Package ‘SPLINTER’

May 4, 2024

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Splice Interpreter of Transcripts</td>
</tr>
<tr>
<td>Version</td>
<td>1.30.0</td>
</tr>
<tr>
<td>Date</td>
<td>2024-04-24</td>
</tr>
</tbody>
</table>

URL https://github.com/dianalow/SPLINTER/

BugReports https://github.com/dianalow/SPLINTER/issues

Description

Provides tools to analyze alternative splicing sites, interpret outcomes based on sequence information, select and design primers for site validation and give visual representation of the event to guide downstream experiments.

License GPL-2

LazyData TRUE

Depends R (>= 3.6.0), grDevices, stats

Imports graphics, ggplot2, seqLogo, Biostrings, pwalign, biomaRt, GenomicAlignments, GenomicRanges, GenomicFeatures, Gviz, IRanges, S4Vectors, GenomeInfoDb, utils, plyr, stringr, methods, BSgenome.Musculus.UCSC.mm9, googleVis

biocViews ImmunoOncology, GeneExpression, RNASeq, Visualization, AlternativeSplicing

Collate primerpcr.R main_splinter.R

Encoding UTF-8

RoxygenNote 7.3.1

VignetteBuilder knitr

Suggests txdbmaker, BiocStyle, knitr, rmarkdown

git_url https://git.bioconductor.org/packages/SPLINTER

git_branch RELEASE_3_19

git_last_commit 29fb995

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19
Description

Acceptor site mammalian frequency matrices for GT-AG pairs from SpliceDB

Usage

data("acceptor.m")

Format

The format is: num [1:4, 1:15] 9 31.03 12.5 42.36 8.44 ... - attr(*, "dimnames")=List of 2 ..$: chr [1:4] "A" "C" "G" "T" ..$: chr [1:15] "V1" "V2" "V3" "V4" ...

Source

http://www.softberry.com/spldb/SpliceDB.html

References

Examples

data(acceptor.m)

Description

Adds annotation to extractSpliceEvents object (if not present)

Usage

addEnsemblAnnotation(data, species = "hsapiens")
annotateEvents

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>extractSpliceEvents object</td>
</tr>
<tr>
<td>species</td>
<td>character. biomaRt species passed to retrieve annotation. Common species include: 'hsapiens','mmusculus'</td>
</tr>
</tbody>
</table>

Value

extractSpliceEvents object with annotated genes under $geneSymbol

Author(s)

Diana Low

See Also

http://asia.ensembl.org/info/data/biomart/biomart_r_package.html#biomartexamples

Examples

data_path<-system.file("extdata",package="SPLINTER")
splice_data<-extractSpliceEvents(data=paste(data_path,"/skipped_exons.txt",sep=""))
#splice_data<-addEnsemblAnnotation(data=splice_data,species="mmusculus")

annotateEvents annotateEvents

Description

Gives detailed description of splicing event in terms of splicing outcome post translation. Currently supports exon skipping and intron retention events.

Usage

annotateEvents(
 thedata,
 db,
 bsgenome,
 outputdir,
 full_output = FALSE,
 output_prefix = "results"
)
callPrimer3

Arguments

- `thedata`: list. output of `extractSpliceEvents`.
- `db`: TxDb object
- `bsgenome`: BSGenome object
- `outputdir`: character. relative output directory to current location.
- `full_output`: logical. writes out detailed text report and generate figures.
- `output_prefix`: character. text prefix for `full_output` files.

Value

List containing information on (1) data.frame with splicing regions (2) splice event type.

Author(s)

Diana LOW

callPrimer3

callPrimer3

Description

Call primer3 for a given set of DNAstringSet object.

