Package ‘PAIRADISE’

March 7, 2024

Title PAIRADISE: Paired analysis of differential isoform expression
Version 1.18.0
Author Levon Demirdjian, Ying Nian Wu, Yi Xing
Maintainer Qiang Hu <Qiang.Hu@roswellpark.org>, Levon Demirdjian <levondem@ucla.edu>
Description This package implements the PAIRADISE procedure for detecting
differential isoform expression between matched replicates in paired RNA-Seq
data.
Depends R (>= 3.6), nloptr
Imports SummarizedExperiment, S4Vectors, stats, methods, abind,
BiocParallel
License MIT + file LICENSE
RoxygenNote 7.1.1
Encoding UTF-8
VignetteBuilder knitr
Suggests testthat, knitr, rmarkdown, BiocStyle
biocViews RNASeq, DifferentialExpression, AlternativeSplicing,
StatisticalMethod, ImmunoOncology
git_url https://git.bioconductor.org/packages/PAIRADISE
git_branch RELEASE_3_18
git_last_commit 42cef7a
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-06

R topics documented:
clean.data ... 2
counts ... 3
load.data ... 3
logit ... 4
Description

Removes missing data and invalid pairs from the matched pair data to be analyzed by PAIRADISE.

Usage

clean.data(my.data)

Arguments

my.data Data frame containing grouped data to be analyzed.

Details

The data frame has 7 columns, arranged as follows: Column 1 contains the ID of the exons/events. Column 2 contains counts of isoform 1 corresponding to the first group. Column 3 contains counts of isoform 2 corresponding to the first group. Column 4 contains counts of isoform 1 corresponding to the second group. Column 5 contains counts of isoform 2 corresponding to the second group. Replicates in columns 2-5 should be separated by commas, e.g. 1623,432,6 for three replicates. Column 6 contains the effective length of isoform 1. Column 7 contains the effective length of isoform 2.

Value

The function clean.data returns a list containing the following entries:

I1 Group 1 isoform 1 counts for each replicate.
S1 Group 1 isoform 2 counts for each replicate.
I2 Group 2 isoform 1 counts for each replicate.
S2 Group 2 isoform 2 counts for each replicate.
length_I Effective lengths of isoform 1.
counts

- **length_S**: Effective lengths of isoform 2.
- **exonList**: IDs of the exons/events.
- **nExon**: Number of exons/events.
- **M**: Vector containing the number of replicates per exon/event.

Description

PDseDataSet counts

Usage

```r
counts(object)
```

Arguments

- **object**: A PDseDataSet object

Value

A counts matrix

load.data

load.data

Description

Loads the matched pair data to be analyzed by PAIRADISE.

Usage

```r
load.data(my.data)
```

Arguments

- **my.data**: Data frame containing grouped data to be analyzed.

Details

The data frame has 7 columns, arranged as follows: Column 1 contains the ID of the exons/events. Column 2 contains counts of isoform 1 corresponding to the first group. Column 3 contains counts of isoform 2 corresponding to the first group. Column 4 contains counts of isoform 1 corresponding to the second group. Column 5 contains counts of isoform 2 corresponding to the second group. Replicates in columns 2-5 should be separated by commas, e.g., 1623,432,6 for three replicates. Column 6 contains the effective length of isoform 1. Column 7 contains the effective length of isoform 2.
Value
The function load.data returns a list containing the following entries:

I1 Group 1 isoform 1 counts for each replicate.
S1 Group 1 isoform 2 counts for each replicate.
I2 Group 2 isoform 1 counts for each replicate.
S2 Group 2 isoform 2 counts for each replicate.
length_I Effective lengths of isoform 1.
length_S Effective lengths of isoform 2.
exonList IDs of the exons/events.
nExon Number of exons/events.
M Vector containing the number of replicates per exon/event.

logit(x)

Description
Takes in a vector and applies the logit function elementwise to that vector

Usage
logit(x)

Arguments
x : numeric vector, whose entries should be strictly between 0 and 1

Value
logit(x)
loglikelihood

Description

Used internally in PAIRADISE to compute the log-likelihood function

Usage

loglikelihood(
 M,
 I1,
 S1,
 I2,
 S2,
 l.iI,
 l.iS,
 logit.psi1,
 logit.psi2,
 alpha,
 s1,
 s2,
 s,
 mu,
 delta
)

