Type Package

Title Unsupervised Deconvolution of Tumor-Stromal Mixed Expressions

Version 1.24.0
Date 2014-07-17

Author Niya Wang <wangny@vt.edu>
Maintainer Niya Wang <wangny@vt.edu>

Depends R (>= 2.15.2), methods, BiocGenerics, Biobase
Imports MASS, boot, nnls, stats, utils

Description UNDO is an R package for unsupervised deconvolution of tumor and stromal mixed expression data. It detects marker genes and deconvolutes the mixing expression data without any prior knowledge.

License GPL-2

git_url https://git.bioconductor.org/packages/UNDO
git_branch RELEASE_3_8
git_last_commit 721e930
git_last_commit_date 2018-10-30

Date/Publication 2018-11-20

R topics documented:

UNDO-package .. 2
BiologicalMixMCF7HS27 .. 2
calc_E1 ... 3
dimension_reduction .. 4
gene_expression_input .. 4
marker_gene_selection ... 5
mixing_matrix_computation .. 6
NumericalMixingMatrix .. 7
NumericalMixMCF7HS27 .. 7
PureMCF7HS27 .. 8
two_source_deconv .. 9

Index 10
BiologicalMixMCF7HS27

Description

This package contains main function "two_source_deconv" to implement the deconvolution of mixed tumor-stromal expressions in a completely unsupervised way. The prior knowledge of mixing matrix or pure expression is not needed. The package detects marker genes and calculate the mixing matrix and pure expressions automatically.

Details

Package: UNDO
Type: Package
Version: 1.7.3
Date: 2014-04-30
License: GPL version 2 or later

two_source_deconv(ExpressionData,lowper=0.4,highper=0.1,epsilon1=0.01,epsilon2=0.01,A=NULL,S1=NULL,S2=NULL,return=0)

Author(s)

Niya Wang <wangny@vt.edu>

Examples

data(NumericalMixMCF7HS27)
X <- NumericalMixMCF7HS27
deconvResult <- two_source_deconv(X, lowper = 0.4, highper = 0.1, epsilon1 = 0.1, epsilon2 = 0.1, A = NULL, S1 = NULL, S2 = NULL)

BiologicalMixMCF7HS27

MCF7 and HS27 biologically mixed

Description

Expression data from MCF7 and HS27 biologically mixing

Usage

data(BiologicalMixMCF7HS27)

Format

The format is: Formal class 'ExpressionSet' [package "Biobase"] with 7 slots .. @ experimentData :Formal class 'MIAME' [package "Biobase"] with 13 slots@ name : chr ""@ lab : chr ""@ contact : chr ""@ title : chr ""@ abstract : chr ""@ url : chr ""@ PubMedIds : chr ""@ samples : list()@ hybridizations : list()@ normControls
calc_E1

A function used to calculate the E1 measurement when the real mixing matrix is provided

Usage

calc_E1(A, Aest)

Arguments

A
real mixing matrix

Aest
estimated mixing matrix

Value

E1 measurement (numeric)

Author(s)

Niya Wang <wangny@vt.edu>
Examples

```r
A <- matrix(runif(4),2,2)
Aest <- matrix(runif(4),2,2)
E1 <- calc_E1(A,Aest) # to calculate the similarity of two random 2x2 matrix
```

dimension_reduction *Dimension reduction function*

Description

When the number of input samples is larger than 2, this function is called to reduce the dimension to 2 by using PCA.

Usage

```r
dimension_reduction(X)
```

Arguments

- `X`
 gene expression data matrix

Value

- `X`
- `dimenMatrix`
 the dimension reduction matrix used to recover the mixing matrix for all the samples

Author(s)

Niya Wang (wangny@vt.edu)

Examples

```r
X <- matrix(runif(5000),1000,5)
dimenResult <- dimension_reduction(X)
```

gene_expression_input *Detect whether the input gene expression data are valid*

Description

Check the input gene expression data to see whether they are nonempty, nonnegative, etc.

