Package ‘TDbasedUFEadv’

May 4, 2024

Type Package
Title Advanced package of tensor decomposition based unsupervised feature extraction
Version 1.4.0
Language en-US

Description This is an advanced version of TDbasedUFE, which is a comprehensive package to perform Tensor decomposition based unsupervised feature extraction. In contrast to TDbasedUFE which can perform simple the feature selection and the multiomics analyses, this package can perform more complicated and advanced features, but they are not so popularly required. Only users who require more specific features can make use of its functionality.

biocViews GeneExpression, FeatureExtraction, MethylationArray, SingleCell, Software

License GPL-3
Encoding UTF-8
Imports TDbasedUFE, Biobase, GenomicRanges, utils, rTensor, methods, graphics, RTCGA, stats, enrichplot, DOSE, STRINGdb, enrichR, hash, shiny

RoxygenNote 7.2.3

BugReports https://github.com/tagtag/TDbasedUFEadv/issues

URL https://github.com/tagtag/TDbasedUFEadv

Suggests knitr, rmarkdown, testthat (>= 3.0.0), RTCGA.rnaseq, RTCGA.clinical, BiocStyle, MOFAdata

VignetteBuilder knitr

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/TDbasedUFEadv

git_branch RELEASE_3_19

git_last_commit 4848d05

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-03
Author Y-h. Taguchi [aut, cre](<https://orcid.org/0000-0003-0867-8986>)
Maintainer Y-h. Taguchi <tag@granular.com>

Contents

TDbasedUFEadv-package ... 2
computeSVD .. 3
prepareCondDrugandDisease .. 3
prepareCondTCGA ... 4
prepareexpDrugandDisease ... 5
prepareTensorfromList .. 6
prepare TensorfromMatrix ... 6
prepareTensorRect .. 7
selectFeatureProj .. 8
selectFeatureRect ... 9
selectFeatureTransRect .. 10
TensorRect-class ... 11
transSVD .. 11

Index 12

TDbasedUFEadv-package TDbasedUFEadv: Advanced package of tensor decomposition based unsupervised feature extraction

Description

This is an advanced version of TDbasedUFE, which is a comprehensive package to perform Tensor decomposition based unsupervised feature extraction. In contrast to TDbasedUFE which can perform simple the feature selection and the multiomics analyses, this package can perform more complicated and advanced features, but they are not so popularly required. Only users who require more specific features can make use of its functionality.

Author(s)

Maintainer: Y-h. Taguchi <tag@granular.com>(ORCID)

See Also

Useful links:

- https://github.com/tagtag/TDbasedUFEadv
- Report bugs at https://github.com/tagtag/TDbasedUFEadv/issues
computeSVD

Title Perform SVD toward reduced matrix generated from a tensor with partial summation

Usage
computeSVD(matrix1, matrix2, dim = 10L, scale = TRUE)

Arguments
matrix1 The first original matrix that generates a tensor
matrix2 The second original matrix that generates a tensor
dim The number of singular value vectors to be computed
scale If matrix should be scaled or not

Value
Singular value vectors attributed to two sets of objects associated with singular value vectors attributed to features, by multiplying

Examples
matrix1 <- matrix(runif(200),20)
matrix2 <- matrix(runif(400),20)
SVD <- computeSVD(matrix1,matrix2)

prepareCondDrugandDisease

Prepare condition matrix for expDrug

Description
Prepare condition matrix for expDrug

Usage
prepareCondDrugandDisease(expDrug)

Arguments
expDrug input gene expression profile
prepareCondTCGA

Description
Prepare Sample label for TCGA data

Usage
prepareCondTCGA(
 Multi_sample,
 Clinical,
 ID_column_of_Multi_sample,
 ID_column_of_Clinical
)

Arguments
Multi_sample list of sample ids
Clinical List of clinical data matrix from RTCGA.clinical
ID_column_of_Multi_sample
 Column numbers used for conditions
ID_column_of_Clinical
 Column numbers that include corresponding sample ids in clinical data