Arguments

M Number of replicates for the current exon. Positive integer.
I1 Exon inclusion counts for group 1. Positive integers.
S1 Exon skipping counts for group 1. Positive integers.
I2 Exon inclusion counts for group 2. Positive integers.
S2 Exon skipping counts for group 2. Positive integers.
l.iI Effective length of inclusion isoform. Positive integer.
l.iS Effective length of skipping isoform. Positive integer.
logit.psi1 Numeric vector with values of logit psi1.
logit.psi2 Numeric vector with values of logit psi2.
alpha Numeric vector with values of alpha.
s1 Group 1 standard deviation. Positive number.
s2 Group 2 standard deviation. Positive number.
s Overall standard deviation. Positive number.
mu Parameter mu.
delta Parameter delta.
Value

log likelihood value at input.

Definition

Used internally in PAIRADISE to compute the MLEs of \(\delta, \mu, \sigma_1, \sigma_2, \sigma \)

Usage

\[
\text{optimize1}(\ x, \ M, \ I_1, \ S_1, \ I_2, \ S_2, \ l.iI, \ l.iS, \ logit.psi1, \ logit.psi2, \ alpha, \ \text{equal.variance} = \text{FALSE})
\]

Arguments

- **x**: Numeric vector such that \(x = (\sigma_1, \sigma_2, \sigma, \mu, \delta) \) if \(\text{equal.variance} = \text{FALSE} \), and \(x = (\sigma_1, \sigma, \mu, \delta) \) if \(\text{equal.variance} = \text{TRUE} \). \(\sigma_1, \sigma_2, \sigma \) must be positive.
- **M**: Number of replicates for the current exon.
- **I_1**: Exon inclusion counts for group 1. Positive integers.
- **S_1**: Exon skipping counts for group 1. Positive integers.
- **I_2**: Exon inclusion counts for group 2. Positive integers.
- **S_2**: Exon skipping counts for group 2. Positive integers.
- **l.iI**: Effective length of inclusion isoform. Positive integer.
- **l.iS**: Effective length of skipping isoform. Positive integer.
- **logit.psi1**: Numeric vector with values of logit psi1.
- **logit.psi2**: Numeric vector with values of logit psi2.
- **alpha**: Numeric vector with values of alpha.
- **equal.variance**: Are the group variances assumed equal? Default value is FALSE.
Value

The MLEs.

Description

Used internally in PAIRADISE to compute the MLEs of logit(\(\psi_1\)), logit(\(\psi_2\)), alpha

Usage

\texttt{optimize2}(x, k, I1, S1, I2, S2, l.iI, l.iS, delta, mu, s1, s2, s)

Arguments

\begin{itemize}
 \item \texttt{x} \quad \text{Numeric vector such that } x = (\logit(\psi_1), \logit(\psi_2), \alpha)
 \item \texttt{k} \quad \text{Index representing current replicate number.}
 \item \texttt{I1} \quad \text{Exon inclusion counts for group 1. Positive integers.}
 \item \texttt{S1} \quad \text{Exon skipping counts for group 1. Positive integers.}
 \item \texttt{I2} \quad \text{Exon inclusion counts for group 2. Positive integers.}
 \item \texttt{S2} \quad \text{Exon skipping counts for group 2. Positive integers.}
 \item \texttt{l.iI} \quad \text{Effective length of inclusion isoform. Positive integer.}
 \item \texttt{l.iS} \quad \text{Effective length of skipping isoform. Positive integer.}
 \item \texttt{delta} \quad \text{Parameter } \delta.
 \item \texttt{mu} \quad \text{Parameter } \mu.
 \item \texttt{s1} \quad \text{Group 1 standard deviation. Positive number.}
 \item \texttt{s2} \quad \text{Group 2 standard deviation. Positive number.}
 \item \texttt{s} \quad \text{Overall standard deviation. Positive number.}
\end{itemize}

Value

The MLEs.
PAIRADISE (PAIred Replicate analysis of Allelic Differential Splicing Events) is a method for detecting allele-specific alternative splicing (ASAS) from RNA-seq data. PAIRADISE uses a statistical model that aggregates ASAS signals across multiple individuals in a population. It formulates ASAS detection as a statistical problem for identifying differential alternative splicing from RNA-seq data with paired replicates. The PAIRADISE statistical model is applicable to many forms of allele-specific isoform variation (e.g., RNA editing), and can be used as a generic statistical model for RNA-seq studies involving paired replicates.