Usage

```r
callPrimer3(
  seq,
  size_range = "150-500",
  Tm = c(57, 59, 62),
  name = "Primer1",
  primer3 = "primer3-2.3.7/bin/primer3_core",
  thermo.param = "primer3-2.3.7/src/primer3_config/",
  sequence_target = NULL,
  settings = "primer3-2.3.7/primer3web_v4_0_0_default_settings.txt"
)
```

Arguments

- `seq`: DNAString object, one DNA string for the given amplicon
- `size_range`: default: '151-500'
- `Tm`: melting temperature parameters default:c(55,57,58)
- `name`: name of the amplicon in chr_start_end format
- `primer3`: primer3 path
- `thermo.param`: thermodynamic parameters folder
sequence_target
 If one or more targets is specified then a legal primer pair must flank at least one of them.
settings text file for parameters

Details
 modified to include SEQUENCE_TARGET as an option

Value
 data.frame of designed primers and parameters

Author(s)
 Altuna Akalin’s modified Arnaud Krebs’ original function further modified here by Diana Low

Examples
 ### NOT RUN ###
 # primer_results<-callPrimer3(seq="")

checkPrimer

checkPrimer

Description
 checkPrimer

Usage
 checkPrimer(pp, genome, roi = NULL)

Arguments
 pp data.frame defining primers, or output of callPrimer3. minimal columns = PRIMER_LEFT_SEQUENCE,PRIMER_RIGHT_SEQUENCE
 genome BSgenome object
 roi makeROI object

Value
 list of GRanges with primer locations

Author(s)
 Diana Low
Examples

```r
# create a primer pair
roi
primer_pair <- data.frame(PRIMER_LEFT_SEQUENCE="agctttgaaattggagctgac",
                           PRIMER_RIGHT_SEQUENCE="cttagaaacaaggaatcc",
                           stringsAsFactors=FALSE)
```

Description

compatible_cds

Examples

```r
data(compatible_cds)
## maybe str(compatible_cds) ; plot(compatible_cds) ...
```

Description

compatible_tx

Examples

```r
data(compatible_tx)
## maybe str(compatible_tx) ; plot(compatible_tx) ...
```

Description

donor.m

Description

Donor site mammalian frequency matrices for GT-AG pairs from SpliceDB

Usage

```r
data("donor.m")```
Format

The format is: num [1:4, 1:9] 34.1 36.2 18.3 11.4 60.4 ... - attr(*, "dimnames")=List of 2 ..$ : chr [1:4] "A" "C" "G" "T" ..$ : chr [1:9] "V1" "V2" "V3" "V4" ...

Source

http://www.softberry.com/spldb/SpliceDB.html

References


Examples

data(donor.m)

eventOutcomeCompare

eventOutcomeCompare

description

Compresses two sequences and gives differences if there's a switch from 1->2 if seq2 is NULL, assume seq1 is a list of length 2 to compare

Usage

eventOutcomeCompare(
  seq1,
  seq2 = NULL,
  genome,
  direction = TRUE,
  fullseq = TRUE,
  verbose = FALSE
)

Arguments

seq1
seq2
genome
direction
fullseq
verbose

GRangesList
GRangesList
BSGenome object
logical. Report direction of sequence change.
logical. Report full sequences.
logical. turn messages on/off.
Value

list containing
(1) tt: PairwiseAlignmentsSingleSubject pairwise alignment
(2) eventtypes: string detailing primary event classification

Author(s)

Diana LOW

Examples

suppressMessages(library(BSgenome.MmuscusLUCSC.mm9))
bsgenome<-BSgenome.MmuscusLUCSC.mm9
eventOutcomeCompare(seq1=compatible_cds$hits[[1]],seq2=region_minus_exon,
genome=bsgenome,direction=TRUE)

Description

translates sequences, reports if NMD or NTC

Usage

eventOutcomeTranslate(
  seq1,
  genome,
  direction = FALSE,
  fullseq = TRUE,
  verbose = FALSE
)

Arguments

seq1 GRangesList
genome BSGenome object
direction logical. Report direction of sequence change.
fullseq logical. Output full AA sequence.
verbose logical. turn messages on/off.

Value

list of translated sequences
Author(s)

Diana LOW

Examples

```r
suppressMessages(library(BSgenome.Mmusculus.UCSC.mm9))
bsgenome<-BSgenome.Mmusculus.UCSC.mm9
translation_results<-eventOutcomeTranslate(compatible_cds, genome=bsgenome,
direction=TRUE)
```

Description

eventPlot

Usage

