Package ‘RNAseqCovarImpute’

May 30, 2024

Title Impute Covariate Data in RNA Sequencing Studies

Version 1.2.0

URL https://github.com/brennanhilton/RNAseqCovarImpute

BugReports https://github.com/brennanhilton/RNAseqCovarImpute/issues

Description
The RNAseqCovarImpute package makes linear model analysis for RNA sequencing read counts compatible with multiple imputation (MI) of missing covariates. A major problem with implementing MI in RNA sequencing studies is that the outcome data must be included in the imputation prediction models to avoid bias. This is difficult in omics studies with high-dimensional data. The first method we developed in the RNAseqCovarImpute package surmounts the problem of high-dimensional outcome data by binning genes into smaller groups to analyze pseudo-independently. This method implements covariate MI in gene expression studies by 1) randomly binning genes into smaller groups, 2) creating M imputed datasets separately within each bin, where the imputation predictor matrix includes all covariates and the log counts per million (CPM) for the genes within each bin, 3) estimating gene expression changes using `limma::voom` followed by `limma::lmFit` functions, separately on each M imputed dataset within each gene bin, 4) un-binning the gene sets and stacking the M sets of model results before applying the `limma::squeezeVar` function to apply a variance shrinking Bayesian procedure to each M set of model results, 5) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 6) adjusting P-values for multiplicity to account for false discovery rate (FDR). A faster method uses principal component analysis (PCA) to avoid binning genes while still retaining outcome information in the MI models. Binning genes into smaller groups requires that the MI and limma-voom analysis is run many times (typically hundreds). The more computationally efficient MI PCA...
method implements covariate MI in gene expression studies by 1) performing PCA on the log CPM values for all genes using the Bioconductor `PCAtools` package, 2) creating M imputed datasets where the imputation predictor matrix includes all covariates and the optimum number of PCs to retain (e.g., based on Horn’s parallel analysis or the number of PCs that account for >80% explained variation), 3) conducting the standard limma-voom pipeline with the `voom` followed by `lmFit` followed by `eBayes` functions on each M imputed dataset, 4) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 5) adjusting P-values for multiplicity to account for false discovery rate (FDR).

License GPL-3
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
VignetteBuilder knitr
biocViews RNASeq, GeneExpression, DifferentialExpression, Sequencing
Suggests BiocStyle, knitr, PCAtools, rmarkdown, tidyr, stringr, testthat (>= 3.0.0)
Depends R (>= 4.3.0)
Imports Biobase, BiocGenerics, BiocParallel, stats, limma, dplyr, magrittr, rlang, edgeR, foreach, mice
Config/testthat/edition 3
Collate 'RNAseqCovarImpute-package.R' 'combine_rubins.R'
 'combine_rubins_pca.R' 'example_DGE.R' 'example_data.R'
 'get_gene_bin_intervals.R' 'impute_by_gene_bin_helper.R'
 'impute_by_gene_bin.R' 'voom_sx_sy.R' 'lowess_all_gene_bins.R'
 'voom_master_lowess.R' 'limmavoom_imputed_data_list_helper.R'
 'limmavoom_imputed_data_list.R'
 'limmavoom_imputed_data_pca_helper.R'
 'limmavoom_imputed_data_pca.R'
git_url https://git.bioconductor.org/packages/RNAseqCovarImpute
git_branch RELEASE_3_19
git_last_commit 91c8004
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Brennan Baker [aut, cre] (>https://orcid.org/0000-0001-5459-9141<),
 Sheela Sathyanarayana [aut],
 Adam Szpiro [aut],
RNAseqCovarImpute-package

