Package ‘SubCellBarCode’

March 14, 2024

Type Package

Title SubCellBarCode: Integrated workflow for robust mapping and visualizing whole human spatial proteome

Version 1.18.0

Author Taner Arslan

Maintainer Taner Arslan <taner.arslan@ki.se>

Description Mass-Spectrometry based spatial proteomics have enabled the proteome-wide mapping of protein subcellular localization (Orre et al. 2019, Molecular Cell). SubCellBarCode R package robustly classifies proteins into corresponding subcellular localization.

License GPL-2

Encoding UTF-8

LazyData true

Depends R (>= 3.6)

Suggests knitr, rmarkdown, BiocStyle

Imports Rtsne, scatterplot3d, caret, e1071, ggplot2, gridExtra, networkD3, ggrepel, graphics, stats, org.Hs.eg.db, AnnotationDbi

biocViews Proteomics, MassSpectrometry, Classification

RoxygenNote 7.1.1

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/SubCellBarCode

git_branch RELEASE_3_18

git_last_commit dc1e986

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-13
R topics documented:

- `applyThresholdCompartment` 2
- `applyThresholdNeighborhood` 3
- `calculateCoveredProtein` 4
- `calRowMean` 5
- `candidateRelocatedProteins` 6
- `compareCls` 7
- `computeThresholdCompartment` 8
- `computeThresholdNeighborhood` 9
- `convert2symbol` 10
- `hcc827Ctrl` 11
- `hcc827CtrlPSMCount` 11
- `hcc827exon` 12
- `hcc827GEF` 13
- `hcc827GEFClass` 13
- `hcc827GefPSMCount` 14
- `loadData` 14
- `markerProteins` 15
- `markerQualityControl` 15
- `mergeCls` 16
- `mergeProbability` 17
- `plotBarcode` 18
- `plotMultipleProtein` 20
- `replacePrediction` 20
- `sankeyPlot` 21
- `sumProbability` 22
- `svmClassification` 23
- `svmExternalData` 24
- `tsneVisualization` 25

Index

- `applyThresholdCompartment` 2

applyThresholdCompartment

Apply thresholds to compartments

Description

Apply thresholds for all predictions to increase the true positive rate and remove poor classification.

Usage

```
applyThresholdCompartment(all.repA, all.repB, threshold.df)
```
applyThresholdNeighborhood

Apply thresholds to neighborhood classification

Description

Apply thresholds for all predictions at the neighborhood level to increase the true positive rate and remove poor classification.

Usage

```r
applyThresholdNeighborhood(all.repA, all.repB, threshold.df)
```
calculateCoveredProtein

Evaluate marker protein coverage

Description

Given the proteomics data, number of overlapped marker proteins is calculated. Bar plot for each compartment is plotted.

Usage

calculateCoveredProtein(proteinIDs, markerproteins)

Arguments

proteinIDs character; gene symbol id
markerproteins character; 3365 proteins gene symbol ids

Arguments

all.repA data.frame; all predictions and probability vectors for each protein in replicate A
all.repB data.frame; all predictions and probability vectors for each protein in replicate B
threshold.df data.frame; collection of precision and recall values for each neighborhood

Value

n.cls.df

Examples

{
 df <- loadSubCellBarCode::hcc827Ctrl
 c.prots <- calculateCoveredProtein(rownames(df), markerproteins[,1])
 set.seed(7)
 c.prots <- sample(c.prots, 600)
 cls <- svmClassification(c.prots, df, markerProteins)
 test.A <- cls[[1]]$svm.test.prob.out
 test.B <- cls[[2]]$svm.test.prob.out
 t.n.df <- computeThresholdNeighborhood(test.A, test.B)
 all.A <- cls[[1]]$all.prot.pred
 all.B <- cls[[2]]$all.prot.pred
 n.cls.df <- applyThresholdNeighborhood(all.A, all.B, t.n.df)
}

calculateCoveredProtein
calRowMean

Value
covered.proteins

Examples
{
 df <- loadData(SubCellBarCode::hcc827Ctrl)
 c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
}

calRowMean Compute the means of replicates

Description
Duplicated fractions A and B are summarized by taking their mean for each protein. After taking
the mean, the data log2 transformed. Further, the 5 main fractions are used to check correlation
between input datas. It is a helper function.

