Package ‘SIMLR’

March 9, 2024

Version 1.28.0
Date 2023-09-25
Title Single-cell Interpretation via Multi-kernel LeaRning (SIMLR)
Depends R (>= 4.1.0),
Imports parallel, Matrix, stats, methods, Rcpp, pracma, RcppAnnoy, RSpectra
Suggests BiocGenerics, BiocStyle, testthat, knitr, igraph
Description Single-cell RNA-seq technologies enable high throughput gene expression measurement of individual cells, and allow the discovery of heterogeneity within cell populations. Measurement of cell-to-cell gene expression similarity is critical for the identification, visualization and analysis of cell populations. However, single-cell data introduce challenges to conventional measures of gene expression similarity because of the high level of noise, outliers and dropouts. We develop a novel similarity-learning framework, SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), which learns an appropriate distance metric from the data for dimension reduction, clustering and visualization.

Encoding UTF-8
License file LICENSE
URL https://github.com/BatzoglouLabSU/SIMLR
BugReports https://github.com/BatzoglouLabSU/SIMLR
biocViews ImmunoOncology, Clustering, GeneExpression, Sequencing, SingleCell
RoxygenNote 7.2.3
LinkingTo Rcpp
NeedsCompilation yes
VignetteBuilder knitr
git_url https://git.bioconductor.org/packages/SIMLR
git_branch RELEASE_3_18
git_last_commit e833718
git_last_commit_date 2023-10-24
Description

test dataset for SIMLR

Usage

data(BuettnerFlorian)

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Description
perform the SIMLR clustering algorithm

Usage
SIMLR(
 X,
 c,
 no.dim = NA,
 k = 10,
 if.impute = FALSE,
 normalize = FALSE,
 cores.ratio = 1
)

Arguments
X an (m x n) data matrix of gene expression measurements of individual cells or
and object of class SCESet
c number of clusters to be estimated over X
no.dim number of dimensions
k tuning parameter
if.impute should I transpose the input data?
normalize should I normalize the input data?
cores.ratio ratio of the number of cores to be used when computing the multi-kernel

Value
clusters the cells based on SIMLR and their similarities
list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters:
y = results of k-means clusterings, S = similarities computed by SIMLR, F = results from network
diffusion, ydata = data referring the the results by k-means, alphaK = clustering coefficients, execution.time = execution time of the present run, converge = iterative convergence values by T-SNE, LF = parameters of the clustering

Examples
data(BuettnerFlorian)
SIMLR(X = BuettnerFlorian$in_X, c = BuettnerFlorian$n_clust, cores.ratio = 0)
SIMLR_Estimate_Number_of_Clusters

SIMLR Estimate Number of Clusters

Description

estimate the number of clusters by means of two heuristics as discussed in the SIMLR paper

Usage

```r
SIMLR_Estimate_Number_of_Clusters(X, NUMC = 2:5, cores.ratio = 1)
```

Arguments

- **X**: an (m x n) data matrix of gene expression measurements of individual cells
- **NUMC**: vector of number of clusters to be considered
- **cores.ratio**: ratio of the number of cores to be used when computing the multi-kernel

Value

a list of 2 elements: K1 and K2 with an estimation of the best clusters (the lower values the better) as discussed in the original paper of SIMLR

Examples

```r
data(BuettnerFlorian)
SIMLR_Estimate_Number_of_Clusters(BuettnerFlorian$in_X,
    NUMC = 2:5,
    cores.ratio = 0)
```

SIMLR_Feature_Ranking

SIMLR Feature Ranking

Description

perform the SIMLR feature ranking algorithm. This takes as input the original input data and the corresponding similarity matrix computed by SIMLR

Usage

```r
SIMLR_Feature_Ranking(A, X)
```

Arguments

- **A**: an (n x n) similarity matrix by SIMLR
- **X**: an (m x n) data matrix of gene expression measurements of individual cells
SIMLR_Large_Scale

Value

a list of 2 elements: pvalues and ranking ordering over the n covariates as estimated by the method

Examples

```r
data(BuettnerFlorian)
SIMLR_Feature_Ranking(A = BuettnerFlorian$results$S, X = BuettnerFlorian$in_X)
```

Description

perform the SIMLR clustering algorithm for large scale datasets

Usage

```r
SIMLR_Large_Scale(X, c, k = 10, kk = 100, if.impute = FALSE, normalize = FALSE)
```

Arguments

- **X**
 - an (m x n) data matrix of gene expression measurements of individual cells or an object of class SCESet
- **c**
 - number of clusters to be estimated over X
- **k**
 - tuning parameter
- **kk**
 - number of principal components to be assessed in the PCA
- **if.impute**
 - should I transpose the input data?
- **normalize**
 - should I normalize the input data?

Value

clusters the cells based on SIMLR Large Scale and their similarities

list of 8 elements describing the clusters obtained by SIMLR, of which y are the resulting clusters:
- **y** results of k-means clusterings
- **S0** similarities computed by SIMLR
- **F** results from the large scale iterative procedure
- **ydata** data referring the the results by k-means
- **alphaK** clustering coefficients
- **val** distances from the k-nearest neighbour search
- **ind** indeces from the k-nearest neighbour search
- **execution.time** execution time of the present run

Examples

```r
data(ZeiselAmit)
resized = ZeiselAmit$in_X[, 1:340]
SIMLR_Large_Scale(X = resized, c = ZeiselAmit$n_clust, k = 5, kk = 5)
```
ZeiselAmit

test dataset for SIMLR large scale

Description

example dataset to test SIMLR large scale. This is a reduced version of the dataset from the work by Zeisel, Amit, et al.

Usage

data(ZeiselAmit)

Format

gene expression measurements of individual cells

Value

list of 6: in_X = input dataset as an (m x n) gene expression measurements of individual cells, n_clust = number of clusters (number of distinct true labels), true_labs = ground true of cluster assignments for each of the n_clust clusters, seed = seed used to compute the results for the example, results = result by SIMLR for the inputs defined as described, nmi = normalized mutual information as a measure of the inferred clusters compared to the true labels

Source

Index

BuettnerFlorian, 2

SIMLR, 3
SIMLR_Estimate_Number_of_Clusters, 4
SIMLR_Feature_Ranking, 4
SIMLR_Large_Scale, 5

ZeiselAmit, 6