RNAseqCovarImpute: Impute Covariate Data in RNA Sequencing Studies

Description

The RNAseqCovarImpute package makes linear model analysis for RNA sequencing read counts compatible with multiple imputation (MI) of missing covariates. A major problem with implementing MI in RNA sequencing studies is that the outcome data must be included in the imputation prediction models to avoid bias. This is difficult in omics studies with high-dimensional data. The first method we developed in the RNAseqCovarImpute package surmounts the problem of high-dimensional outcome data by binning genes into smaller groups to analyze pseudo-independently. This method implements covariate MI in gene expression studies by 1) randomly binning genes into smaller groups, 2) creating M imputed datasets separately within each bin, where the imputation predictor matrix includes all covariates and the log counts per million (CPM) for the genes within each bin, 3) estimating gene expression changes using ‘limma::voom’ followed by ‘limma::lmFit’ functions, separately on each M imputed dataset within each gene bin, 4) un-binning the gene sets and stacking the M sets of model results before applying the ‘limma::squeezeVar’ function to apply a variance shrinking Bayesian procedure to each M set of model results, 5) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 6) adjusting P-values for multiplicity to account for false discovery rate (FDR). A faster method uses principal component analysis (PCA) to avoid binning genes while still retaining outcome information in the
MI models. Binning genes into smaller groups requires that the MI and limma-voom analysis is run many times (typically hundreds). The more computationally efficient MI PCA method implements covariate MI in gene expression studies by 1) performing PCA on the log CPM values for all genes using the Bioconductor ‘PCAtools’ package, 2) creating M imputed datasets where the imputation predictor matrix includes all covariates and the optimum number of PCs to retain (e.g., based on Horn’s parallel analysis or the number of PCs that account for >80%

Author(s)

Maintainer: Brennan Baker <brennanhilton@gmail.com> (ORCID)

Authors:

• Sheela Sathyanarayana
• Adam Szpiro
• James MacDonald
• Alison Paquette

See Also

Useful links:

• https://github.com/brennanhilton/RNAseqCovarImpute
• Report bugs at https://github.com/brennanhilton/RNAseqCovarImpute/issues

Description

Combines results from each imputed dataset using Rubin’s rules.

Usage

```
combine_rubins(
  DGE,
  model_results,
  predictor,
  covariate = NULL,
  robust = FALSE,
  winsor.tail.p = c(0.05, 0.1)
)
```
combine_rubins

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGE</td>
<td>A DGEList object.</td>
</tr>
<tr>
<td>model_results</td>
<td>Output from limmavoom_imputed_datalist.</td>
</tr>
<tr>
<td>predictor</td>
<td>Independent variable of interest, in the form of a linear model contrast. Must be a variable in voom_formula.</td>
</tr>
<tr>
<td>covariate</td>
<td>Arguments passed to limma::squeezeVar. If non-NULL, var.prior will depend on this numeric covariate. Otherwise, var.prior is constant.</td>
</tr>
<tr>
<td>robust</td>
<td>Arguments passed to limma::squeezeVar. Logical, should the estimation of df.prior and var.prior be robustified against outlier sample variances?</td>
</tr>
<tr>
<td>winsor.tail.p</td>
<td>Arguments passed to limma::squeezeVar. Numeric vector of length 1 or 2, giving left and right tail proportions of x to Winsorize. Used only when robust=TRUE.</td>
</tr>
</tbody>
</table>

Value

Dataframe with one row per gene containing coefficients standard errors, degrees of freedom, t-statistics, P-Values, and adjusted P-values from the limma-voom pipeline.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coef_combined</td>
<td>combined logFCs across the multiple imputed datasets using Rubin’s rules</td>
</tr>
<tr>
<td>SE_P</td>
<td>pooled standard error across the multiple imputed datasets using Rubin’s rules</td>
</tr>
<tr>
<td>SE_P_bayes</td>
<td>pooled standard error across the multiple imputed datasets using Rubin’s rules squeezed to global mean variance trend curve with limma-voom Bayesian procedure</td>
</tr>
<tr>
<td>df</td>
<td>limma-voom residual degrees of freedom adjusted for Rubin’s rules</td>
</tr>
<tr>
<td>df_bayes</td>
<td>limma-voom residual degrees of freedom adjusted for Rubin’s rules and Bayesian procedure</td>
</tr>
<tr>
<td>rubins_t</td>
<td>t-statistic = coef_combined divided by SE_P</td>
</tr>
<tr>
<td>rubins_t_bayes</td>
<td>t-statistic = coef_combined divided by SE_P_bayes</td>
</tr>
<tr>
<td>combined_p</td>
<td>p-value from two-sided t-distribution alpha = 0.05 using rubins_t</td>
</tr>
<tr>
<td>combined_p_bayes</td>
<td>p-value from two-sided t-distribution alpha = 0.05 using rubins_t_bayes</td>
</tr>
<tr>
<td>combined_p_adj</td>
<td>false discovery rate (FDR) adjusted combined_p</td>
</tr>
<tr>
<td>combined_p_adj_bayes</td>
<td>false discovery rate (FDR) adjusted combined_p_bayes</td>
</tr>
</tbody>
</table>

Examples

```r
data(example_data)
data(example_DGE)
intervals <- get_gene_bin_intervals(example_DGE, example_data, n = 10)
gene_bin_impute <- impute_by_gene_bin(example_data, intervals, example_DGE, m = 2)
```

describe combine_rubins_pca

combines results from each imputed dataset using Rubin’s rules.