Usage
calRowMean(d.df)

Arguments
d. df data.frame; A data frame of 10 fraction profiles consisting of replicate A and B.

Value
r.df

Examples
{
 r.df <- calRowMean(SubCellBarCode::hcc827Ctrl)
}

candidateRelocatedProteins

Identify candidate relocated proteins

Description

Identify candidate condition-dependent relocated proteins by comparing neighborhood classifications with respect to protein-protein pearson correlation and minimum PSM, peptide spectrum matching count.

Usage

candidateRelocatedProteins(
 sampleCls1,
 s1PSM,
 s1Quant,
 sampleCls2,
 s2PSM,
 s2Quant,
 annotation = FALSE,
 min.psm = 2,
 pearson.cor = 0.8
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sampleCls1</td>
<td>data.frame; merged classification, combination of compartment and neighborhood classification.</td>
</tr>
<tr>
<td>s1PSM</td>
<td>data.frame; minimum PSM count table across ten TMT channel</td>
</tr>
<tr>
<td>s1Quant</td>
<td>data.frame; fractionation quantification data</td>
</tr>
<tr>
<td>sampleCls2</td>
<td>data.frame; merged classification, combination of compartment and neighborhood classification.</td>
</tr>
<tr>
<td>s2PSM</td>
<td>data.frame; minimum PSM count table across ten TMT channel</td>
</tr>
<tr>
<td>s2Quant</td>
<td>data.frame; fractionation quantification data</td>
</tr>
<tr>
<td>annotation</td>
<td>boolean; labeling the selected proteins</td>
</tr>
<tr>
<td>min.psm</td>
<td>numeric; minimum psm, peptide spectra matching value</td>
</tr>
<tr>
<td>pearson.cor</td>
<td>numeric; pearson correlation threshold</td>
</tr>
</tbody>
</table>

Value

candidate.df
Examples
{
 candidate.df <- candidateRelocatedProteins(hcc827GEFClass, hcc827GefPSMCount,
hcc827GEF, hcc827GEFClass, hcc827GefPSMCount, hcc827GEF,
 annotation = FALSE)
}

compareCls

Compare exon and gene centric classifications

Description
Comparison of the gene centric and exon centric classification. Additionally, correlation analysis is performed using quantification data.

Usage
 compareCls(geneCls, exonCls)

Arguments
 geneCls, data frame gene centric classification output
 exonCls, data frame exon centric classification output

Value
 c.df

Examples
{
 exon.cls <- data.frame(Protein = c("ENSE00000331854",
 "ENSE00000331855",
 "ENSE00000331859"),
 NeighborhoodCls = c("Cytosol",
 "Cytosol",
 "Cytosol"),
 CompartmentCls = c("C1", "C1", "C1"),
 Secretory = c(0.1, 0.1, 0.1),
 Nuclear = c(0.2, 0.2, 0.2),
 Cytosol = c(0.2, 0.2, 0.2),
 Mitochondria = c(0.2, 0.2, 0.2),
 S1 = c(0.2, 0.2, 0.2),
 S2 = c(0.2, 0.2, 0.2),
 S3 = c(0.2, 0.2, 0.2),
}
computeThresholdCompartment

Probability threshold for compartment classification

Description

Thresholds for each compartment are decided to get confident predictions.
computeThresholdNeighborhood

Usage

```
computeThresholdCompartment(test.repA, test.repB)
```

Arguments

- `test.repA` data.frame; test predictions, observation and probability vectors for each protein in replicate A
- `test.repB` data.frame; test predictions, observation and probability vectors for each protein in replicate B

Value

`threshold.compartment.df`

Examples

```
{  
  df <- loadData(SubCellBarCode::hcc827Ctrl)
  c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
  set.seed(7)
  c.prots <- sample(c.prots, 550)
  cls <- svmClassification(c.prots, df, markerProteins)
  test.A <- cls[[1]]$svm.test.prob.out
  test.B <- cls[[2]]$svm.test.prob.out
  t.c.df <- computeThresholdCompartment(test.A, test.B)
}
```

computeThresholdNeighborhood

Probability threshold for neighborhood classification

Description

Thresholds for each neighborhood are decided to get confident predictions.

