigned

Usage
gene_ov(fp, inp_gene, n = 20)

Arguments
fp full prediction (output of predict_zygoisty())
inp_gene name of gene that should be printed with detailed information
n max number of rows to print, as some gene status depend on loads of phasing results#

Value
prints overview about run from function predict_zygoisty() with specific information about provided gene

Examples
cnvs = GenomicRanges::GRanges(
dplyr::tibble(
 chr = "chr17",
 start = c(170060, 34520990),
 end = c(34520990, 83198614),
 tcn = c(2L, 1L),
 cna_type = c("neutral", "LOH")
)
)
somatic_vars = GenomicRanges::GRanges(
dplyr::tibble(
 chr="chr17",
 }
GR_GENE_MODEL

germline small variant object

Description
germline small variant object

Usage
data(GR_GENE_MODEL)
GR_GENE_MODEL

Value

Object containing gene model of hg38

<table>
<thead>
<tr>
<th>GR_GERM_SMALL_VARS</th>
<th>germline small variant object</th>
</tr>
</thead>
</table>

GR_SOM_SMALL_VARS

Usage

```r
data(GR_SOM_SMALL_VARS)
```

Format

`GR_SOM_SMALL_VARS` GRanges object

Value

Object containing germline Indels and SNVs of SeqC2 example case

<table>
<thead>
<tr>
<th>GR_HAPLOBLOCKS</th>
<th>haploblocks</th>
</tr>
</thead>
</table>

GR_HAPLOBLOCKS

Usage

```r
data(GR_HAPLOBLOCKS)
```

Format

`GR_HAPLOBLOCKS` GRanges object

Value

Object containing haploblock annotations
GR_SCNA

copynumber object

Description

copynumber object

Usage

data(GR_SCNA)

Format

```
## 'GR_SCNA' GRanges object
```

Value

Object containing somatic copy number aberrations (sCNAs) of SeqC2 example case

GR_SOM_SMALL_VARS

somatic small variant object

Description

somatic small variant object

Usage

data(GR_GERM_SMALL_VARS)

Format

```
## ‘GR_GERM_SMALL_VARS’ GRanges object
```

Value

Object containing somatic Indels and SNVs of SeqC2 example case
predict_per_variant predicts zygosity of a set of variants

Description

predicts zygosity of a set of variants

Usage

predict_per_variant(
 purity,
 sex,
 somCna,
 geneModel = NULL,
 somSmallVars = NULL,
 germSmallVars = NULL,
 ploidy = NULL,
 colnameTcn = NULL,
 colnameCnaType = NULL,
 includeHomoDel = TRUE,
 includeIncompleteDel = TRUE,
 assumeSomCnaGaps = FALSE,
 byTcn = TRUE,
 ZP_env = NULL,
 verbose = FALSE
)

Arguments

purity purity of the sample (numeric value between 0 and 1 indicating the fraction of relevant sample with control/unrelevant tissue)

sex sex of the sample (character: "male", "female", "m", "f")

somCna GRanges object containing all genomic regions with annotated total copy number and cna_type as metadata columns. The total-copynumber column should be named "tcn" but also some other commonly used names. It should contain numeric values or characters that can be converted to numeric values. The cna_type column must contain the information about loss of heterozygosity (LOH). Therefore the term "LOH" must be explicitly mentioned in the column. If a genomic region is not present in the object, it will be taken as heterozygous with neutral TCN of 2.

geneModel GRanges object containing the gene-annotation of the used reference genome with metadata column of the gene name (gene)

somSmallVars GRanges object containing all somatic small variants (SNV and INDEL). Required metadata columns are reference base (ref/REF), alternative base (alt/ALT), annotation of the gene name (gene/GENE) and the allele-frequency (af/AF). If the object is not provided the tool assumes there are no somatic small variants.
predict_per_variant

germSmallVars GRanges object containing all germline small variants (SNV and INDEL). Required metadata columns are reference base (ref/REF), alternative base (alt/ALT), annotation of the gene name (gene/GENE) and the allele-frequency (af/AF) If the object is not provided the tool assumes there are no germline small variants.

ploidy ploidy of the sample (numeric value)

colnameTcn character indicating the name of the metadata containing the tcn information in the somCna object. If not provided the tool tries to detect the column according to default names

colnameCnaType character indicating the name of the metadata containing cna type information in the somCna object. If not provided the tool tries to detect the column according to default names

includeHomoDel default = TRUE; if FALSE homozygous deletions are excluded

includeIncompleteDel default = TRUE; if FALSE heterzygous deletions are excluded

assumeSomCnaGaps (logical, default=FALSE) Only required if the somCna object lacks copy number information for genomic segments on which small variants are detected. By default, variants in such regions will be excluded from the analysis as required information about the copy number is missing. These variants will be attached to the final output list in a separate tibble. To include them, this flag must be set TRUE and the ground ploidy must be given as an input. This ground ploidy will then be taken as tcn in the missing regions. If no ploidy is given the tool will assume the ground ploidy of 2 when this flag is TRUE.

