Package ‘NanoStringNCTools’

May 30, 2024

Title NanoString nCounter Tools

Description Tools for NanoString Technologies nCounter Technology. Provides support for reading RCC files into an ExpressionSet derived object. Also includes methods for QC and normalization of NanoString data.

Version 1.12.0

Encoding UTF-8

Depends R (>= 3.6), Biobase, S4Vectors, ggplot2

Imports BiocGenerics, Biostrings, ggbeeswarm, ggridraph, ggtrends, grDevices, IRanges, methods, pheatmap, RColorBrewer, stats, utils

Suggests biovizBase, ggbio, RUnit, rmarkdown, knitr, qpdf

License MIT

biocViews GeneExpression, Transcription, CellBasedAssays, DataImport, Transcriptomics, Proteomics, mRNAMicroarray, ProprietaryPlatforms, RNASeq

VignetteEngine knitr

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/NanoStringNCTools

git_branch RELEASE_3_19

git_last_commit 511216f

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-29
geom_beeswarm_interactive

Geometry for Interactive Bee Swarm Points

Description

The interactive version of geom_beeswarm from ggbeeswarm.

Usage

geom_beeswarm_interactive(mapping = NULL, data = NULL, priority = c("ascending", "descending", "density", "random", "none"), cex = 1, groupOnX = NULL, dodge.width = 0, stat = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...)

Arguments

mapping The aesthetic mapping. See geom_beeswarm.
data The data to be displayed at this layer. See geom_beeswarm.
priority Method used to perform point layout. See geom_beeswarm.
cex Scaling for adjusting point spacing. See geom_beeswarm.
log2t

Description
Safe log and log2 calculations where values within [0, thresh) are thresholded to thresh prior to the transformation.

Usage
logt(x, thresh = 0.5)
log2t(x, thresh = 0.5)
Arguments

\(x \) a numeric or complex vector.

\(\text{thresh} \) a positive number specifying the threshold.

Details

For non-negative elements in \(x \), calculates \(\log(p_{\max}(x, \text{thresh})) \) or \(\log_2(p_{\max}(x, \text{thresh})) \).

Value

A vector of the same length as \(x \) containing the transformed values.

Author(s)

Patrick Aboyoun

See Also

\(\log, \log_2 \)

Examples

\[
\logt(0:8) \\
\text{identical}(\logt(0:8), \log(c(0.5, 1:8)))
\]

\[
\log2t(0:8) \\
\text{identical}(\log2t(0:8), \log2(c(0.5, 1:8)))
\]

Description

Plot NanoStringRccSet Data

Generate common plots to visualize and QC NanoStringRccSet data.

Usage

```r
## S3 method for class 'NanoStringRccSet'
autoplot(object, 
  type = c("boxplot-feature", 
              "boxplot-signature", 
              "bindingDensity-mean", 
              "bindingDensity-sd", 
              "ercc-linearity", 
              "ercc-lod", 
              "heatmap-genome", 
```

NanoStringRccSet-autoplot
`NanoStringRccSet-autoplot`

```r

"heatmap-signatures",
"housekeep-geom",
"lane-bindingDensity",
"lane-fov",
"mean-sd-features",
"mean-sd-samples"),
log2scale = TRUE,
elt = "exprs",
index = 1L,
geomParams = list(),
tooltipDigits = 4L,
heatmapGroup = NULL,
blacklist = NULL,
tooltipID = NULL,
qcCutoffs = list(
  Housekeeper = c("failingCutoff" = 32,"passingCutoff" = 100),
  Imaging = c("fovCutoff" = 0.75),
  BindingDensity = c("minimumBD" = 0.1, "maximumBD" = 2.25,
    "maximumBDSSprint" = 1.8),
  ERCCLinearity = c("correlationValue" = 0.95),
  ERCCLoD = c("standardDeviations" = 2),
  scalingFactor=1L,
show_rownames_gene_limit=60L,
show_colnames_gene_limit=36L,
show_rownames_sig_limit=60L,
show_colnames_sig_limit=36L,
subSet = NULL,
...)
```

Arguments

- **object**
 - A `NanoStringRccSet` object
- **type**
 - Character string referencing the type of plot to generate
- **log2scale**
 - An optional boolean indicating expression data is on log2 scale
- **elt**
 - An optional character string of the expression matrix name
- **index**
 - An optional integer giving the feature of interest row location
- **geomParams**
 - An optional list of parameters for geometry
- **tooltipDigits**
 - An optional integer for number of tooltip decimal places to display
- **heatmapGroup**
 - An optional character string referencing `pData` column to color samples by in heatmap
- **blacklist**
 - An optional character vector of features not to plot
- **tooltipID**
 - An optional character string referencing `pData` column to use for sample ID in the tooltip
- **qcCutoffs**
 - An optional list of QC cutoffs
- **scalingFactor**
 - An optional numeric value indicating a scaling factor to apply to plot drawing
show_rownames_gene_limit
 An optional integer limit on number of features to display row-wise
show_colnames_gene_limit
 An optional integer limit on number of features to display column-wise
show_rownames_sig_limit
 An optional integer limit on number of signatures to display row-wise
show_colnames_sig_limit
 An optional integer limit on number of signatures to display column-wise
subSet
 An optional subset to plot on
...
 Additional arguments to pass on to autoplot function