Usage

```
computeThresholdNeighborhood(test.repA, test.repB)
```

Arguments

- `test.repA` data.frame; test predictions, observation and probability vectors for each protein in replicate A
- `test.repB` data.frame; test predictions, observation and probability vectors for each protein in replicate B
Value
threshold.neighborhood.df

Examples
{
 df <- loadData(SubCellBarCode::hcc827Ctrl)
 c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
 set.seed(7)
 c.prots <- sample(c.prots, 600)
 cls <- svmClassification(c.prots, df, markerProteins)
 test.A <- cls[[1]]$svm.test.prob.out
 test.B <- cls[[2]]$svm.test.prob.out
 t.n.df <- computeThresholdNeighborhood(test.A, test.B)
}

convert2symbol
\textit{Convert identifier to gene symbol}

Description
Identifier for each feature should be converted into gene symbols unless they are not gene symbols

Usage
convert2symbol(df, id = "UNIPROT")

Arguments
\begin{itemize}
 \item \textbf{df} \hspace{1cm} data.frame; fractionated proteomics data where data contains 10 columns of duplicated 5 fractionations and rownames must be identifier e.g. UNIPROT, Entrez ID
 \item \textbf{id} \hspace{1cm} character; identifier id for each protein
\end{itemize}

Value
\begin{itemize}
 \item \textbf{df}
\end{itemize}
Examples
{
 df <- data.frame(Uniprot = c("A4D0S4","A8TX70","O00305","O00337"),
 Organism = rep("Homo Sap.", 4))
 rownames(df) <- df$Uniprot
}

Description
Subcellular fractionated cell line.

Usage
hcc827Ctrl

Format
A data frame where 10480 protein gene-centric ids and 5 replicated subcellular fractions.

References
Orre et al. 2019 Cell 73, 1-17

Examples
{
 head(hcc827Ctrl)
}

hcc827CtrlPSMCount Minimum PSM Count in HCC827Ctrl Cell Line.

Description
Minimum PSM, Peptide Sequence Match, Count table for HCC827Ctrl Cell Line.

Usage
hcc827CtrlPSMCount
Format

A data frame where 10480 protein gene-centric ids minimum PSM count.

References

Orre et al. 2019 Cell 73, 1-17

Examples

{
 head(hcc827CtrlPSMCount)
}

hcc827exon

HCC827 Control Exon Cell Line

Description

Exon-centric sub data of hcc827 fractionated data.

Usage

hcc827exon

Format

A data frame where 500 exon-centric ensemble identifiers, corresponding gene symbols, 5 replicated subcellular fractions and number of unique peptides matched to associated exon.

References

Orre et al. 2019 Cell 73, 1-17

Examples

{
 head(hcc827exon)
}
hcc827GEF

Gefitinib treated HCC827 Cell Line

Description

HCC827 cell line was treated with Gefitinib which is EGFR inhibition.

Usage

hcc827GEF

Format

A data frame where 10398 protein gene-centric ids and 5 replicated subcellular fractions with duplicates.

References

Orre et al. 2019 Cell 73, 1-17

Examples

```r
{  
  head(hcc827GEF)
}
```

hcc827GEFClass

Gefitinib treated HCC827 Cell Line Classification

Description

Gefitinib treated HCC827 cell line classification contains both neighborhood and compartment level. The data will be used for the relocalization analysis.

Usage

hcc827GEFClass

Format

A data frame where 10398 protein gene-centric ids and corresponding compartment and neighborhood classification along with classification probabilities.

References

Orre et al. 2019 Cell 73, 1-17
Examples

```r
{  
  head(hcc827GefClass)
}
```

hcc827GefPSMCount Minimum PSM Count in HCC827 Gefitinib Cell Line.

Description
Minimum PSM, Peptide Sequence Match, Count table for HCC827 Gefitinib Cell Line.

Usage
hcc827GefPSMCount

Format
A data frame where 10398 protein gene-centric ids minimum PSM count.

References
Orre et al. 2019 Cell 73, 1-17

Examples

```r
{  
  head(hcc827GefPSMCount)
}
```

loadData Load the fractionated proteomics data

Description
Sampled median normalized TMT ratios are checked if there is any "NA" values. If any, the corresponding row is filtered out. Later, the data is normalized by taking log2.