```r
eventPlot(
 transcripts,
 roi_plot = NULL,
 bams = c(),
 names = c(),
 annoLabel = c("Gene A"),
 rspan = 1000,
 pfam_dom = NULL,
 showAll = TRUE
)
```

Arguments

- **transcripts**: GRanges object
- **roi_plot**: GRanges object region to plot
- **bams**: character vector of bam file locations
- **names**: character vector of name labels
- **annoLabel**: character. annotation label
- **rspan**: integer or NULL. number of basepairs to span from roi. if NULL, will consider whole gene of roi
- **pfam_dom**: optional GRanges object of PFAM domains from UCSC Tables.
- **showAll**: logical. TRUE = display splice junctions of entire view or FALSE = just roi.

Value

a Gviz plot of genomic region
### Description

extend the span of the current ROI by n number of up/downstream exon(s) by modifying roi_range within the makeROI object while retaining legacy sites by keeping $roi and $flank

### Usage

```
extendROI(roi, tx, up = 0, down = 0, type = 1)
```

### Arguments

- **roi**: makeROI object
- **tx**: GRangesList transcript list to pull regions from
- **up**: integer. number of exons to extend upstream
- **down**: integer. number of exons to extend downstream
- **type**: integer. 1=full cassette, 2=flank only

### Value

makeROI object with modified ranges

### Examples

```
extendROI(roi, valid_tx, up=1)
```
extractSpliceEvents  

Description

Extracts the location of target, upstream and downstream splice sites Used for calculations and genome visualizations

Usage

```r
evaluateSpliceEvents(
 data = NULL,
 filetype = "mats",
 splicetype = "SE",
 fdr = 1,
 inclusion = 1,
 start0 = TRUE
)
```

Arguments

- **data**: character. path to file
- **filetype**: character. type of splicing output. c('mats','custom'). see Details.
- **splicetype**: character. c('SE', 'RI', 'MXE', 'A5SS', 'A3SS')
- **fdr**: numeric. false discovery rate filter range [0,1]
- **inclusion**: numeric. splicing inclusion range, takes absolute value
- **start0**: boolean 0-base start

Details

filetype 'custom' should provide a 9-column tab-delimited text file with the following columns: ID (Ensembl gene id), Symbol (gene name), chr, strand, exonStart, exonEnd, exon2Start, exon2End, upstreamStart, upstreamEnd, downstreamStart, downstreamEnd eg. ENSG0000012345 chr1 + 3 4 5 6 1 2 7 8

Value

list containing information on
  (1) original file type
  (2) splice event type
  (3) data.frame with splicing regions

Author(s)

Diana Low
extractSpliceSites

See Also

http://rnaseq-mats.sourceforge.net/user_guide.htm for MATS file definition

Examples

data_path <- system.file("extdata", package="SPLINTER")
splice_data <- extractSpliceEvents(data=paste(data_path, "/skipped_exons.txt", sep=""))

extractSpliceSites

Description

Extracts and formats to bed the location of target, upstream and downstream splice sites

Usage

extractSpliceSites(
  df,
  target = "SE",
  site = "donor",
  motif_range = c(-3, 6),
  start0 = TRUE
)

Arguments

df extractSpliceEvents object

  target the target site to extract. See Details.

  site character donor or acceptor

  motif_range numeric vector of splice position to extract

  start0 boolean 0-base start

Details

target: the site to extract the sequence from. It can be either the event in question (SE, RI, MXE - first exon, MXE2 - second exon, A5SSlong, A5SSshort, A3SSlong, A3SSshort, upstream or downstream). If this function is used in conjunction with shapiroDonor or shapiroAcceptor to compute scores, then most likely it will be run twice - once for the event, and the other either up- or downstream as a comparison.

Value

GRanges object
findCompatibleEvents

Author(s)
Diana Low

See Also
http://rnaseq-mats.sourceforge.net/user_guide.htm for MATS file definition

Examples
data_path<-system.file("extdata",package="SPLINTER")
splice_data<-extractSpliceEvents(data=paste(data_path,"/skipped_exons.txt",sep=""))
splice_sites<-extractSpliceSites(splice_data,target="SE")

findCompatibleEvents findCompatibleEvents

Description
Which transcript contains the event? Each event has 2 possibilities, as long as the transcript fulfills
each one, it passes the test Has to be exact (inner junctions)

Usage
findCompatibleEvents(tx, tx2 = NULL, roi, sequential = TRUE, verbose = FALSE)

Arguments
  tx   GRangesList object of transcripts
  tx2  optional GRangesList object of transcripts if tx is list of cds
  roi  makeROI object containing event information
  sequential logical. Exons have to appear sequentially to be considered compatible
  verbose logical. Printouts and messages.

Details
Seperates into event/region1 and 2 for the alternative case

Value
list of length 4
(1) GRangesList
(2) Hits status [c]=coding; [nc]=non-coding
(3) ct - compatible transcripts
(4) tt - total transcripts
**findCompatibleExon**

**Author(s)**
Diana Low

**Examples**