Details

"boxplot-feature" Generate feature boxplots
"boxplot-signature" Generate signature boxplots
"bindingDensity-mean" Plot binding density displayed as average expression
"bindingDensity-sd" Plot binding density displayed as standard deviation of expression
"ercc-linearity" Assess linearity of ERCCs
"ercc-lod" Assess limit of detection based on ERCC expression
"heatmap-genes" Generate a heatmap from feature expression
"heatmap-signatures" Generate a heatmap from signature expression
"housekeep-geom" Plot geometric mean of housekeeper genes
"lane-bindingDensity" View binding density by lane
"lane-fov" Assess image quality by lane
"mean-sd-features" Plot mean versus standard deviation feature-wise
"mean-sd-samples" Plot mean versus standard deviation sample-wise

Value

A ggplot or pheatmap plot depending on the type of plot generated

Examples

Create NanoStringRccSet from data files
datadir <- system.file("extdata", "3D_Bio_Example_Data",
 package = "NanoStringNCTools")
rccs <- dir(datadir, pattern = "SKMEL.*\.RCC$", full.names = TRUE)
rlf <- file.path(datadir, "3D_SolidTumor_Sig.rlf")
pheno <- file.path(datadir, "3D_SolidTumor_PhenoData.csv")
solidTumor <-
 readNanoStringRccSet(rccs, rlfFile = rlf, phenoDataFile = pheno)

Assess experiment linearity
#autoplot(solidTumor, "ercc-linearity")

Plot a feature's expression across all samples
#autoplot(solidTumor, "boxplot-feature", index=2)
NanoStringRccSet-class

Class to Contain NanoString Expression Level Assays

Description

The NanoStringRccSet class extends the ExpressionSet class for NanoString Reporter Code Count (RCC) data.

Usage

NanoStringRccSet(assayData,
 phenoData = annotatedDataFrameFrom(assayData, byrow = FALSE),
 featureData = annotatedDataFrameFrom(assayData, byrow = TRUE),
 experimentData = MIAME(),
 annotation = character(),
 protocolData = annotatedDataFrameFrom(assayData, byrow = FALSE),
 dimLabels = c("GeneName", "SampleID"),
 signatures = SignatureSet(),
 design = NULL,
 ...)

Arguments

- assayData: A matrix or environment containing the RCCs.
- phenoData: An AnnotatedDataFrame containing the phenotypic data.
- featureData: An AnnotatedDataFrame containing columns "CodeClass", "GeneName", "Accession", "IsControl", and "ControlConc".
- experimentData: An optional MIAME instance with meta-data about the experiment.
- annotation: A character string for the "GeneRLF".
- dimLabels: A character vector of length 2 that provides the column names to use as labels for the features and samples respectively in the autoplot method.
- signatures: An optional SignatureSet object containing signature definitions.
- design: An optional one-sided formula representing the experimental design based on columns from phenoData
- ...: Additional arguments for ExpressionSet.

Value

An S4 class containing NanoString Expression Level Assays
NanoStringRccSet-class

Accessing

In addition to the standard ExpressionSet accessor methods, NanoStringRccSet objects have the following:

\texttt{sData(object)} extracts the data.frame containing the sample data, \texttt{cbind(pData(object), pData(protocolData(object))}.

\texttt{svarLabels(object)} extracts the sample data column names, \texttt{c(varLabels(object), varLabels(protocolData(object))}.

\texttt{dimLabels(object)} extracts the column names to use as labels for the features and samples in the autoplot method.

\texttt{dimLabels(object) <- value} replaces the \texttt{dimLabels} of the object.

\texttt{signatures(object)} extracts the SignatureSet of the object.

\texttt{signatures(object) <- value} replaces the \texttt{SignatureSet} of the object.

\texttt{signatureScores(object, elt = "exprs"}) extracts the matrix of computed signature scores.

\texttt{design(object)} extracts the one-sided formula representing the experimental design based on columns from \texttt{phenoData}.

\texttt{design(object) <- value} replaces the one-sided formula representing the experimental design based on columns from \texttt{phenoData}.

\texttt{setSignatureFuncs(object)} returns the signature functions.

\texttt{setSignatureFuncs(object) <- value} replaces the signature functions.

\texttt{setSignatureGroups(object) <- value} returns the signature groups.

\texttt{setSignatureGroups(object) <- value} replaces the signature groups.

Summarizing

\texttt{summary(object, MARGIN = 2L, GROUP = NULL, log2scale = TRUE, elt = "exprs", signatureScores = FALSE)}

When \texttt{signatureScores = FALSE}, the marginal summaries of the \texttt{elt assayData} matrix along either the feature (\texttt{MARGIN = 1}) or sample (\texttt{MARGIN = 2}) dimension.

When \texttt{signatureScores = TRUE}, the marginal summaries of the \texttt{elt signatureScores} matrix along either the signature (\texttt{MARGIN = 1}) or sample (\texttt{MARGIN = 2}) dimension.

When \texttt{log2scale = FALSE}, the summary statistics are Mean, Standard Deviation, Skewness, Excess Kurtosis, Minimum, First Quartile, Median, Third Quartile, and Maximum.