Usage
loadData(protein.data)

Arguments
protein.data data.frame; fractionated proteomics data where data contains 10 columns of duplicated 5 fractionations and rownames must be gene-centric protein names
markerProteins

Value

protein.data.df

Examples

```r
{  
  df <- loadData(SubCellBarCode::hcc827Ctrl[1:20,])  
}
```

<table>
<thead>
<tr>
<th>markerProteins</th>
<th>Marker Proteins Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

Data for the proteins whose localizations were well characterized. It also contains color codes for each compartment and median fractionation profiles for 5 fractions which are Cyto., Nsol., NucL., Horg., Lorg., with replicates A and B. These fractionation profiles will be used for the marker protein quality control.

Usage

```r
markerProteins
```

Format

A data frame of 3365 proteins as rows and 13 columns headers.

References

Orre et al. 2019 Cell 73, 1-17

markerQualityControl

Evaluate the quality of the marker proteins

Description

Given the proteomics data, quality of the overlapped marker proteins are evaluated by correlating replicates of fractions.

Usage

```r
markerQualityControl(coveredProteins, protein.data)
```
Arguments

coveredProteins character; list of marker proteins, gene symbols, that are covered in 3365 marker proteins.

protein.data data.frame; fractionated proteomics data, rownames are gene symbols associated protein.

Value

robustMarkers

Examples

{
 df <- loadData(SubCellBarCode::hcc827Ctrl)
 c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
 r.markers <- markerQualityControl(c.prots[1:5], df)
}

mergeCls

Merge compartment and neighborhood classification

Description

Compartment and neighborhood classifications are merged for the single output.

Usage

mergeCls(compartmentCls, neighborhoodCls)

Arguments

compartmentCls data.frame; all predictions, including unclassified as well, and probability vectors for each protein in compartment classification

neighborhoodCls data.frame; all predictions, including unclassified as well, and probability vectors for each protein in compartment classification

Value

cls.df
mergeProbability

Examples

{
 # create mock data
 com.df <- data.frame(Proteins = "TP53",
 svm.pred = "N1",
 S1 = as.numeric(0.02),
 S2 = as.numeric(0.02),
 S3 = as.numeric(0.02),
 S4 = as.numeric(0.02),
 N1 = as.numeric(0.72),
 N2 = as.numeric(0.02),
 N3 = as.numeric(0.02),
 N4 = as.numeric(0.02),
 C1 = as.numeric(0.02),
 C2 = as.numeric(0.02),
 C3 = as.numeric(0.02),
 C4 = as.numeric(0.02),
 C5 = as.numeric(0.02),
 M1 = as.numeric(0.02),
 M2 = as.numeric(0.02))
 rownames(com.df) <- "TP53"

 neig.df <- data.frame(Proteins = "TP53",
 svm.pred.all = "Nuclear",
 Secretory = as.numeric(0.01),
 Nuclear = as.numeric(0.95),
 Cytosol = as.numeric(0.02),
 Mitochondria = as.numeric(0.02))
 rownames(neig.df) <- "TP53"

 cls.df <- mergeCls(com.df, neig.df)
}

mergeProbability

Merge compartment probabilities to neighborhood probabilities

description

Compartment levels classifications are summed up to associated neighborhood levels. It is a helper function.

Usage

mergeProbability(df)
Arguments

df data.frame; all predictions at the neighborhood level and probability vectors for each protein

Value

merged.df

Examples

{

create mock data
df <- data.frame(Protein = "TP53",
 S1 = as.numeric(0.02),
 S2 = as.numeric(0.02),
 S3 = as.numeric(0.02),
 S4 = as.numeric(0.02),
 N1 = as.numeric(0.72),
 N2 = as.numeric(0.02),
 N3 = as.numeric(0.02),
 N4 = as.numeric(0.02),
 C1 = as.numeric(0.02),
 C2 = as.numeric(0.02),
 C3 = as.numeric(0.02),
 C4 = as.numeric(0.02),
 C5 = as.numeric(0.02),
 M1 = as.numeric(0.02),
 M2 = as.numeric(0.02))

rownames(df) <- "TP53"

merged.df <- mergeProbability(df)

}

plotBarcode | Visualize the SubCellBarCode

Description

Stacked bar plot are plotted for compartment and neighborhood level with respect to classification probabilities.