See Also

pairadise

Description

Primary function of the PAIRADISE package. Analyzes matched pairs for differences in isoform expression. Uses parallel processing to speed up computation.

Usage

```r
pairadise(
  pdat,
  nIter = 100,
  tol = 10^(-2),
  pseudocount = 0,
  seed = 12321,
  equal.variance = FALSE,
  numCluster = 2,
  BPPARAM = MulticoreParam(numCluster)
)
```

Arguments

- `pdat`: A PDseDataSet object
- `nIter`: Positive integer. Specifies the maximum number of iterations of the optimization algorithm allowed. Default is `nIter = 100`
tol Positive number. Specifies the tolerance level for terminating the optimization algorithm, defined as the difference in log-likelihood ratios between iterations. Default is $\text{tol} = 10^{-2}$

pseudocount Positive number. Specifies a value for a pseudocount added to each count at the beginning of the analysis. Default is pseudocount = 0

seed An integer to set seed.

equal.variance Are the group variances assumed equal? Default value is FALSE.

numCluster Number of clusters to use for parallel computing.

BPPARAM parallel parameters from package BiocParallel.

Details

This is the primary function of the PAIRADISE package that implements the PAIRADISE algorithm.

Value

A PDseDataSet object contains outputs from PAIRADISE algorithm.

Examples

```r
set.seed(12345)  
data("sample_dataset")  
pdat <- PDseDataSetFromMat(sample_dataset)  
pdat <- pairadise(pdat, numCluster =4)  
results(pdat)
```

PDseDataSet-class

PDseDataSet object and constructor

Description

‘PDseDataSet’ is a subclass of ‘SummarizedExperiment’. It can used to store inclusion and skipping splicing counts for pair designed samples.

Usage

```
PDseDataSet(counts, design, lengths)
```
Arguments

- **counts**: The counts of splicing events, including inclusion and skipping counts in 3 dimensions for each sample.
- **design**: The paired design data.frame, including sample column for sample ids and group column for design factors.
- **lengths**: Two columns iLen and sLen for the effective lengths of inclusion and skipping isoforms.

Value

A PDseDataSet object

Examples

```r
icount <- matrix(1:4, 1)
scount <- matrix(5:8, 1)
acount <- abind::abind(icount, scount, along = 3)
design <- data.frame(sample = rep(c("s1", "s2"), 2),
group = rep(c("T", "N"), each = 2))
lens <- data.frame(sLen=1L, iLen=2L)
PDseDataSet(acount, design, lens)
```

PDseDataSetFromMat

PDseDataSet from rMATs/PAIRADISE Mat format

Description

The Mat format should have 7 columns, arranged as follows: Column 1 contains the ID of the alternative splicing events. Column 2 contains counts of isoform 1 corresponding to the first group. Column 3 contains counts of isoform 2 corresponding to the first group. Column 4 contains counts of isoform 1 corresponding to the second group. Column 5 contains counts of isoform 2 corresponding to the second group. Column 6 contains the effective length of isoform 1. Column 7 contains the effective length of isoform 2. Replicates in columns 2-5 should be separated by commas, e.g. "1623,432,6" for three replicates and the replicate order should be consistent for each column to ensure pairs are matched correctly.

Usage

```r
PDseDataSetFromMat(dat)
```

Arguments

- **dat**: The Mat format dataframe.

Value

A PDseDataSet object
Description

Extract results for pairadise analysis

Usage

```r
results(pdat, p.adj = "BH", sig.level = 0.01, details = FALSE)
```

Arguments

- `pdat`: A PDseDataSet object from pairadise analysis
- `p.adj`: The p adjustment method.
- `sig.level`: The cutoff of significant results
- `details`: Whether to list detailed results.

Value

The function returns a results DataFrame.