```r
compatible_cds <- findCompatibleEvents(valid_cds, roi=roi, verbose=TRUE)
```

---

**Description**

Finds compatible exon in annotation with the one present in roi object

**Usage**

```r
findCompatibleExon(tx, roi, verbose = FALSE)
```

**Arguments**

- `tx` GRangesList object of transcripts
- `roi` `makeROI` object containing event information
- `verbose` logical. printouts and messages.

**Value**

list of length 3
- (1) GRangesList hits
- (2) Number of transcripts
- (3) Original number of input transcripts

**Author(s)**
Diana Low

**Examples**

```r
compatible_exons <- findCompatibleExon(valid_cds, roi)
```
findExactOverlaps

Description

Internal function similar to findSpliceOverlaps but only preserves internal flanks

Usage

findExactOverlaps(query, subject, sequential = FALSE, verbose = FALSE)

Arguments

query
subject
sequential
verbose

GRanges object
GRanges object
logical. TRUE if exons are sequential.
logical. report intermediate output

Value

Hits object

Author(s)

Diana Low

findTermination

Description

Internal function to find the first stop codon that occurs in the AA sequence, returns their position and the resulting truncated protein

Usage

findTermination(s1)

Arguments

s1

character. protein sequence
**findTX**

**Value**

list containing
(1) stop1 : stop position
(2) s1 : sequence truncated to first stop

**Author(s)**

Diana LOW

---

**Description**

Given an ENSEMBL id, find all transcripts that matches id

**Usage**

\[
\text{findTX}(id, db, tx, valid = \text{FALSE}, \text{verbose} = \text{FALSE})
\]

**Arguments**

- **id**: character. transcript identification (currently ENSEMBL gene names)
- **db**: TxDb object
- **tx**: GRangesList
- **valid**: logical. check if in multiples of 3 [TRUE] for CDS translation.
- **verbose**: logical. turn messages on/off.

**Value**

GRangesList

**Author(s)**

Diana Low

**Examples**

\[
\text{valid cds} \leftarrow \text{findTX}(id=\text{splice data}\text{data[2,]}\text{ID}, tx=\text{thecds}, db=\text{txdb}, valid=\text{FALSE})
\]
getPCRsizes

Description
returns length of product given a GRanges span and GRangesList of transcripts

Usage
getPCRsizes(pcr_span, txlist, verbose = FALSE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcr_span</td>
<td>GRanges object</td>
</tr>
<tr>
<td>txlist</td>
<td>GRangesList object</td>
</tr>
<tr>
<td>verbose</td>
<td>logical. report intermediate output.</td>
</tr>
</tbody>
</table>

Value
data.frame of transcript names with detected sizes in basepairs

Author(s)
Diana Low

Examples
suppressMessages(library(BSgenome.Mmusculus.UCSC.mm9))
bsgenome< BSgenome.Mmusculus.UCSC.mm9
## create a primer pair
## for actual use, obtain primer pair from primer design (callPrimer3)
primer_pair <- data.frame(PRIMER_LEFT_SEQUENCE=agctttgaattgagctgac,
PRIMER_RIGHT_SEQUENCE=cttagaaagaacaggaaatcc,
stringsAsFactors=FALSE)

## confirm location
cp< checkPrimer(primer_pair,bsgenome,roi)
cp

## get the PCR sizes
pcr_result1 <- getPCRsizes(cp, theexons)
### getRegionDNA

**Description**

get DNA sequence give a region of interest

**Usage**

```r
getRegionDNA(roi, genome, introns = FALSE)
```

**Arguments**

- `roi`: makeROI object
- `genome`: BSgenome object
- `introns`: TRUE/FALSE. whether to include intronic (lowercase) DNA. By default returns only exonic (uppercase) DNA.

**Value**

list of
- (1) DNA sequence
- (2) Junction start (for primer design)

**Author(s)**

Diana Low

**Examples**