Usage

plotBarcode(sampleClassification, protein, s1PSM)
Arguments

- sampleClassification: data.frame; merged classification, combination of compartment and neighborhood classification.
- protein: character; protein gene symbol name
- s1PSM: data.frame; minimum PSM count table. Row names should be gene centric protein id.

Value

proteinPlot

Examples

{
 # create mock data
 plot.df <- data.frame(Protein = "TP53",
 NeighborhoodCls = "Nuclear",
 CompartmentCls = "N1",
 Secretory = as.numeric(0.01),
 Nuclear = as.numeric(0.95),
 Cytosol = as.numeric(0.02),
 Mitochondria = as.numeric(0.02),
 S1 = as.numeric(0.02),
 S2 = as.numeric(0.02),
 S3 = as.numeric(0.02),
 S4 = as.numeric(0.02),
 N1 = as.numeric(0.72),
 N2 = as.numeric(0.02),
 N3 = as.numeric(0.02),
 N4 = as.numeric(0.02),
 C1 = as.numeric(0.02),
 C2 = as.numeric(0.02),
 C3 = as.numeric(0.02),
 C4 = as.numeric(0.02),
 C5 = as.numeric(0.02),
 M1 = as.numeric(0.02),
 M2 = as.numeric(0.02))

 rownames(plot.df) <- "TP53"

 psm.df <- data.frame(Protein = "TP53",
 PSMs.for.quant = as.numeric(31))

 rownames(psm.df) <- "TP53"

 proteinPlot <- plotBarcode(plot.df, "TP53", psm.df)
}
plotMultipleProtein Visualization of multiple protein localizations

Description

Distributions of subcellular localizations of multiple proteins both at the compartment and neighborhood level are plotted.

Usage

plotMultipleProtein(sampleClassification, proteinList)

Arguments

sampleClassification
 data.frame; merged classification, combination of compartment and neighborhood classifications per protein.

proteinList
 vector; protein gene symbol names.

Value

multipleProt.df

Examples

{
 exp.cls.df <- SubCellBarCode::hcc827GEFClass
 multipleProt.df <- plotMultipleProtein(exp.cls.df, proteasome26s)
}

replacePrediction Replace compartment predictions to neighborhood predictions

Description

Compartment level classifications are replaced with neighborhood level assignment. It is a helper function.
Usage
replacePrediction(df, column = c("svm.pred.all", "Observation", "svm.pred"))

Arguments
df data.frame; all predictions at the compartment level and probablity vectors for each protein
column character; selected column in the data frame, df

Value
replaced.df

Examples
{

#define mock data frame
df <- data.frame(svm.pred.all = c("S1","S2","S3","S4",
 "N1","N2","N3","N4",
 "C1","C2","C3","C4","C5",
 "M1","M2"))

df$svm.pred.all <- as.character(df$svm.pred.all)
df$Prob <- "1"

df <- replacePrediction(df, column = "svm.pred.all")
}

sankeyPlot
Sankey plot for condition-dependent protein relocalization

Description
Identify candidate condition-dependent relocated proteins by comparing neighborhood classifications.

Usage
sankeyPlot(sampleCls1, sampleCls2)

Arguments
sampleCls1 data.frame; merged classification, combination of compartment and neighborhood classification.
sampleCls2 data.frame; merged classification, combination of compartment and neighborhood classification.
sumProbability

Value

label.link.df

Examples

{
 exp.cls.df <- SubCellBarCode::hcc827GEFClass
 sankeyData <- sankeyPlot(exp.cls.df, exp.cls.df)
}

sumProbability Sum compartment test data probabilities to neighborhood probabilities

Description

Compartment levels classifications on the test data are summed up to associated neighborhood levels. It is a helper function.

Usage

sumProbability(df)

Arguments

df data.frame; test data classifications at the neighborhood level and probability vectors for each protein.