byTcn logical, default=TRUE; optional if includeHomoDel or includeIncompleteDel is TRUE. If FALSE the tool will not use tcn as a criterion to assign large deletions. It will use the cna_type column and check for indicating strings like HOMDEL/HomoDel/DEL. Some commonly used strings are covered. It is recommended to leave this flag TRUE

ZP_env internal variable... not recommended to be changed by user

verbose logical, default=FALSE; prints functions that are called

Value

A list containing tibbles with all input variants

Examples

cnvs = GenomicRanges::GRanges(
 dplyr::tibble(
 chr = "chr17",
 start = c(170060, 34520990),
 end = c(34520990, 83198614),
 tcn = c(2, 1),
 cna_type = c("neutral", "LOH")
)
)
somatic_vars = GenomicRanges::GRanges(
predict_zygosity

predicts zygosity of a set of genes of a sample

Description

predicts zygosity of a set of genes of a sample

Usage

predict_zygosity(
 purity,
 sex,
predict_zygosity

somCna,
geneModel,
bamDna,
somSmallVars = NULL,
germSmallVars = NULL,
bamRna = NULL,
ploidy = NULL,
colnameTcn = NULL,
colnameCnaType = NULL,
includeHomoDel = TRUE,
includeIncompleteDel = TRUE,
showReadDetail = FALSE,
printLog = FALSE,
assumeSomCnaGaps = FALSE,
byTcn = TRUE,
vcf = NULL,
haploBlocks = NULL,
distCutOff = 5000,
verbose = FALSE,
logDir = NULL,
snpQualityCutOff = 1,
phasingMode = "fast",
AllelicImbalancePhasing = FALSE)

Arguments

purity purity of the sample (numeric value between 0 and 1 indicating the fraction of relevant sample with control/unrelevant tissue)

sex sex of the sample (character: "male", "female", "m", "f")

somCna GRanges object containing all genomic regions with annotated total copy-number and cna_type as metadata columns. The total-copynumber column should be named "tcn" but also some other commonly used names. It should contain numeric values or characters that can be converted to numeric values. The cna_type column must contain the information about loss of heterozygosity (LOH). Therefore the term "LOH" must be explicitly mentioned in the column. If a genomic region is not present in the object, it will be taken as heterozygous with neutral TCN of 2.

geneModel GRanges object containing the gene-annotation of the used reference genome with metadata column of the gene name (gene)

bamDna path to bam-file

somSmallVars GRanges object containing all somatic small variants (SNV and INDEL). Required metadata columns are reference base (ref/REF), alternative base (alt/ALT), annotation of the gene name (gene/GENE) and the allele-frequency (af/AF). If the object is not provided the tool assumes there are no somatic small variants.
predict_zygosity

germsmallvars GRanges object containing all germline small variants (SNV and INDEL). Required metadata columns are reference base (ref/REF), alternative base (alt/ALT), annotation of the gene name (gene/GENE) and the allele-frequency (af/AF) If the object is not provided the tool assumes there are no germline small variants.
bamRna optional; path to rna file (bam format)
ploidy ploidy of the sample (numeric value)
colnameTcn character indicating the name of the metadata containing the tcn information in the somCna object. If not provided the tool tries to detect the column according to default names
colnameCnaType character indicating the name of the metadata containing cna type information in the somCna object. If not provided the tool tries to detect the column according to default names
includeHomoDel default = TRUE; if FALSE homozygous deleteions are excluded
includeIncompleteDel default = TRUE; if FALSE heterzygous deleteions are excluded
showReadDetail default = FALSE; if TRUE a table is added to the output, containing all used reads/reapairs with annotated read classification (mut1, mut2, both, none, skipped, dev_var)
printLog default = FALSE; if TRUE the gene which is evaluated is printed in console, containing the query-name of each read which was used to perform haplotype-phasing and the info into which class it was assigned.
assumeSomCnaGaps (logical, default=FALSE) Only required if the somCna object lacks copy number information for genomic segments on which small variants are detected. By default, variants in such regions will be excluded from the analysis as required information about the copy number is missing. These variants will be attached to the final output list in a separate tibble. To include them, this flag must be set TRUE and the ground ploidy must be given as an input. This ground ploidy will then be taken as tcn in the missing regions. If no ploidy is given the tool will assume the ground ploidy of 2 when this flag is TRUE.
byTcn logical, default=TRUE; optional if includeHomoDel or includeIncompleteDelS is TRUE. If FALSE the tool will not use tcn as a criterion to assign large deletions. It will use the cna_type column and check for indicating strings like HOMDEL/HomoDel/DEL. Some commonly used strings are covered. It is recommended to leave this flag TRUE
vcf character; path to variant call file (.vcf.gz format). Will be used (if provided) for extended SNP phasing if variants on the same gene are too far away from each other for direct haplotype phasing
haploBlocks GRanges object containing haploblocks. Haploblocks are defined as genomic regions in which SNPs are phased to a specific allele. For example a haploblock could be chr1:1000-10000. This would mean that every genotype annotation in the format "10" or "01" of a SNP in this region will be used to phase somatic variants and define their genotype
distCutOff numeric, default=5000; if input vcf is provided and SNP phasing is performed, this will limit the distance at which the SNP phasing should not be tried anymore.
As the probability of finding overlapping reads at such a long distance is very low and the runtime will increase exponentially.

