Package ‘SLqPCR’

March 26, 2024

Type Package
Title Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH
Version 1.68.0
Date 2007-19-04
Author Matthias Kohl
Maintainer Matthias Kohl <kohl@sirs-lab.com>
Description Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH
Depends R(>= 2.4.0)
Imports stats
Suggests RColorBrewer
License GPL (>= 2)
biocViews MicrotitrePlateAssay, qPCR
git_url https://git.bioconductor.org/packages/SLqPCR
git_branch RELEASE_3_18
git_last_commit 1007225
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-25

R topics documented:

SLqPCR-package ... 2
geneStabM ... 2
gemMean ... 3
normPCR .. 4
relQuantPCR .. 5
selectHKgenes ... 6
SLqPCRdata ... 7
vandesompele ... 8
SLqPCR-package

Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH

Description

Functions for analysis of real-time quantitative PCR data at SIRS-Lab GmbH

Details

Package: SLqPCR
Type: Package
Version: 1.0.0
Date: 2007-01-02
Depends: R(>= 2.4.0), stats, RColorBrewer
License: GPL (version 2 or later)

require(SLqPCR)

Author(s)

Dr. Matthias Kohl (SIRS-Lab GmbH) http://www.sirs-lab.com
Maintainer: Dr. Matthias Kohl <kohl@sirs-lab.com>

References

geneStabM

Gene expression stability value M

Description

Computation of the gene expression stability value M for real-time quantitative RT-PCR data. For more details we refer to Vandesompele et al. (2002).

Usage

geneStabM(relData, na.rm = FALSE)
geomMean

Arguments

relData matrix or data.frame containing real-time quantitative RT-PCR data
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.

Details

The gene expression stability value M is defined as the average pairwise normalization factor; i.e., one needs to specify data from at least two genes. For more details see Vandesompele et al. (2002).

Value

numeric vector with gene expression stability values

Author(s)

Dr. Matthias Kohl (SIRS-Lab GmbH) <kohl@sirs-lab.com>

References

geomMean Geometric Mean

Description

Computation of the geometric mean.

Usage

gemMean(x, na.rm = FALSE)

Arguments

x numeric vector of non-negative Reals
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.

Details

The computation of the geometric mean is done via \(\prod(x)^{1/\text{length}(x)} \).
normPCR

Value

geometric mean

Author(s)

Dr. Matthias Kohl (SIRS-Lab GmbH) <kohl@sirs-lab.com>

Description

This function can be used to normalize real-time quantitative RT-PCR data.

Usage

normPCR(relData, HKs, method = "Vandesompele", na.rm = FALSE)

Arguments

relData matrix or data.frame containing relative quantities (genes in columns)
HKs integer, column numbers of housekeeping genes
method method for the computation
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.

Details

This function can be used to normalize real-time quantitative RT-PCR data. The default method "Vandesompele" was proposed by Vandesompele et al. (2002).

Currently, only the method by Vandesompele et al. (2002) is implemented.

Value

Normalized expression data

Author(s)

Dr. Matthias Kohl (SIRS-Lab GmbH) <kohl@sirs-lab.com>

References

Examples

data(SLqPCRdata)
relData <- apply(SLqPCRdata, 2, relQuantPCR)
geneStabM(relData[,c(3,4)])
exprData <- normPCR(SLqPCRdata, c(3,4))

relQuantPCR

Compute relative expression values for realtime quantitative RT-PCR data

Description

Compute relative expression values for realtime quantitative RT-PCR data based on Ct or take-off values, respectively. The computations use the PCR efficiency.

Usage

relQuantPCR(x, E = 2, na.rm = FALSE)

Arguments

x numeric vector containing raw data
E PCR efficiency
na.rm a logical value indicating whether NA values should be stripped before the computation proceeds.

Value

vector of relative expression values w.r.t. specified PCR efficiency.