```r
suppressMessages(library(BSgenome.Mmusculus.UCSC.mm9))
bsgenome<-BSgenome.Mmusculus.UCSC.mm9
getRegionDNA(roi,bsgenome)
```

---

### insertRegion

**Description**

inserts a region (exon or intron) into roi object

**Usage**

```r
insertRegion(subject, roi)
```
Arguments

subject GrangesList
roi makeROI object containing region of interest (to insert). refer to makeROI().

Details

in the case of intron retention, replaces exon with intron retention range reduce() the GRanges in question

Value

GRanges object

Author(s)

Diana Low

Examples

# Inserts the exon defined in roi GRanges object from a GRanges/GRangesList
region_minus_exon
region_with_exon<-insertRegion(region_minus_exon,roi)

makeROI

makeROI

Description

Creates an object to store information about the splice site (region of interest) including flanking regions and alternative splice outcome

Usage

makeROI(df, type = "SE")

Arguments

df data.frame object from extractSpliceEvents
type type of splicing event c("SE","RI","MXE","A5SS","A3SS")

Value

a list containing
(1) type : splice type
(2) name : ID of transcript
(3) roi : GRanges object of splice site
(4) flank : GRanges object of flanking exons of splice site
(5) roi_range : GRangesList of splice site and it’s alternative outcome based on type
**makeUniqueIDs**

**Author(s)**
Diana Low

**Examples**

```r
single_record <- splice_data$data[which(grepl("Prmt5", splice_data$data$Symbol)),]
roi <- makeROI(single_record, type="SE")
```

**Description**

Makes unique ID names from event location

**Usage**

```r
makeUniqueIDs(ddata)
```

**Arguments**

`ddata` extractSpliceEvents object

**Value**

original extractSpliceEvents list object with unique ID appended to data accessor

**Author(s)**
Diana Low

**Examples**