Value
list of sample labels

Examples
library(RTCGA.clinical)
library(RTCGA.rnaseq)
Clinical <- list(BLCA.clinical, BRCA.clinical, CESC.clinical, COAD.clinical)
Multi_sample <- list(
 BLCA.rnaseq[seq_len(100), 1, drop = FALSE],
 BRCA.rnaseq[seq_len(100), 1, drop = FALSE],
prepareexpDrugandDisease

Generating gene expression of drug treated cell lines and a disease cell line

Description

Generating gene expression of drug treated cell lines and a disease cell line

Usage

prepareexpDrugandDisease(Cancer_cell_lines)

Arguments

Cancer_cell_lines

<- list(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq) list that includes individual data set from RTCGA.rnaseq

Value

list of expDrug and expDisease

Examples

library(RTCGA.rnaseq)
Cancer_cell_lines <- list(ACC.rnaseq, BLCA.rnaseq, BRCA.rnaseq)
Drug_and_Disease <- prepareexpDrugandDisease(Cancer_cell_lines)
prepareTensorfromList Prepare tensor from a list that includes multiple profiles

Description
Prepare tensor from a list that includes multiple profiles

Usage
prepareTensorfromList(Multi, proj_dim)

Arguments
Multi a list that includes multiple profiles
proj_dim the number of projection dimensions

Value
a tensor as a bundle of singular value vectors obtained by applying SVD to individual omics

Examples
library(MOFAdata)
data("CLL_data")
data("CLL_covariates")
Z <- prepareTensorfromList(CLL_data, 10L)

prepareTensorfromMatrix Generate tensor from two matrices

Description
Generate tensor from two matrices

Usage
prepareTensorfromMatrix(matrix1, matrix2)

Arguments
matrix1 the first input matrix
matrix2 the second input matrix
Value

A tensor generated from the first and second matrices

Examples

Z <- prepareTensorFromMatrix(matrix(runif(100),10),matrix(runif(100),10))

prepareTensorRect Prepare tensor generated from two matrices that share samples

Description

Prepare tensor generated from two matrices that share samples

Usage

prepareTensorRect(
 sample,
 feature,
 value,
 featureRange = GRanges(NULL),
 sampleData = list(NULL)
)

Arguments

csample Character vector of sample names
cfeature list of features from two matrices
cvalue array, contents of
cfeatureRange Genomic Ranges to be associated with features
csampleData List of conditional labeling associated with samples

Value

Tensor generated from two matrices that share samples

Examples

matrix1 <- matrix(runif(1000),200) #row features, column samples
matrix2 <- matrix(runif(2000),400) #row features, column samples
Z <- prepareTensorFromMatrix(t(matrix1),t(matrix2))
Z <- prepareTensorRect(sample=as.character(seq_len(50)),
 feature=list(as.character(seq_len(200)),as.character(seq_len(400))),
 sampleData=list(rep(seq_len(2),each=25)),value=Z)
selectFeatureProj

Select feature when projection strategy is employed for the case where features are shared with multiple omics profiles

Description

Select feature when projection strategy is employed for the case where features are shared with multiple omics profiles

Usage

```r
selectFeatureProj(
  HOSVD, Multi, cond,
  de = 1e-04, p0 = 0.01, breaks = 100L,
  input_all = NULL
)
```

Arguments

- **HOSVD**: HOSVD
- **Multi**: list of omics profiles, row: sample, column: feature
- **cond**: list of conditions for individual omics profiles
- **de**: initial value for optimization of standard deviation
- **p0**: Threshold P-value
- **breaks**: The number of bins of histogram of P-values
- **input_all**: The number of selected feature. if null, interactive mode is activated

Value

list composed of logical vector that represent which features are selected and p-values

Examples

```r
library(TDbasedUFE)
Multi <- list(matrix(runif(1000),10),matrix(runif(1000),10),
  matrix(runif(1000),10),matrix(runif(1000),10))
Z <- prepareTensorFromList(Multi,10L)
Z <- aperm(Z,c(2,1,3))
Z <- PrepareSummarizedExperimentTensor(feature =as.character(1:10),
  sample=array("",1),value=Z)
HOSVD <- computeHosvd(Z)
cond <- rep(list(rep(1:2,each=5)),4)
index <- selectFeatureProj(HOSVD,Multi,cond,de=0.1,input_all=2)
```
selectFeatureRect
Select features through the selection of singular value vectors