When \texttt{log2scale = TRUE}, the summary statistics are Geometric Mean with thresholding at 0.5, Size Factor \((2^{\text{meanLog2} - \text{meanLog2}})),\) Mean of Log2 with thresholding at 0.5, Standard Deviation of Log2 with thresholding at 0.5, Minimum, First Quartile, Median, Third Quartile, and Maximum.

Subsetting

In addition to the standard ExpressionSet subsetting methods, NanoStringRccSet objects have the following:

\texttt{subset(x, subset, select, \ldots)} Subset the feature and sample dimensions using the subset and select arguments respectively. The subset argument will be evaluated with respect to the \texttt{featureData}, while the select argument will be evaluated with respect to the \texttt{phenoData} and \texttt{protocolData}.

\texttt{endogenousSubset(x, subset, select)} Extracts the endogenous barcode class feature subset of \texttt{x} with optional additional subsetting using subset and select.
housekeepingSubset(x, subset, select) Extracts the housekeeping barcode class feature subset of x with optional additional subsetting using subset and select.

negativeControlSubset(x, subset, select) Extracts the negative control barcode class feature subset of x with optional additional subsetting using subset and select.

positiveControlSubset(x, subset, select) Extracts the positive control barcode class feature subset of x with optional additional subsetting using subset and select.

colorSubset(x, subset, select) Extracts the feature subset representing the controls of x with optional additional subsetting using subset and select.

nonControlSubset(x, subset, select) Extracts the feature subset representing the non-controls of x with optional additional subsetting using subset and select.

signatureSubset(x, subset, select) Extracts the feature subset representing the genes in the signatures of x with optional additional subsetting using subset and select.

Looping

assayDataApply(X, MARGIN, FUN, ..., elt = "exprs") Loop over the feature (MARGIN = 1) or sample (MARGIN = 2) dimension of assayDataElement(X, elt).

signatureScoresApply(X, MARGIN, FUN, ..., elt = "exprs") Loop over the signature (MARGIN = 1) or sample (MARGIN = 2) dimension of signatureScores(X, elt).

esBy(X, GROUP, FUN, ..., simplify = TRUE) Split X by GROUP column within featureData, phenoData, or protocolData and apply FUN to each partition.

Transforming

munge(data, mapping = update(design(data), exprs ~ .), extradata = NULL, elt = "exprs", ...) munge argument data into a data.frame object for modeling and visualization using the mapping argument. Supplemental data can be specified using the extradata argument.

transform(‘_data’, ...) Similar to the transform generic in the base package, creates or modifies one or more assayData matrices based upon name = value pairs in The expressions in ... are appended to the preprocessing list in experimentData, which can be extracted using the preproc method.

Evaluating

with(data, expr, ...) Evaluate expression expr with respect to assayData, featureData, phenoData, and protocolData; c(as.list(assayData(data)), fData(data), sData(data)).

Normalizing

normalize(object, type, fromElt = "exprs", toElt = "exprs_norm", ...)

Plotting

ggplot(data, mapping = aes(), ..., extradata = NULL, tooltip_digits = 4L, environment = parent.frame()) the NanoStringRccSet method for ggpplot.

autoplot(object, type, log2scale = TRUE, elt = "exprs", index = 1L, geomParams = list(), tooltipDigits = 4L, heatmaps = FALSE)
Author(s)
Patrick Aboyoun

See Also
readNanoStringRccSet, writeNanoStringRccSet, ExpressionSet

Examples

Create NanoStringRccSet from data files
datadir <- system.file("extdata", "3D_Bio_Example_Data",
 package = "NanoStringNCTools")
rccs <- dir(datadir, pattern = "SKMEL.*\.RCC\$", full.names = TRUE)
rlf <- file.path(datadir, "3D_SolidTumor_Sig.rlf")
pheno <- file.path(datadir, "3D_SolidTumor_PhenoData.csv")
solidTumor <-
 readNanoStringRccSet(rccs, rlfFile = rlf, phenoDataFile = pheno)

Create a deep copy of a NanoStringRccSet object
deepCopy <- NanoStringRccSet(solidTumor)
all.equal(solidTumor, deepCopy)
identical(solidTumor, deepCopy)

Accessing sample data and column names
head(sData(solidTumor))
svarLabels(solidTumor)

Set experimental design
design(solidTumor) <- ~ BRAFGenotype + Treatment
design(solidTumor)
munge(solidTumor)

Marginal summarizing of NanoStringRccSet assayData matrices
head(summary(solidTumor, 1)) # Marginal summaries along features
head(summary(solidTumor, 2)) # Marginal summaries along samples

Subsetting NanoStringRccSet objects
Extract the positive controls for wildtype BRAF
dim(solidTumor)
dim(subset(solidTumor, CodeClass == "Positive", BRAFGenotype == "wt/wt"))

Extract by barcode class
with(solidTumor, table(CodeClass))
with(endogenousSubset(solidTumor), table(CodeClass))
with(housekeepingSubset(solidTumor), table(CodeClass))
with(negativeControlSubset(solidTumor), table(CodeClass))
with(positiveControlSubset(solidTumor), table(CodeClass))
normalize

with(controlSubset(solidTumor), table(CodeClass))
with(nonControlSubset(solidTumor), table(CodeClass))

Looping over NanoStringRccSet assayData matrices
log1pCoefVar <- function(x){
 x <- log1p(x)
 sd(x) / mean(x)
}

Log1p Coefficient of Variation along Features
head(assayDataApply(solidTumor, 1, log1pCoefVar))