```r
data_with_id <- makeUniqueIDs(splice_data)
```
**matchExons**

**Description**
Internal function to help match the inner coordinates of a 2/3 cassette checks if reference and subject matches

**Usage**

\[
\text{matchExons}(\text{ref}, \text{subject})
\]

**Arguments**

- **ref**: GRanges object
- **subject**: GRanges object

**Value**

logical. check if exons match (TRUE) or not (FALSE)

**Author(s)**

Diana Low

---

**metaremove**

**Description**
helper function to remove metadata from GRanges object

**Usage**

\[
\text{metaremove}(x)
\]

**Arguments**

- **x**: GRanges or GRangesList

**Value**

GRanges or GRangesList
Description

Plots the sequence logo of a given set of FASTA sequences

Usage

plot_seqlogo(fasta_seq)

Arguments

- fasta_seq: DNAStringSet or path to fasta-formatted file

Value

sequence logo image

Author(s)

Diana Low

Examples

head(splice_fasta)
plot_seqlogo(Biostrings::DNAStringSet(splice_fasta$V2))
Description

primers designed using Primer3 for sample data

Usage

data("primers")

Format

A data frame with 5 observations on the following 28 variables.

i a numeric vector
PRIMER_LEFT_SEQUENCE  a character vector
PRIMER_RIGHT_SEQUENCE a character vector
PRIMER_LEFT_TM a numeric vector
PRIMER_RIGHT_TM a numeric vector
PRIMER_LEFT_pos a numeric vector
PRIMER_LEFT_len a numeric vector
PRIMER_RIGHT_pos a numeric vector
PRIMER_RIGHT_len a numeric vector
PRIMER_PAIR_PENALTY a numeric vector
PRIMER_LEFT_PENALTY a numeric vector
PRIMER_RIGHT_PENALTY a numeric vector
PRIMER_LEFT_GC_PERCENT a numeric vector
PRIMER_RIGHT_GC_PERCENT a numeric vector
PRIMER_LEFT_SELF_ANY_TH a numeric vector
PRIMER_RIGHT_SELF_ANY_TH a numeric vector
PRIMER_LEFT_SELF_END_TH a numeric vector
PRIMER_RIGHT_SELF_END_TH a numeric vector
PRIMER_LEFT_HAIRPIN_TH a numeric vector
PRIMER_RIGHT_HAIRPIN_TH a numeric vector
PRIMER_LEFT_END_STABILITY a numeric vector
PRIMER_RIGHT_END_STABILITY a numeric vector
PRIMER_LEFT_TEMPLATE_MISPRIMING a numeric vector
PRIMER_RIGHT_TEMPLATE_MISPRIMING a numeric vector
PRIMER_PAIR_COMPL_ANY_TH a numeric vector
PRIMER_PAIR_COMPL_END_TH a numeric vector
PRIMER_PAIR_PRODUCT_SIZE a numeric vector
PRIMER_PAIR_TEMPLATE_MISPRIMING a numeric vector
Value

Dataframe of primer design results

Examples

data(primers)

psiPlot

psiPlot

Description

Plots percentage spliced in (PSI) values in terms of inclusion levels

Usage

psiPlot(df = NULL, type = "MATS", sample_labels = c("Sample 1", "Sample 2"))

Arguments

df data.frame containing PSI values

type character. either 'MATS' output (will read in MATS headers) or 'generic' (provide 4 or 6 column data.frame)

sample_labels x-axis labels for the plot

Value

bar plot of PSI values

Author(s)

Diana Low

Examples

#we give inclusion and skipped numbers as reads
#this will be converted into percentages
df<-data.frame(inclusion1=c("6,4,6"),skipped1=c("10,12,12"),inclusion2=c("15,15,15"),
    skipped2=c("3,3,4"),stringsAsFactors = FALSE)
psiPlot(df,type='generic')
removeRegion

removeRegion

Description

removes a region (exon) from a GRanges or GRangesList

Usage

removeRegion(subject, roi)

Arguments

subject  
GRanges or GrangesList object

roi  
makeROI object containing GRanges range (to remove)

Value

GRanges object

Author(s)

Diana Low

# Removes the exon defined in roi GRanges object from a GRanges/GRangesList compatible_cds$hits[[1]]
region_minus_exon<-removeRegion(compatible_cds$hits[[1]],roi)
**Description**

helper function to remove metadata from GRanges object used within metaremove

**Usage**

remvalue(x)

**Arguments**

x: GRanges or GRangesList

**Value**

GRanges or GRangesList

---

**roi**

**Description**

roi

**Usage**

data("roi")

**Value**

List containing region of interest information

**Examples**

data(roi)
Description

Shapiro's score of acceptor site (range is from -13 [intron] to +1 [exon]) is: 100 * ((t1 - l1)/(h1 - l1) + (t2 - l2)/(h2 - l2))/2, where t1 is the sum of the best 8 of 10 percentages at positions -13 to -4, l1 is the sum of the lowest 8 of 10 percentages at position -13 to -4, h1 is the sum of the highest 8 of 10 percentages at positions -13 to -4, t2 is the sum of percentages at positions -3 to +1, l2 is the sum of the lowest percentages at positions -3 to +1, and h2 is the sum of the highest percentages at positions -3 to +1

Usage

```r
shapiroAcceptor(reference_fasta, target_fasta)
```

Arguments

- `reference_fasta` vector of strings or DNASTringSet of reference splice list
- `target_fasta` vector of strings or DNASTringSet of fasta to score

Value

data.frame with Shapiro scores

Author(s)

Diana Low

See Also

http://www.softberry.com/spldb/SpliceDB.html

Examples

```r
library(BSgenome.Musculus.UCSC.mm9)
bsgenome <- BSgenome.Musculus.UCSC.mm9
data_path<-system.file("extdata",package="SPLINTER")
splice_data<extractSpliceEvents(data=paste(data_path,"/skipped_exons.txt",sep=""))
splice_sites<extractSpliceSites(splice_data,site="acceptor")
acceptor.ss<-getSeq(bsgenome,splice_sites)
##sacceptor<-shapiroAcceptor(acceptor.m,acceptor.ss)
```
**shapiroDensity**

Description

convenience function for plotting Shapiro score density

Usage

```
shapiroDensity(ctrl_scores, treat_scores, sample = c(1, 2))
```

Arguments

- `ctrl_scores`: output of shapiroDonor or shapiroAcceptor
- `treat_scores`: output of shapiroDonor or shapiroAcceptor
- `sample`: samplenames

Value

density plot of Shapiro scores

Author(s)

Diana Low

**shapiroDonor**

Description

Shapiro and Senapathy (1987) have developed a method to score the strength of a splice site based on percentages of each nucleotide at each position. Shapiro’s score of donor site (range is from -3 [exon] to +7 [intron]) is: 100 * (t - min)/(max - min), where t is the sum of percentages at positions -3 to +7, min is the sum of the lowest percentages at positions -3 to +7, and max is the sum of the highest percentages at positions -3 to +7.

Usage