Value

summed.df

Examples

{
 #create mock data
df <- data.frame(Protein = "TP53",
 svm.pred = "N1",
 S1 = as.numeric(0.02),
 S2 = as.numeric(0.02),
 S3 = as.numeric(0.02),
 S4 = as.numeric(0.02),
 N1 = as.numeric(0.72),
 N2 = as.numeric(0.02),
 N3 = as.numeric(0.02),}
svmClassification

N4 = as.numeric(0.02),
C1 = as.numeric(0.02),
C2 = as.numeric(0.02),
C3 = as.numeric(0.02),
C4 = as.numeric(0.02),
C5 = as.numeric(0.02),
M1 = as.numeric(0.02),
M2 = as.numeric(0.02))

rownames(df) <- "TP53"

sum.df <- sumProbability(df)

svmClassification

Protein subcellular localization classification

Description

Support Vector Machine classifier is trained and used for prediction of protein subcellular localization.

Usage

svmClassification(markerProteins, protein.data, markerprot.df)

Arguments

markerProteins character; robust marker proteins along with subcellular localization that are present in the given data.
protein.data data.frame; fractionated proteomics data
markerprot.df data.frame; collection of marker proteins along with corresponding subcellular localization

Value

all.classifications

Examples

{
 df <- loadData(SubCellBarCode::hcc827Ctrl)
 c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
 set.seed(7)
 c.prots <- sample(c.prots, 500)
svmExternalData

cls <- svmClassification(c.prots, df, markerProteins)
}

Description

Peptide/exon/transcript centric or PTM enriched classification is applied to predict localization of them.

Usage

`svmExternalData(df, modelA, modelB)`

Arguments

- **df**, data frame fractionated additional data
- **modelA**, model for the replicate A classification
- **modelB**, model for the replicate B classification

Value

- **c.cls.df**

Examples

```r
{
  df <- loadData(SubCellBarCode::hcc827Ctrl)
  c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
  set.seed(7)
  c.prots <- sample(c.prots, 550)
  cls <- svmClassification(c.prots, df, markerProteins)
  modelA <- cls[[1]]$model
  modelB <- cls[[2]]$model

  exon.cls <- svmExternalData(SubCellBarCode::hcc827exon,
                             modelA = modelA, modelB = modelB)
}
```
tsneVisualization

Visualization of marker proteins by t-SNE map

Description

The marker proteins are visualized in 3D t-SNE map to see the distributions of the marker proteins.

Usage

```r
tsneVisualization(protein.data, markerProteins, dims, theta, perplexity)
```

Arguments

- `protein.data`: data.frame; fractionated proteomics data
- `markerProteins`: character; robust marker proteins, gene symbols, that are present in the given data and overlapped with package’s marker protein list.
- `dims`: integer; dimensionality
- `theta`: numeric; Speed/accuracy trade-off, increase for less accuracy
- `perplexity`: integer; Perplexity parameter

Value

`tsneMap.df`

Examples

```r
{
  df <- loadData(SubCellBarCode::hcc827Ctrl)
  c.prots <- calculateCoveredProtein(rownames(df), markerProteins[,1])
  set.seed(21)
  tsneMap.df <- tsneVisualization(protein.data = df,
                                   markerProteins = c.prots[1:20],
                                   dims = 2, theta = c(0.4), perplexity = c(5))
}
```
Index

* datasets
 hcc827Ctrl, 11
 hcc827CtrlPSMCount, 11
 hcc827exon, 12
 hcc827GEF, 13
 hcc827GEFClass, 13
 hcc827GefPSMCount, 14
 markerProteins, 15

 applyThresholdCompartment, 2
 applyThresholdNeighborhood, 3

 calculateCoveredProtein, 4
 calRowMean, 5
 candidateRelocatedProteins, 6
 compareCls, 7
 computeThresholdCompartment, 8
 computeThresholdNeighborhood, 9
 convert2symbol, 10

 hcc827Ctrl, 11
 hcc827CtrlPSMCount, 11
 hcc827exon, 12
 hcc827GEF, 13
 hcc827GEFClass, 13
 hcc827GefPSMCount, 14

 loadData, 14

 markerProteins, 15
 markerQualityControl, 15
 mergeCls, 16
 mergeProbability, 17

 plotBarcode, 18
 plotMultipleProtein, 20

 replacePrediction, 20

 sankeyPlot, 21
 sumProbability, 22

svmClassification, 23
svmExternalData, 24
tsneVisualization, 25