- `testStats`: Vector of test statistics for paired analysis.
- `p.value`: Vector of p-values for each exon/event.
- `p.adj`: The adjusted p values

If `details` is TRUE, more detailed parameter estimates for constrained and unconstrained model will return.

Examples

```r
data("sample_dataset")
pdat <- PDseDataSetFromMat(sample_dataset)
pdat <- pairadise(pdat)
results(pdat)
```
Description

The CEU dataset was generated by analyzing the allele-specific alternative splicing events in the GEUVADIS CEU data. Allele-specific reads were mapped onto alternative splicing events using rPGA (version 2.0.0). Then the allele-specific bam files mapped onto the two haplotypes are merged together to detect alternative splicing events using rMATS (version 3.2.5)16.

The LUSC dataset was generated by analyzing the tumor versus adjacent control samples from TCGA LUSC RNA-seq data.

Usage

data(sample_dataset)

data(sample_dataset_CEU)

data(sample_dataset_LUSC)

Format

The dataset has 7 columns, arranged as follows:

<table>
<thead>
<tr>
<th>ExonID</th>
<th>Column 1 contains the ID of the alternative splicing events.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Column 2 contains counts of isoform 1 corresponding to the first group.</td>
</tr>
<tr>
<td>S1</td>
<td>Column 3 contains counts of isoform 2 corresponding to the first group.</td>
</tr>
<tr>
<td>I2</td>
<td>Column 4 contains counts of isoform 1 corresponding to the second group.</td>
</tr>
<tr>
<td>S2</td>
<td>Column 5 contains counts of isoform 2 corresponding to the second group.</td>
</tr>
<tr>
<td>I_len</td>
<td>Column 6 contains the effective length of isoform 1.</td>
</tr>
<tr>
<td>S_len</td>
<td>Column 7 contains the effective length of isoform 2.</td>
</tr>
</tbody>
</table>

The dataset has 7 columns, arranged as follows:

<table>
<thead>
<tr>
<th>ExonID</th>
<th>Column 1 contains the ID of the alternative splicing events.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>Column 2 contains counts of isoform 1 corresponding to the first group.</td>
</tr>
<tr>
<td>S1</td>
<td>Column 3 contains counts of isoform 2 corresponding to the first group.</td>
</tr>
<tr>
<td>I2</td>
<td>Column 4 contains counts of isoform 1 corresponding to the second group.</td>
</tr>
<tr>
<td>S2</td>
<td>Column 5 contains counts of isoform 2 corresponding to the second group.</td>
</tr>
<tr>
<td>I_len</td>
<td>Column 6 contains the effective length of isoform 1.</td>
</tr>
<tr>
<td>S_len</td>
<td>Column 7 contains the effective length of isoform 2.</td>
</tr>
</tbody>
</table>

The dataset has 7 columns, arranged as follows:

| ExonID | Column 1 contains the ID of the alternative splicing events. |
sigmoid

- **I1** Column 2 contains counts of isoform 1 corresponding to the first group.
- **S1** Column 3 contains counts of isoform 2 corresponding to the first group.
- **I2** Column 4 contains counts of isoform 1 corresponding to the second group.
- **S2** Column 5 contains counts of isoform 2 corresponding to the second group.
- **L_len** Column 6 contains the effective length of isoform 1.
- **S_len** Column 7 contains the effective length of isoform 2.

Description

Takes in a vector and applies the sigmoid function elementwise to that vector

Usage

```
sigmoid(x)
```

Arguments

- `x` : numeric vector

Value

```
sigmoid(x)
```
Index

* internal
 - clean.data, 2
 - load.data, 3
 - logit, 4
 - loglikelihood, 5
 - optimize1, 6
 - optimize2, 7
 - sigmoid, 13

 clean.data, 2
 counts, 3

 load.data, 3
 logit, 4
 loglikelihood, 5

 optimize1, 6
 optimize2, 7

 PAIRADISE, 8
 pairadise, 8, 8
 PDseDataSet (PDseDataSeSet-class), 9
 PDseDataSet-class, 9
 PDseDataSetFromMat, 10

 results, 11

 sample_dataset, 12
 sample_dataset_CEU (sample_dataset), 12
 sample_dataset_LUSC (sample_dataset), 12
 sigmoid, 13