verbose
- logical, default=FALSE; prints functions that are called

debug
- logical, default=FALSE; prints output for debugging

logDir
- character; path to directory where logfiles and detailed infos of the run can be stored, if not given, no details will be stored or printed

snpQualityCutOff
- numeric, default=1; Cutoff to filter for SNPS that can be used for phasing

phasingMode
- character, default="fast"; if set to full. Even if high confidence phasing result could be achieved, following phasing approaches will be carried out

AllelicImbalancePhasing
- logical, default=FALSE. Enables alleleic imbalance phasing if TRUE

Value

A list of dataframes. Those are the evaluation per variant, the evaluation per gene and, if performed, the info about the haplotype-phasing.

Examples

```r
cnvs = GenomicRanges::GRanges(
  dplyr::tibble(
    chr = "chr17",
    start = c(170060, 34520990),
    end = c(34520990, 83198614),
    tcn = c(2, 1),
    cna_type = c("neutral", "LOH")
  )
)
somatic_vars = GenomicRanges::GRanges(
  dplyr::tibble(
    chr="chr17",
    start = 7675088,
    end = 7675088,
    ref = "C",
    alt = "T",
    af = 0.65,
    gene = "TP53"
  )
)
germline_vars = GenomicRanges::GRanges(
  dplyr::tibble(
    chr="chr17",
    start = 41771694,
    end = 41771694,
    ref = "GTGT",
    alt = "G",
    af = 0.95,
    gene = "JUP"
  )
)
```
```r
reference = GenomicRanges::GRanges(
  dplyr::tibble(
    chr = "chr17",
    start = c(7661778, 41754603),
    end = c(7687538, 41786931),
    gene = c("TP53", "JUP")
  )
)
sex = "female"
purity = 0.9
bamfile <- system.file("extdata", "ZP_example.bam", 
  package = "ZygosityPredictor")
predict_zygosity(purity = purity, sex = sex, 
  somCna = cnvs, 
  somSmallVars = somatic_vars, 
  germSmallVars = germline_vars, 
  geneModel = reference, 
  bamDna = bamfile
)
```

ZP_ov

accessor for ZygosityPredictor runs. Prints an overview about the run

Description

accessor for ZygosityPredictor runs. Prints an overview about the run

Usage

```r
ZP_ov(fp)
```

Arguments

- **fp** full prediction (output of predict_zygosity())

Value

prints overview about run from function predict_zygosity()

Examples

```r
cnvs = GenomicRanges::GRanges(
  dplyr::tibble(
    chr = "chr17",
    start = c(170060, 34520990),
    end = c(34520990, 83198614),
    tcn = c(2, 1),
    cna_type = c("neutral", "LOH")
  )
)
```
somatic_vars = GenomicRanges::GRanges(
 dplyr::tibble(
 chr="chr17",
 start = 7675088,
 end = 7675088,
 ref = "C",
 alt = "T",
 af = 0.65,
 gene = "TP53"
)
)

germline_vars = GenomicRanges::GRanges(
 dplyr::tibble(
 chr="chr17",
 start = 41771694,
 end = 41771694,
 ref = "GTGT",
 alt = "G",
 af = 0.95,
 gene = "JUP"
)
)

reference = GenomicRanges::GRanges(
 dplyr::tibble(
 chr = "chr17",
 start = c(7661778, 41754603),
 end = c(7687538, 41786931),
 gene = c("TP53", "JUP")
)
)

sex = "female"
purity = 0.9

bamfile <- system.file("extdata", "ZP_example.bam", package = "ZygosityPredictor")
fp <- predict_zygosity(purity = purity, sex = sex, somCna = cnvs,
 somSmallVars = somatic_vars,
 germSmallVars = germline_vars,
 geneModel = reference,
 bamDna = bamfile)

ZP_ov(fp)
Index

* datasets
 GR_GENE_MODEL, 5
 GR_GERM_SMALL_VARS, 6
 GR_HAPLOBLOCKS, 6
 GR_SCNA, 7
 GR_SOM_SMALL_VARS, 7

aff_germ_copies, 2
aff_som_copies, 3

gene_ov, 4
GR_GENE_MODEL, 5
GR_GERM_SMALL_VARS, 6
GR_HAPLOBLOCKS, 6
GR_SCNA, 7
GR_SOM_SMALL_VARS, 7

predict_per_variant, 8
predict_zygosity, 10

ZP_ov, 14