Log1p Coefficient of Variation along Samples
head(assayDataApply(solidTumor, 2, log1pCoefVar))

Transforming NanoSetRccSet assayData matrices
Subtract max count from each sample
Create log1p transformation of adjusted counts
thresh <- assayDataApply(negativeControlSubset(solidTumor), 2, max)
solidTumor2 <-
 transform(solidTumor,
 negCtrlZeroed = sweep(exprs, 2, thresh),
 log1p_negCtrlZeroed = log1p(pmax(negCtrlZeroed, 0)))
assayDataElementNames(solidTumor2)

Evaluating expression using NanoStringRccSet data
meanLog1pExprs <-
 with(solidTumor,
 {
 means <- split(apply(exprs, 1, function(x) mean(log1p(x))), CodeClass)
 means <- means[order(sapply(means, median))]
 boxplot(means, horizontal = TRUE)
 means
 })

normalize

Normalize RCCSet

Description

This package performs normalization on NanoStringRccSet data using one of three methods.

Usage

normalize(object, ...)

```r
normalize
```
normalize

Arguments

- `object` object NanoStringRccSet object
- `...` object additional arguments to pass on to normalize function

Details

Normalization is performed in one of three ways with data pulled from one slot of assayData and inserted into another. It is possible to overwrite the original slot of assayData if the `fromElt` and `toElt` are set to the same slot. nSolver normalization uses positive controls to scale and housekeepers to standardize the data and mimics the normalization performed by default in the nSolver software. The Housekeeping-Log2 normalization calculates the log2 sizeFactor of the housekeeping genes and then takes 2^log2 expression data centered by the log transformed `sizeFactor`. PositiveControl-Log2Log2 regresses the log2 positive control probes greater than 0.5 concentration on their geometric mean and then uses the intercept and slope to predict normalized values from the log2 transformed expression values. The predictions are then rescaled by 2^log2. Additional parameters with NanoStringRccSet method include:

- `type` normalization method to use. Options are `nSolver`, `Housekeeping-Log2`, and `PositiveControl-Log2Log2`
- `fromElt` assayData slot from which to pull raw data
- `toElt` assayData slot to which normalized data will be inserted

Value

The function returns a new NanoStringRccSet with either an additional assayData slot of normalized data, or overwrites the original assayData depending on whether `fromElt` and `toElt` are identical.

Author(s)

Patrick Aboyoun

References

Examples

```r
datadir <- system.file("extdata", "3D_Bio_Example_Data", package = "NanoStringNCTools")
rccs <- dir(datadir, pattern = "SKMEL.*\.RCC\$", full.names = TRUE)
rlf <- file.path(datadir, "3D_SolidTumor_Sig.rlf")
pheno <- file.path(datadir, "3D_SolidTumor_PhenoData.csv")
solidTumor <-
  readNanoStringRccSet(rccs, rlfFile = rlf, phenoDataFile = pheno)
solidTumor <- normalize(solidTumor, "nSolver", fromElt = "exprs", toElt = "exprs_norm")
head( assayDataElement( solidTumor, elt = "exprs_norm" ) )
```
readNanoStringRccSet Read 'NanoStringRccSet'

Description
Create an instance of class NanoStringRccSet by reading data from NanoString Reporter Code Count (RCC) files.

Usage
readNanoStringRccSet(rccFiles, rlfFile = NULL, phenoDataFile = NULL, phenoDataRccColName = "RCC", phenoDataColPrefix = "")

Arguments
- rccFiles: A character vector containing the paths to the RCC files.
- rlfFile: An optional character string representing the path to the corresponding RLF file.
- phenoDataFile: An optional character string representing the path to the corresponding phenotypic csv data file.
- phenoDataRccColName: The regular expression that specifies the RCC column in the phenoDataFile.
- phenoDataColPrefix: An optional prefix to add to the phenoData column names to distinguish them from the names of assayData matrices, featureData columns, and protocolData columns.

Value
An instance of the NanoStringRccSet class.

Author(s)
Patrick Aboyoun

See Also
NanoStringRccSet, writeNanoStringRccSet

Examples
Data file paths
datadir <- system.file("extdata", "3D_Bio_Example_Data", package = "NanoStringNCTools")
rccs <- dir(datadir, pattern = "SKMEL.*\RCC$", full.names = TRUE)
rlf <- file.path(datadir, "3D_SolidTumor_Sig.rlf")
pheno <- file.path(datadir, "3D_SolidTumor_Phenodata.csv")

Just RCC data
solidTumorNoRlfPheno <- readNanoStringRccSet(rccs)
varLabels(solidTumorNoRlfPheno)
fvarLabels(solidTumorNoRlfPheno)

RCC and RLF data
solidTumorNoPheno <- readNanoStringRccSet(rccs, rlfFile = rlf)
setdiff(fvarLabels(solidTumorNoPheno), fvarLabels(solidTumorNoRlfPheno))

All data
solidTumor <-
 readNanoStringRccSet(rccs, rlfFile = rlf, phenoDataFile = pheno)
varLabels(solidTumor)
design(solidTumor) <- ~ BRAFGenotype + Treatment

All data with phenoData prefix
solidTumorPhenoPrefix <-
 readNanoStringRccSet(rccs, rlfFile = rlf, phenoDataFile = pheno,
 phenoDataColPrefix = "PHENO ")
varLabels(solidTumorPhenoPrefix)
design(solidTumorPhenoPrefix) <- ~ PHENO_BRAFGenotype + PHENO_Treatment

readRccFile

Read RCC File

Description

Read a NanoString Reporter Code Count (RCC) file.