Author(s)

Dr. Matthias Kohl (SIRS-Lab GmbH) <kohl@sirs-lab.com>

References

selectHKgenes

Selection of reference/housekeeping genes

Description

This function can be used to determine a set of reference/housekeeping (HK) genes for gene expression experiments.

Usage

selectHKgenes(relData, method = "Vandesompele", minNrHK = 2, geneSymbol, trace = TRUE, na.rm = FALSE)

Arguments

- relData: matrix or data.frame containing relative expression values
- method: method to compute most stable genes
- minNrHK: minimum number of HK genes that should be considered
- geneSymbol: gene symbols
- trace: logical, print additional information
- na.rm: a logical value indicating whether NA values should be stripped before the computation proceeds.

Details

This function can be used to determine a set of reference/housekeeping (HK) genes for gene expression experiments. The default method "Vandesompele" was proposed by Vandesompele et al. (2002).

Currently, only the method by Vandesompele et al. (2002) is implemented.

Vandesompele et al. (2002) propose a cut-off value of 0.15 for the pairwise variation. Below this value the inclusion of an additional housekeeping gene is not required.

Value

If method = "Vandesompele" a list with the following components is returned

- ranking: ranking of genes from best to worst where the two most stable genes cannot be ranked
- variation: pairwise variation during stepwise selection
- meanM: average expression stability M

Author(s)

Dr. Matthias Kohl (SIRS-Lab GmbH) <kohl@sirs-lab.com>
SLqPCRdata

References

Examples
data(vandesompele)
res.BM <- selectHKgenes(vandesompele[1:9,], method = "Vandesompele", geneSymbol = names(vandesompele), minNrHK = 2)

SLqPCRdata SIRS-Lab inhouse qPCR data

Description

This data is part of a SIRS-Lab inhouse real-time quantitative PCR experiment.

Usage
data(SLqPCRdata)

Format

A data frame with 16 observations on the following 4 variables.

Gene1 a numeric vector, average take-off values of gene 1
Gene2 a numeric vector, average take-off values of gene 2
HK1 a numeric vector, average take-off values of housekeeper 1
HK2 a numeric vector, average take-off values of housekeeper 2

Details

The row names of this data set indicate the probes which were investigated. The take-off values are mean values of three replicates.

Source

www.sirs-lab.com

References

www.sirs-lab.com

Examples

data(SLqPCRdata)
SLqPCRdata
Description

This data set was used in Vandesompele et al (2002) to demonstrate normalization of real-time quantitative RT-PCR data by geometric averaging of housekeeping genes.

Usage

data(vandesompele)

Format

A data frame with 85 observations on the following 10 variables which stand for expression data of ten commonly used housekeeping genes

- ACTB actin, beta
- B2M beta-2-microglobulin
- GAPD glyceraldehyde-3-phosphate dehydrogenase
- HMBS hydroxymethylbilane synthase
- HPRT1 hypoxanthine phosphoribosyltransferase 1
- RPL13A ribosomal protein L13a
- SDHA succinate dehydrogenase complex subunit A
- TBP TATA box binding protein
- UBC ubiquitin C
- YWHAZ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide

Details

The row names of this data set indicate the various human tissues which were investigated.

- BM 9 normal bone-marrow samples
- POOL 9 normal human tissues from pooled organs (heart, brain, fetal brain, lung, trachea, kidney, mammary gland, small intestine and uterus)
- FIB 20 short-term cultured normal fibroblast samples from different individuals
- LEU 13 normal leukocyte samples
- NB 34 neuroblastoma cell lines (independently prepared in different labs from different patients)

Source

The data set was obtained from http://genomebiology.com/content/supplementary/gb-2002-3-7-research0034-s1.txt
References

Examples

data(vandesompele)
str(vandesompele)
rownames(vandesompele)
Index

* datasets
 SLqPCRdata, 7
 vandesompele, 8
* data
 geneStabM, 2
 geomMean, 3
 normPCR, 4
 relQuantPCR, 5
 selectHKgenes, 6
* package
 SLqPCR-package, 2
 vandesompele, 8