Usage

```r
gene_expression_input(X)
```
marker_gene_selection

Arguments

X gene expression data matrix with row representing genes/probe sets, and column representing samples.

Value

If the input is valid, the output will be the same as the input; otherwise, if the input contains NA, the corresponding rows will be deleted. if the input contains negative value, the algorithm will stop and give error information.

Author(s)

Niya Wang (wangny@vt.edu)

Examples

gene_expression <- matrix(runif(2000),1000,2)
valid_gene_expression <- gene_expression_input(gene_expression)

Marker_gene_selection Select marker genes in two sources

Description

Select the marker genes in tumor and stroma in an unsupervised way

Usage

marker_gene_selection(X, lowper, highper, epsilon1, epsilon2)

Arguments

X gene expression data
lowper The percentage of genes the user wants to remove with lowest norm. The range should be between 0 and 1.
highper The percentage of genes the user wants to remove with highest norm. The range should be between 0 and 1.
epsilon1 Influence the number of marker genes. With increasing of epsilon1, the number marker genes in source 1 will increase. The value should be positive.
epsilon2 Influence the number of marker genes. With increasing of epsilon1, the number marker genes in source 2 will increase. The value should be positive.

Value

a1 The slope of marker genes in source 1
a2 The slope of marker genes in source 2
MG1 The gene list of marker genes in source 1
MG2 The gene list of marker genes in source 2
dimenMatrix dimension reduction matrix
mixing_matrix_computation

Description

Calculate the mixing matrix based on the output from `marker_gene_selection()`, and scale the mixing matrix to make the sum of proportions from tumor and stroma equal to 1. The pure expression levels of tumor and stroma are also computed.

Usage

```r
mixing_matrix_computation(X, a1, a2, dimenMatrix)
```

Arguments

- `X`: Gene expression data matrix
- `a1`: The slope of marker genes in source 1
- `a2`: The slope of marker genes in source 2
- `dimenMatrix`: The dimension reduction matrix used to recover mixing matrix for all the samples

Value

- `Aest`: estimated mixing matrix
- `Sest`: estimated pure gene expression of two sources

Examples

```r
a1 <- matrix(runif(2), 2, 1)
a2 <- matrix(runif(2), 2, 1)
X <- 1000*matrix(runif(20000), 10000, 2)
dimenMatrix <- NULL
Deconv <- mixing_matrix_computation(X, a1, a2, dimenMatrix)
```
NumericalMixingMatrix mixing matrix of data NumericalMixMCF7HS27

Description
real mixing matrix of data NumericalMixMCF7HS27

Usage
data(NumericalMixingMatrix)

Format
The format is: num [1:2, 1:2] 0.775 0.15 0.225 0.85 - attr(*, "dimnames")=List of 2 ..$: NULL ..$: chr [1:2] "V1" "V2"

Examples
data(NumericalMixingMatrix)
str(NumericalMixingMatrix)

NumericalMixMCF7HS27 MCF7 and HS27 numerically mixed

Description
Expression data from MCF7 and HS27 numerically mixing

Usage
data(NumericalMixMCF7HS27)

Format
The format is: Formal class 'ExpressionSet' [package "Biobase"] with 7 slots ..@ experimentData :Formal class 'MIAME' [package "Biobase"] with 13 slots@ name : chr ""@ lab : chr ""@ contact : chr ""@ title : chr ""@ abstract : chr ""@ url : chr ""@ pubMedIds : chr ""@ samples : list()@ hybridizations : list()@ normControls : list()@ preprocessing : list()@ other : list()@ __classVersion__ :Formal class 'Versions' [package "Biobase"] with 1 slots$: int [1:3] 1 0 0$: int [1:3] 1 1 0 ..@ assayData :<environment: 0x000000000e86a5d0>@ phenoData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots@ varMetadata :'data.frame': 0 obs. of 1 variable:$ labelDescription: chr(0)@ data :'data.frame': 2 obs. of 0 variables@ dimLabels : chr [1:2] "sampleNames" "sampleColumns"@ __classVersion__ :Formal class 'Versions' [package "Biobase"] with 1 slots$: int [1:3] 1 1 0 ..@ featureData :Formal class 'AnnotatedDataFrame' [package "Biobase"] with 4 slots@ featureMetadata :'data.frame': 0 obs. of 1 variable:$ labelDescription: chr(0)@ data :'data.frame': 22215 obs. of 0 variables@ dimLabels : chr [1:2] "featureNames" "featureColumns"@ __classVersion__ :Formal class 'Versions' [package "Biobase"] with 1 slots$: int [1:3]
Examples

```r
data(NumericalMixMCF7HS27)
str(NumericalMixMCF7HS27)
```