Usage

```
readRccFile(file)
```

Arguments

- `file` A character string containing the path to the RCC file.

Value

An list object with five elements:

- "Header" a data.frame object containing the header information.
- "Sample_Attributes" a data.frame object containing the attributes of the sample.
- "Lane_Attributes" a data.frame object containing the attributes of the lane.
- "Code_Summary" a data.frame object containing the reporter code counts.
- "Messages" A character vector containing messages, if any.
readRlfFile

Author(s)

Patrick Aboyoun

See Also

`readNanoStringRccSet`

Examples

```r
datadir <- system.file("extdata", "3D_Bio_Example_Data", package = "NanoStringNCTools")
rccs <- dir(datadir, pattern = "SKMEL.*\.RCC\$", full.names = TRUE)
rccData <- lapply(rccs, readRccFile)
```

readRlfFile
Read RLF File

Description

Read a NanoString Reporter Library File (RLF) file.

Usage

```r
readRlfFile(file)
```

Arguments

- `file`
 A character string containing the path to the RLF file.

Value

An instance of the `DataFrame` class containing columns:

- "CodeClass" code class
- "GeneName" gene name
- "Accession" accession number
- ... additional columns

Author(s)

Patrick Aboyoun

See Also

`readNanoStringRccSet`
Examples

datadir <- system.file("extdata", "3D_Bio_Example_Data",
 package = "NanoStringNCTools")
rlf <- file.path(datadir, "3D_SolidTumor_Sig.rlf")
rlfData <- readRlfFile(rlf)

setQCFlags

setQCFlags

Set flags for QC of the assayData in a NanoStringRccSet.

Description

This function takes a list containing the quality control (QC) thresholds for data in a NanoStringRccSet and then returns a matrix of QC results by sample to protocolData.

Usage

```r
setQCFlags(object, ...)
```

Arguments

- `object`: A valid NanoStringRccSet object with all housekeeping genes, positive control probes, and negative control probes present
- `...`: Additional arguments to pass

Details

This function checks that the housekeeping genes, positive control, and negative control probes or genes are within acceptable boundaries. Additional parameters with NanoStringRccSet method include:

- `qcCutoffs`: An optional list with members named `Housekeeper`, `Imaging`, `BindingDensity`, `ERCCLinearity`, and `ERCCLoD`
- `hkGenes`: An optional vector of housekeeping gene names if alternative genes to those defined in the panel are to be used
- `ReferenceSampleColumn`: An optional character string indicating the `pData` column containing reference sample information

Borderline thresholds and fail thresholds are defined and each sample receives a row in a matrix that contains flags indicating either borderline or failing performance.

`Housekeeper` is a vector with names members. `failingCutoff` sets the lower bound of housekeeper gene expression such that samples with a value below this threshold are labeled as failures. `passingCutoff` sets a lower bound of housekeeper gene expression such that samples with a value below this threshold are labeled as borderline. Values greater than or equal to either threshold are labeled as either borderline or passing. The default values are `failingCutoff = 32` and `passingCutoff = 100`.

`Imaging` is a vector with a single named member `fovCutoff`. This threshold determines the minimum proportion of FOV to be counted. The default value is 0.75.
setQCFlags

BindingDensity is a named vector with members minimumBD, maximumBD, and maximumBDSprint. minimumBD sets a minimum threshold for binding density across machine platforms. maximumBD sets a maximum binding density for non-Sprint machines while maximumBDSprint does the same for Sprint machines. The default values are minimumBD = 0.1, maximumBD = 2.25, and maximumBDSprint = 1.8.

ERCCLinearity is a named vector with a single member correlationValue. This member sets a minimum threshold for the correlation between the observed counts of positive controls and their theoretical concentration. The default value is 0.95.

ERCCLoD is a named vector with a single member standardDeviations. This sets a minimum threshold for the 0.5uMol concentration to be above the geoMean of the negative controls in units of standard deviation of the negative controls. The default value is 2.

Value

This function returns a new NanoStringRccSet with matrices of QC pass and QC borderline criteria added to the protocolData slots called QCFlags and QCBorderlineFlags, respectively.

Examples

Create NanoStringRccSet from data files
datadir <- system.file("extdata", "3D_Bio_Example_Data", package = "NanoStringNCTools")
rccs <- dir(datadir, pattern = "SKMEL.*\.RCC\$", full.names = TRUE)
rlf <- file.path(datadir, "3D_SolidTumor_Sig.rlf")
pheno <- file.path(datadir, "3D_SolidTumor_PhenoData.csv")
solidTumor <-
 readNanoStringRccSet(rccs, rlfFile = rlf, phenoDataFile = pheno)

#Set QC flags with default cutoffs
solidTumorDefaultQC <- setQCFlags(solidTumor)
head(protocolData(solidTumorDefaultQC)[['QCFlags']])
head(protocolData(solidTumorDefaultQC)[['QCBorderlineFlags']])