Usage

combine_rubins_pca(gene, results_final, avg_df, m)

Arguments

gene The number gene in the DGE list.
results_final List with one element per gene storing coefficients and standard errors from limma-voom analysis.
avg_df The average df.total from limma-voom analysis across the m imputed datasets.
m Number of imputed data sets.

Value

Coefficient, standard error, and p-value combined across m imputed datasets.
example_data
Simulated dataset

Description

The exact code used to generate these data are found in the Example_Data_for_RNAseqCovarImpute vignette. In short, example_data contains 500 rows with data for variables x, y, and z, which are continuous normally distributed, and a and b, which are binary variables. Missigness was simulated for all variables other than x such that a complete case analysis would drop 24.2% of participants. example_DGE contains random count data from the Poisson distribution for 500 made up genes, ENS1-ENS500

Usage

data(example_data)

Format

eexample_data:
 data frame with 500 rows and 5 variables
 x continuous normally distributed
 y continuous normally distributed
 z continuous normally distributed
 a binary
 b binary ...

Value

Tibble with 500 rows of data for variables x, y, and z

Examples

data(example_data)

example_DGE
Simulated counts in DGE list

Description

The exact code used to generate these data are found in the Example_Data_for_RNAseqCovarImpute vignette. In short, example_data contains 500 rows with data for variables x, y, and z, which are continuous normally distributed, and a and b, which are binary variables. Missigness was simulated for all variables other than x such that a complete case analysis would drop 24.2% of participants. example_DGE contains random count data from the Poisson distribution for 500 made up genes, ENS1-ENS500
Usage

data(example_DGE)

Format

 example_DGE:
 A DGElist with 500 genes and 500 samples

Value

 DGElist for 500 made up genes, ENS1-ENS500

Examples

data(example_DGE)

get_gene_bin_intervals

get_gene_bin_intervals

Description

 Creates gene bins. Input DGE list, sample data, and 'n' number of individuals per genes. By
default, number of bins and genes per bin are set so that each bin has approximately 1 gene per 10
individuals in the data.

Usage

 get_gene_bin_intervals(DGE, data, n = 10)

Arguments

 DGE A DGEList object.
 data Sample data with one row per sample. Sample row order should match the col
 order in the DGEList.
 n Genes per bin are set so that each bin has approximately 1 gene per n individuals
 in the data.

Value

 Data frame with one row per gene bin. Columns indicate the start and end positions and the number
 of genes of each bin.
Examples

```r
data(example_data)
data(example_DGE)
intervals <- get_gene_bin_intervals(example_DGE, example_data, n = 10)
gene_bin_impute <- impute_by_gene_bin(example_data,
    intervals,
    example_DGE,
    m = 2
)
coef_se <- limmavoom_imputed_data_list(
    gene_intervals = intervals,
    DGE = example_DGE,
    imputed_data_list = gene_bin_impute,
    m = 2,
    voom_formula = "~x + y + z + a + b"
)
final_res <- combine_rubins(
    DGE = example_DGE,
    model_results = coef_se,
    predictor = "x"
)
```

Description

Loops through DGE list using the gene bin intervals from the "get_gene_bin_intervals" function and makes imputed datasets. For instance, if n = 100 and intervals contains 200 gene bin intervals, output will be a list of 200 sets of 100 imputed datasets. Each of the 200 sets are imputed using only the genes in one gene bin.