Description

pure MCF7 and HS27 expression data

Usage

```r
data(PureMCF7HS27)
```

Format

The format is:

- Formal class ‘ExpressionSet’ with 7 slots
 - experimentData
 - MIAME
 - assayData
 - phenoData
 - featureData
 - annotation
 - protocolData

- Formal class ‘MIAME’ with 13 slots
 - name
 - lab
 - contact
 - title
 - abstract
 - url
 - pubMedIds
 - samples
 - hybridizations
 - normControls
 - preprocessing
 - other

- Formal class ‘assayData’

- Formal class ‘phenoData’

- Formal class ‘featureData’

- Formal class ‘annotation’

- Formal class ‘protocolData’
Examples

```r
data(PureMCF7HS27)
str(PureMCF7HS27)
```

two_source_deconv
Main function to call other subfunction to deconvolute the mixed expression data.

Description

This is the main function that is to call all the other subfunctions and realize the deconvolution of mixed expression data. When the real mixing matrix exist, it will also compare the estimated mixing matrix and real mixing matrix and give the E1 measurement.

Usage

```r
two_source_deconv(ExpressionData, lowper = 0.4, highper = 0.1, epsilon1 = 0.01, epsilon2 = 0.01, A = NULL, S1 = NULL, S2 = NULL, return = 0)
```

Arguments

- **ExpressionData**
 gene expression data matrix/ExpressionSet object
- **lowper**
 The percentage of genes the user wants to remove with lowest norm. The range should be between 0 and 1.
- **highper**
 The percentage of genes the user wants to remove with highest norm. The range should be between 0 and 1.
- **epsilon1**
 Influence the number of marker genes. With increasing of epsilon1, the number marker genes in source 1 will increase. The value should be positive.
- **epsilon2**
 Influence the number of marker genes. With increasing of epsilon1, the number marker genes in source 2 will increase. The value should be positive.
- **A**
 real mixing matrix if existing
- **S1**
 Pure expression profile of first source if existing
- **S2**
 Pure expression profile of second source if existing
- **return**
 if it is equal to 0, do not return estimated S; otherwise, return the estimated S.

Value

- **Aest**
 estimated mixing matrix
- **E1**
 E1 measurement between real and estimated mixing matrix

Author(s)

Niya Wang (wangny@vt.edu)

Examples

```r
data(NumericalMixMCF7HS27)
X <- NumericalMixMCF7HS27
deconvResult <- two_source_deconv(X, lowper = 0.4, highper = 0.1, epsilon1 = 0.1, epsilon2 = 0.1, A = NULL, S1 = NULL, S2 = NULL, return = 0)
```
Index

*Topic **datasets**
 BiologicalMixMCF7HS27, 2
 NumericalMixingMatrix, 7
 NumericalMixMCF7HS27, 7
 PureMCF7HS27, 8

*Topic **methods**
 UNDO-package, 2

*Topic **package**
 UNDO-package, 2

BiologicalMixMCF7HS27, 2

calc_E1, 3

dimension_reduction, 4

gene_expression_input, 4

marker_gene_selection, 5

mixing_matrix_computation, 6

NumericalMixingMatrix, 7

NumericalMixMCF7HS27, 7

PureMCF7HS27, 8

two_source_deconv, 9

UNDO (UNDO-package), 2

UNDO-package, 2