#Update cutoffs
newQCcutoffs <- list(
 Housekeeper = c("failingCutoff" = 32,"passingCutoff" = 100) ,
 Imaging = c("fovCutoff" = 0.75) ,
 BindingDensity = c("minimumBD" = 0.1, "maximumBD" = 2.25, "maximumBDSprint" = 1.8) ,
 ERCCLinearity = c("correlationValue" = 0.98) ,
 ERCCLoD = c("standardDeviations" = 2))

#Set QC flags with new cutoffs
solidTumorNewQC <- setQCFlags(solidTumor, qcCutoffs=newQCcutoffs)

#Compare QC results with default and new cutoffs
head(protocolData(solidTumorDefaultQC)[['QCFlags']])
head(protocolData(solidTumorNewQC)[['QCFlags']])
SignatureSet-class

Class to Contain Signature Definitions

Description
The SignatureSet class defines gene-based signatures.

Usage
SignatureSet(weights = NumericList(), groups = factor(), func = character(), version = character(), ...)

Arguments
weights
A named NumericList defining signatures based on linear combinations of genes.
groups
A factor vector indicating groups in the SignatureSet
func
Character indicating function to use
version
Character indicating version to use
...
Additional arguments for future use.

Value
A SignatureSet object

Utilities
length(x) returns the number of signatures in x.
lengths(x, use.names = TRUE) returns a named integer vector containing the number of genes in each of the signatures in x.
names(x) returns a character vector containing the signature names in x.
weights(object) returns a named NumericList that defines the linear combination based signatures.
weights(object) <- value replaces the NumericList that defines the linear combination based signatures.
getSigFuncs(object) returns the signature functions of an object.
groups(object) returns a factor vector representing the signature groups.
groups(object) <- value replaces the factor vector representing the signature groups.
version(object) : returns the signature version.

Author(s)
Patrick Aboyoun
See Also

NanoStringRccSet

Examples

SignatureSet(weights=list(x = c(a = 1),
 y = c(b = 1/3, d = 2/3),
 z = c(a = 2, c = 4)),
groups=factor("x", "y", "z"),
func = c(x="default", y="default", z="default"))

Convenience Functions for Assay Data Element Sweep Operations

Description

Convenience functions for matrix thresholding, centering, and scaling based upon margin statistics.

Usage

Loop over features
fThresh(x, STATS)
fCenter(x, STATS)
fScale(x, STATS)

Round results to integers
fIntThresh(x, STATS)
fIntCenter(x, STATS)
fIntScale(x, STATS)

Comparisons
fAbove(x, STATS)
fBelow(x, STATS)
fAtLeast(x, STATS)
fAtMost(x, STATS)

Loop over samples
sThresh(x, STATS)
sCenter(x, STATS)
sScale(x, STATS)

Round results to integers
sIntThresh(x, STATS)
sIntCenter(x, STATS)
sIntScale(x, STATS)
Comparisons

- **sAbove**(x, **STATS**)
- **sBelow**(x, **STATS**)
- **sAtLeast**(x, **STATS**)
- **sAtMost**(x, **STATS**)

Arguments

- x a numeric array.
- **STATS** the summary statistic for thresholding, centering, or scaling.

Details

These functions are convenience wrappers for the following code:

- **fThresh**: `sweep(x, 1L, STATS, FUN = "pmax")`
- **fCenter**: `sweep(x, 1L, STATS, FUN = "-")`
- **fScale**: `sweep(x, 1L, STATS, FUN = "/")`
- **fIntThresh**: `round(sweep(x, 1L, STATS, FUN = "pmax"))`
- **fIntCenter**: `round(sweep(x, 1L, STATS, FUN = "-"))`
- **fIntScale**: `round(sweep(x, 1L, STATS, FUN = "/"))`
- **fAbove**: `sweep(x, 1L, STATS, FUN = ">")`
- **fBelow**: `sweep(x, 1L, STATS, FUN = "<")`
- **fAtLeast**: `sweep(x, 1L, STATS, FUN = ">=")`
- **fAtMost**: `sweep(x, 1L, STATS, FUN = "<=")`
- **sThresh**: `sweep(x, 2L, STATS, FUN = "pmax")`
- **sCenter**: `sweep(x, 2L, STATS, FUN = "-")`
- **sScale**: `sweep(x, 2L, STATS, FUN = "/")`
- **sIntThresh**: `round(sweep(x, 2L, STATS, FUN = "pmax"))`
- **sIntCenter**: `round(sweep(x, 2L, STATS, FUN = "-"))`
- **sIntScale**: `round(sweep(x, 2L, STATS, FUN = "/"))`
- **sAbove**: `sweep(x, 2L, STATS, FUN = ">")`
- **sBelow**: `sweep(x, 2L, STATS, FUN = "<")`
- **sAtLeast**: `sweep(x, 2L, STATS, FUN = ">=")`
- **sAtMost**: `sweep(x, 2L, STATS, FUN = "<=")`

Value

An array with the same shape as x that has been modified by thresholding, centering, or scaling.