Usage

```r
impute_by_gene_bin(data, intervals, DGE, m, maxit = 10, BPPARAM = bpparam())
```

Arguments

- **data**: Sample data with one row per sample. Sample row order should match the col order in the DGEList.
- **intervals**: Output from get_gene_bin_intervals function. A dataframe where each row contains the start (first col) and end (second col) values for each gene bin interval.
- **DGE**: A DGEList object.
- **m**: Number of imputed data sets.
- **maxit**: Used by mice function.
- **BPPARAM**: A BiocParallelParam object
Value

A list of sets of n imputed datasets, one per gene bin.

Examples

```r
data(example_data)
data(example_DGE)

intervals <- get_gene_bin_intervals(example_DGE, example_data, n = 10)
gene_bin_impute <- impute_by_gene_bin(example_data, intervals,
                                      example_DGE,
                                      m = 2)

go coef_se <- limma_voom_imputed_data_list(
                                      gene_intervals = intervals,
                                      DGE = example_DGE,
                                      imputed_data_list = gene_bin_impute,
                                      m = 2,
                                      voom_formula = "~x + y + z + a + b"
)

final_res <- combine_rubins(
                          DGE = example_DGE,
                          model_results = coef_se,
                          predictor = "x"
)
```

Description

Loops through DGE list using the gene bin intervals from the "get_gene_bin_intervals" function and makes imputed datasets. For instance, if n = 100 and intervals contains 200 gene bin intervals, output will be a list of 200 sets of 100 imputed datasets. Each of the 200 sets are imputed using only the genes in one gene bin.

Usage

```r
impute_gene_bin_helper(i, intervals, cpm_all, data, m, maxit)
```

Arguments

- **intervals**: Output from get_gene_bin_intervals function. A dataframe where each row contains the start (first col) and end (second col) values for each gene bin interval.
- **data**: Sample data with one row per sample. Sample row order should match the column order in the DGEList.
limmvoom_imputed_data_list

m
Number of imputed data sets.
maxit
Used by mice function.
DGE
A DGEList object.
param
Arguments passed to BiocParallel::bpparam()

Value
A list of sets of n imputed datasets, one per gene bin.

Description
Loops through the imputed data list (output from "impute_by_gene_bin" function) and runs limma-voom RNA seq analysis.

Usage
limmvoom_imputed_data_list(
gene_intervals,
DGE,
imputed_data_list,
m,
voom_formula,
BPPARAM = bpparam()
)

Arguments
gene_intervals Output from get_gene_bin_intervals function. A dataframe where each row contains the start (first col) and end (second col) values for each gene bin interval.
DGE A DGEList object.
imputed_data_list Output from impute_by_gene_bin.
m Number of imputed data sets.
voom_formula Formula for design matrix.
BPPARAM A BiocParallelParam object

Value
A dataframe with coefficient, standard error, sigma, and residual degrees of freedom values from limma-voom gene expression analysis. One row per gene and one set of values per imputed dataset.
Examples

data(example_data)
data(example_DGE)
intervals <- get_gene_bin_intervals(example_DGE, example_data, n = 10)
gene_bin_impute <- impute_by_gene_bin(example_data,
 intervals,
 example_DGE,
 m = 2
)
coef_se <- limmavoom_imputed_data_list(
 gene_intervals = intervals,
 DGE = example_DGE,
 imputed_data_list = gene_bin_impute,
 m = 2,
 voom_formula = "~x + y + z + a + b"
)

final_res <- combine_rubins(
 DGE = example_DGE,
 model_results = coef_se,
 predictor = "x"
)

Description

Loops through the imputed data list (output from "impute_by_gene_bin" function) and runs limma-
voom RNA seq analysis.

Usage

limmavoom_imputed_data_list_helper(
 gene_bin,
 gene_intervals,
 DGE,
 imputed_data_list,
 m,
 voom_formula,
 sx_sy
)

Arguments

gene_intervals Output from get_gene_bin_intervals function. A dataframe where each row con-
tains the start (first col) and end (second col) values for each gene bin interval.
```r
limmavoom_imputed_data_pca

DGE  A DGEList object.
imputed_data_list  Output from impute_by_gene_bin.
m  Number of imputed data sets.
voom_formula  Formula for design matrix.

Value

A dataframe with coefficient, standard error, sigma, and residual degrees of freedom values from limma-voom gene expression analysis. One row per gene and one set of values per imputed dataset.

Description

Combines results from each imputed dataset using Rubin’s rules.

Usage