Description
Select features through the selection of singular value vectors

Usage
selectFeatureRect(
 SVD,
 cond,
 de = rep(1e-04, 2),
 p0 = 0.01,
 breaks = 100L,
 input_all = NULL
)

Arguments
SVD SVD computed from matrix generated by partial summation of a tensor
cond Condition to select singular value vectors
de Initial values to be used for optimization of standard deviation
p0 Threshold value for the significance
breaks Number of bins of histogram of P-values
input_all The ID of selected singular value vectors. If it is null, interactive mode is activated.

Value
List of lists that includes P-values as well as if individual features selected.

Examples
set.seed(0)
matrix1 <- matrix(runif(2000),200)
matrix2 <- matrix(runif(4000),200)
SVD <- computeSVD(matrix1,matrix2)
index_all <- selectFeatureRect(SVD,
 list(NULL,rep(seq_len(2),each=5),rep(seq_len(2),each=10)),de=rep(0.5,2),
 input_all=1)
selectFeatureTransRect

Select features for a tensor generated from two matrices that share samples.

Description

Select features for a tensor generated from two matrices that share samples.

Usage

selectFeatureTransRect(
 HOSVD,
 cond,
 de = rep(1e-04, 2),
 p0 = 0.01,
 breaks = 100L,
 input_all = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOSVD</td>
<td>HOSVD</td>
</tr>
<tr>
<td>cond</td>
<td>list of conditions</td>
</tr>
<tr>
<td>de</td>
<td>initial values for optimization of standard deviation</td>
</tr>
<tr>
<td>p0</td>
<td>threshold value for the significance</td>
</tr>
<tr>
<td>breaks</td>
<td>number of bins of the histogram of P-values</td>
</tr>
<tr>
<td>input_all</td>
<td>The selected singular value vectors attributed to samples. if NULL, interactive mode</td>
</tr>
</tbody>
</table>

Value

list of logical vector that represent if the individual features are selected and P-values.

Examples

library(TDbasedUFE)
set.seed(0)
matrix1 <- matrix(runif(1000),20) #row features, column samples
matrix2 <- matrix(runif(2000),40) #row features, column samples
Z <- prepareTensorfromMatrix(t(matrix1),t(matrix2))
Z <- prepareTensorRect(sample=as.character(seq_len(50)),
 feature=list(as.character(seq_len(20)),as.character(seq_len(40))),
 sampleData=list(rep(seq_len(2),each=25)),value=Z)
HOSVD <- computeHosvd(Z)
cond <- list(attr(Z,"sampleData")[[1]],NULL,NULL)
index_all <- selectFeatureTransRect(HOSVD,cond,de=c(0.1,0.1),input_all=2,p0=1e-10)
Description

Class definitions

Slots

sample character.
feature list.
value array.
featureRange GRanges.
sampleData list.

transSVD

Convert SVD to that for the case where samples are shared between two matrices

Description

Convert SVD to that for the case where samples are shared between two matrices

Usage

transSVD(SVD)

Arguments

SVD input SVD object generated from computeSVD function

Value

converted SVD objects

Examples

matrix1 <- matrix(runif(200),20)
matrix2 <- matrix(runif(400),20)
SVD <- computeSVD(matrix1,matrix2)
SVD <- transSVD(SVD)
Index

* internal
 TDbasedUFEadv-package, 2

computeSVD, 3
prepareCondDrugandDisease, 3
prepareCondTCGA, 4
prepareexpDrugandDisease, 5
prepareTensorfromList, 6
prepareTensorfromMatrix, 6
prepareTensorRect, 7
selectFeatureProj, 8
selectFeatureRect, 9
selectFeatureTransRect, 10

TDbasedUFEadv (TDbasedUFEadv-package), 2
TDbasedUFEadv-package, 2
TensorRect-class, 11
transSVD, 11