Author(s)

Patrick Aboyoun
writeNanoStringRccSet

See Also

sweep

Examples

Find reasonable column minimums
thresh <- apply(stack.x, 2L, quantile, 0.05)

Threshold column values
identical(sThresh(stack.x, thresh),
 sweep(stack.x, 2L, thresh, FUN = "pmax"))

Subtract column values
identical(sCenter(stack.x, thresh),
 sweep(stack.x, 2L, thresh))

Scale to common mean
identical(sScale(stack.x, colMeans(stack.x) / mean(colMeans(stack.x))),
 sweep(stack.x, 2L, colMeans(stack.x) / mean(colMeans(stack.x)),
 FUN = "/")

Scale to common mean, rounded to the nearest integer
sIntScale(stack.x, colMeans(stack.x) / mean(colMeans(stack.x)))

writeNanoStringRccSet Write NanoString Reporter Code Count (RCC) files

Description

Write NanoString Reporter Code Count (RCC) files from an instance of class NanoStringRccSet.

Usage

writeNanoStringRccSet(x, dir = getwd())

Arguments

x an instance of class NanoStringRccSet.

dir An optional character string representing the path to the directory for the RCC files.

Details

Writes a set of NanoString Reporter Code Count (RCC) files based upon x in dir.

Value

A character vector containing the paths for all the newly created RCC files.
Author(s)
Patrick Aboyoun

See Also
NanoStringRccSet, readNanoStringRccSet

Examples
```r
datadir <- system.file("extdata", "3D_Bio_Example_Data", 
                      package = "NanoStringNCTools")
rccts <- dir(datadir, pattern = "SKMEL.*\.RCC$", full.names = TRUE)
solidTumorNoRlfPheno <- readNanoStringRccSet(rccts)
writeNanoStringRccSet(solidTumorNoRlfPheno, tempdir())
for (i in seq_along(rccts)) {
  stopifnot(identical(readLines(rccts[i]),
                      readLines(file.path(tempdir(), basename(rccts[i])))))
}
```
Index

* NanoStringRccSet
 readNanoStringRccSet, 13
 writeNanoStringRccSet, 21
* array
 sThresh, 19
* classes
 NanoStringRccSet-class, 7
 SignatureSet-class, 18
* datasets
 NanoStringRccSet-autoplot, 4
 setQCFlags, 16
* file
 readNanoStringRccSet, 13
 readRccFile, 14
 readRlfFile, 15
 writeNanoStringRccSet, 21
* graphics
 geom_beeswarm_interactive, 2
* iteration
 sThresh, 19
* manip
 readNanoStringRccSet, 13
 readRccFile, 14
 readRlfFile, 15
 writeNanoStringRccSet, 21
* math
 log2t, 3
* methods
 NanoStringRccSet-class, 7
 SignatureSet-class, 18
* normalize
 normalize, 11
 [.,NanoStringRccSet-method
 (NanoStringRccSet-class), 7
AssayDataApply, NanoStringRccSet-method
 (NanoStringRccSet-class), 7
autoplot (NanoStringRccSet-class-autoplot), 4
class: NanoStringRccSet
 (NanoStringRccSet-class), 7
class: SignatureSet
 (SignatureSet-class), 18
coerce, ExpressionSet, NanoStringRccSet-method
 (NanoStringRccSet-class), 7
controlSubset (NanoStringRccSet-class), 7
controlSubset, NanoStringRccSet-method
 (NanoStringRccSet-class), 7
DataFrame, 15
design, NanoStringRccSet-method
 (NanoStringRccSet-class), 7
design<-, NanoStringRccSet, ANY-method
 (NanoStringRccSet-class), 7
design<-, NanoStringRccSet, formula-method
 (NanoStringRccSet-class), 7
design<-, NanoStringRccSet, NULL-method
 (NanoStringRccSet-class), 7
dimLabels, NanoStringRccSet-method
 (NanoStringRccSet-class), 7
dimLabels<-, NanoStringRccSet, character-method
 (NanoStringRccSet-class), 7
endogenousSubset
 (NanoStringRccSet-class), 7
endogenousSubset, NanoStringRccSet-method
 (NanoStringRccSet-class), 7
esBy (NanoStringRccSet-class), 7
esBy, NanoStringRccSet-method
 (NanoStringRccSet-class), 7
experimentData, 9
ExpressionSet, 7, 8, 10
fAbove (sThresh), 19
fAtLeast (sThresh), 19
fAtMost (sThresh), 19
fBelow (sThresh), 19
fCenter (sThresh), 19
featureData, 8, 9
fIntCenter (sThresh), 19
fIntScale (sThresh), 19
fIntThresh (sThresh), 19
fScale (sThresh), 19
fThresh (sThresh), 19

geom_beeswarm, 2, 3
geom_beeswarm_interactive, 2
getSigFuncs (SignatureSet-class), 18
getSigFuncs, SignatureSet-method (SignatureSet-class), 18

ggplot.NanoStringRccSet (NanoStringRccSet-class), 7
groups (SignatureSet-class), 18
groups, SignatureSet-method (SignatureSet-class), 18
groups <- (SignatureSet-class), 18
groups <-, SignatureSet, ANY-method (SignatureSet-class), 18
groups <-, SignatureSet, factor-method (SignatureSet-class), 18
groups <-, SignatureSet, NULL-method (SignatureSet-class), 18

housekeepingSubset (NanoStringRccSet-class), 7
housekeepingSubset, NanoStringRccSet-method (NanoStringRccSet-class), 7

length, SignatureSet-method (SignatureSet-class), 18
lengths, SignatureSet-method (SignatureSet-class), 18

log, 4
log2, 4
log2t, 3
logt (log2t), 3

MIAME, 7
munge (NanoStringRccSet-class), 7
munge, NanoStringRccSet-method (NanoStringRccSet-class), 7
names, SignatureSet-method (SignatureSet-class), 18