```r
limmavoom_imputed_data_pca(imp, DGE, voom_formula, BPPARAM = bpparam())
```  
Arguments

- `imp`  Imputed data from mice (mids object)
- `DGE`  A DGEList object.
- `voom_formula`  Formula for design matrix.
- `BPPARAM`  A BiocParallelParam object

Value

Dataframe with one row per gene. Columns contain coefficients, standard errors, and p-values from the limma-voom pipeline.

Examples

```r
data(example_data)
data(example_DGE)
pca_data = limma::voom(example_DGE)$E
p = PCAtools::pca(pca_data)
pcs = p$rotated[,1:78]
example_data = cbind(example_data, pcs)
imp = mice::mice(example_data, m=3)
mi_pca_res = limmavoom_imputed_data_pca(
 imp = imp,
 DGE = example_DGE,
 voom_formula = "-x + y + z + a + b"
)
```
Description

Runs limma-voom pipeline on one of the m imputed datasets and returns the coefficients, Bayesian moderated standard errors and degrees of freedom. This function used while looping through the m imputed datasets.

Usage

limmavoom_imputed_data_pca_helper(i, imp, DGE, voom_formula)

Arguments

i Number from 1-m
imp Imputed data from mice (mids object)
DGE A DGEList object.
voom_formula Formula for design matrix.

Value

A list with coefficients, standard errors, and total degrees of freedom values from limma-voom gene expression analysis.

Description

Loops through all bins and all M imputations, prepares DGE and design to run voom_sx_sy, which fits gene-wise linear models and extracts log count size (sx) and sqrt residual standard deviations (sy) to make the lowess curve.

Usage

lowess_all_gene_bins(gene_intervals, DGE, imputed_data_list, m, voom_formula)

Value

All sx and sy values for lowess function across all M imputations.
**voom_master_lowess**

Description

Modified voom function used by limma_voom-imputed_data_list function. Allows input of bins of outcome genes while still accounting for the total library size of all outcome genes, as the total library size is needed to calculate log-cpm values. Also allows use of external sx and sy to create lowess curve. Here, sx and sy should come from all gene bins across all M imputations. Adapted from limma::voom. Code from limma covered by License: GPL (>=2)

Usage

```r
voom_master_lowess(
 counts,
 design = NULL,
 lib.size = NULL,
 normalize.method = "none",
 block = NULL,
 correlation = NULL,
 weights = NULL,
 span = 0.5,
 plot = FALSE,
 save.plot = FALSE,
 lib.size.all,
 sx,
 sy
)
```

Value

Same as limma::voom.

**voom_sx_sy**

Description

Modified voom function used by limma_voom-imputed_data_list function. Allows input of bins of outcome genes while still accounting for the total library size of all outcome genes, as the total library size is needed to calculate log-cpm values. Returns just the sx and sy values needed for lowess curve. Adapted from limma::voom. Code from limma covered by License: GPL (>=2)
Usage

\texttt{voom\_sx\_sy(counts, design = NULL, lib.size = NULL, normalize.method = "none", block = NULL, correlation = NULL, weights = NULL, span = 0.5, plot = FALSE, save.plot = FALSE, lib.size.all )}

Value

Tibble with one col for sx and one for sy for lowess function.
Index

* datasets
  example_data, 7
  example_DGE, 7
* internal
  combine_rubins_pca, 6
  impute_gene_bin_helper, 10
  limmavoom_imputed_data_list_helper, 12
  limmavoom_imputed_data_pca_helper, 14
  lowess_all_gene_bins, 14
  RNAseqCovarImpute-package, 3
  voom_master_lowess, 15
  voom_sx_sy, 15

combine_rubins, 4
combine_rubins_pca, 6

element_data, 7
example_DGE, 7

gene_bin_intervals, 8

impute_by_gene_bin, 9
impute_gene_bin_helper, 10

limmavoom_imputed_data_list, 11
limmavoom_imputed_data_list_helper, 12
limmavoom_imputed_data_pca, 13
limmavoom_imputed_data_pca_helper, 14
lowess_all_gene_bins, 14

RNAseqCovarImpute
  RNAseqCovarImpute-package, 3
RNAseqCovarImpute-package, 3

voom_master_lowess, 15
voom_sx_sy, 15