```
shapiroDonor(reference_fasta, target_fasta)
```

Arguments

- `reference_fasta`: vector of strings or DNAStringSet of reference splice list
- `target_fasta`: vector of strings or DNAStringSet of fasta to score
**splice_data**

### Value

data.frame with Shapiro scores

### Author(s)

Diana Low

### See Also

http://www.softberry.com/spldb/SpliceDB.html

### Examples

```r
library(BSgenome.Musculus.UCSC.mm9)
bsgenome <- BSgenome.Musculus.UCSC.mm9
data_path<-system.file("extdata",package="SPLINTER")
splice_data<-extractSpliceEvents(data=paste(data_path,"/skipped_exons.txt",sep=""))
splice_sites<-extractSpliceSites(splice_data)
donor.ss<-getSeq(bsgenome,splice_sites)
##sdonor<-shapiroDonor(donor.m,donor.ss)
```

```r
splice_data
splice_data
```

### Description

splice_data

### Usage

data("splice_data")

### Value

List containing splice event file information

### Examples

data(splice_data)
splice_fasta

Description
splice_fasta

Usage
data("splice_fasta")

Format
A data frame with 0 observations on the following 2 variables.

V1  a numeric vector
V2  a numeric vector

Value
Dataframe of region and fasta sequence

Examples
data(splice_fasta)

---

splitPCRhit

Description
splits the PCR alignment into the two AS conditions

Usage
splitPCRhit(res, hitlist)

Arguments

res result from getPCRsizes
hitlist findCompatibleEvents object

Value
list of 2 data.frame objects with isoform name (ID) and length of PCR product (bp) matching Type 1 or Type 2 transcripts
Author(s)
Diana Low

Examples

```r
as getPCRsizes gives you all PCR bands when the primers are used,
splitPCRhit will determine which bands are relevant to the target
relevant_pcr_bands<-splitPCRhit(pcr_result1,compatible_tx)
```

---

datathexons

datathexons

datathexons
valid_cds

Description
valid_cds

Usage
data("valid_cds")

Value
GRangesList

Examples
data(valid_cds)

data(valid_cds)

valid_tx

Description
valid_tx

Value
GRangesList

Examples
data(valid_tx)
## maybe str(valid_tx) ; plot(valid_tx) ...
Index

* datasets
  acceptor.m, 3
  compatible_cds, 7
  compatible_tx, 7
  donor.m, 7
  pcr_result1, 23
  primers, 24
  region_minus_exon, 26
  roi, 27
  splice_data, 30
  splice_fasta, 31
  thecds, 32
  theexons, 32
  valid_cds, 33
  valid_tx, 33

* internal
  findExactOverlaps, 16
  findTermination, 16
  matchExons, 22
  metaremove, 22
  remvalue, 27

acceptor.m, 3
addEnsemblAnnotation, 3
annotateEvents, 4

callPrimer3, 5, 6
checkPrimer, 6
compatible_cds, 7
compatible_tx, 7

donor.m, 7

eventOutcomeCompare, 8
eventOutcomeTranslate, 9
eventPlot, 10
extendROI, 11
extractSpliceEvents, 3, 4, 12, 20
extractSpliceSites, 13
findCompatibleEvents, 14, 31
findCompatibleExon, 15
findExactOverlaps, 16
findTermination, 16
findTX, 17

getPCRsizes, 18, 31
getRegionDNA, 19

insertROI, 19

makeROI, 6, 11, 14, 15, 19, 20, 20, 26
makeUniqueIDs, 21
matchExons, 22
metaremove, 22

pcr_result1, 23
plot_seqlogo, 23
primers, 24
psiPlot, 25

region_minus_exon, 26
removeRegion, 26
remvalue, 27
roi, 27

shapiroAcceptor, 13, 28
shapiroDensity, 29
shapiroDonor, 13, 29
splice_data, 30
splice_fasta, 31
splitPCRhit, 31

thecds, 32
theexons, 32

valid_cds, 33
valid_tx, 33