NanoStringRccSet, 13, 17, 19, 21, 22
NanoStringRccSet (NanoStringRccSet-class), 7
NanoStringRccSet, environment-method (NanoStringRccSet-class), 7
NanoStringRccSet, ExpressionSet-method (NanoStringRccSet-class), 7
NanoStringRccSet, matrix-method (NanoStringRccSet-class), 7
NanoStringRccSet, missing-method (NanoStringRccSet-class), 7
NanoStringRccSet, NanoStringRccSet-method (NanoStringRccSet-class), 7
NanoStringRccSet, autoplot, 4
NanoStringRccSet-class, 7
negativeControlSubset (NanoStringRccSet-class), 7
negativeControlSubset, NanoStringRccSet-method (NanoStringRccSet-class), 7
nonControlSubset (NanoStringRccSet-class), 7
nonControlSubset, NanoStringRccSet-method (NanoStringRccSet-class), 7
normalize, 11
normalize, NanoStringRccSet-method (NanoStringRccSet-class), 7
NumericList, 18

phenoData, 7–9
positiveControlSubset (NanoStringRccSet-class), 7
positiveControlSubset, NanoStringRccSet-method (NanoStringRccSet-class), 7
preproc, 9
protocolData, 8, 9

readNanoStringRccSet, 10, 13, 15, 22
readRccFile, 14
readRlfFile, 15

sAbove (sThresh), 19
sAtLeast (sThresh), 19
sAtMost (sThresh), 19
sBelow (sThresh), 19
sCenter (sThresh), 19
sData (NanoStringRccSet-class), 7
sData, NanoStringRccSet-method (NanoStringRccSet-class), 7

setQCFlags, 16
setQCFlags, NanoStringRccSet-method
(NanoStringRccSet-class), 7

setSignatureFuncs<-
(NanoStringRccSet-class), 7
setSignatureFuncs<-, NanoStringRccSet, character-method
(NanoStringRccSet-class), 7
setSignatureGroups<-
(NanoStringRccSet-class), 7
setSignatureGroups<-, NanoStringRccSet, character-method
(NanoStringRccSet-class), 7
setSignatureGroups<-, NanoStringRccSet, factor-method
(NanoStringRccSet-class), 7
show, NanoStringRccSet-method
(NanoStringRccSet-class), 7
show, SignatureSet-method
(SignatureSet-class), 18
signatureFuncs
(NanoStringRccSet-class), 7
signatureFuncs, NanoStringRccSet-method
(NanoStringRccSet-class), 7
signatureGroups
(NanoStringRccSet-class), 7
signatureGroups, NanoStringRccSet-method
(NanoStringRccSet-class), 7
signatures (NanoStringRccSet-class), 7
signatures, NanoStringRccSet-method
(NanoStringRccSet-class), 7
signatures<-, NanoStringRccSet-class, method
(NanoStringRccSet-class), 7
signatureScores
(NanoStringRccSet-class), 7
signatureScores, NanoStringRccSet-method
(NanoStringRccSet-class), 7
signatureScoresApply
(NanoStringRccSet-class), 7
signatureScoresApply, NanoStringRccSet-method
(NanoStringRccSet-class), 7
SignatureSet, 7, 8
SignatureSet (SignatureSet-class), 18
SignatureSet-class, 18
signatureSubset
(NanoStringRccSet-class), 7
signatureSubset, NanoStringRccSet-method
(NanoStringRccSet-class), 7
sIntCenter (sThresh), 19
sIntScale (sThresh), 19
sIntThresh (sThresh), 19
sScale (sThresh), 19
sThresh, 19
subset, NanoStringRccSet-method
(NanoStringRccSet-class), 7
subset<-, NanoStringRccSet-method
(NanoStringRccSet-class), 7
svarLabels (NanoStringRccSet-class), 7
svarLabels, NanoStringRccSet-method
(NanoStringRccSet-class), 7
sweep, 21
transform, 9
transform, NanoStringRccSet-method
(NanoStringRccSet-class), 7
update_geom_params
(NanoStringRccSet-class), 7
version (SignatureSet-class), 18
version, SignatureSet-method
(SignatureSet-class), 18
version<-, SignatureSet-class, method
(SignatureSet-class), 18
version<-, SignatureSet, ANY-method
(SignatureSet-class), 18
version<-, SignatureSet, character-method
(SignatureSet-class), 18
version<-, SignatureSet, NULL-method
(SignatureSet-class), 18
weights, SignatureSet-method
(SignatureSet-class), 18
weights<-, SignatureSet-class, method
(SignatureSet-class), 18
weights<-, SignatureSet, ANY-method
(SignatureSet-class), 18
weights<-, SignatureSet, CompressedNumericList-method
(SignatureSet-class), 18
weights<-, SignatureSet, list-method
(SignatureSet-class), 18
weights<-, SignatureSet, NULL-method
(SignatureSet-class), 18
weights<-, SignatureSet, NumericList-method
(SignatureSet-class), 18
with, NanoStringRccSet-method
(NanoStringRccSet-class), 7
writeNanoStringRccSet, 10, 13, 21