Package ‘NanoMethViz’

May 3, 2024

Type Package

Title Visualise methylation data from Oxford Nanopore sequencing

Version 3.0.0

Description NanoMethViz is a toolkit for visualising methylation data from Oxford Nanopore sequencing. It can be used to explore methylation patterns from reads derived from Oxford Nanopore direct DNA sequencing with methylation called by callers including nanopolish, f5c and megalodon. The plots in this package allow the visualisation of methylation profiles aggregated over experimental groups and across classes of genomic features.

biocViews Software, LongRead, Visualization, DifferentialMethylation, DNAMethylation, Epigenetics, DataImport

URL https://github.com/shians/NanoMethViz

BugReports https://github.com/Shians/NanoMethViz/issues

Depends R (>= 4.0.0), methods, ggplot2 (>= 3.4.0)

Imports cpp11 (>= 0.2.5), readr, cli, S4Vectors, SummarizedExperiment, BiocSingular, bsseq, forcats, assertthat, AnnotationDbi, Rcpp, dplyr, data.table, dbscan, e1071, fs, GenomicRanges, Biostrings, ggrastr, glue, graphics, IRanges, limma (>= 3.44.0), patchwork, purrr, rlang, Rsamtools, scales (>= 1.2.0), scico, stats, stringr, tibble, tidyr, utils, withr, zlibbioc

Suggests BiocStyle, DSS, Mus.musculus (>= 1.3.1), Homo.sapiens (>= 1.3.1), org.Hs.eg.db, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.Hsapiens.UCSC.hg38.knownGene, org.Mm.eg.db, TxDb.Mmusculus.UCSC.mm10.knownGene, TxDb.Mmusculus.UCSC.mm39.refGene, knitr, rmarkdown, rtracklayer, testthat (>= 3.0.0), covr

LinkingTo Rcpp

License Apache License (>= 2.0)

SystemRequirements C++20

VignetteBuilder knitr
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Config/testthat/parallel true
Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/NanoMethViz
git_branch RELEASE_3_19
git_last_commit ba73586
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-02
Author Shian Su [cre, aut]
Maintainer Shian Su <su.s@wehi.edu.au>

Contents

NanoMethViz-package .. 3
bsseq_to_edger ... 4
bsseq_to_log_methy_ratio ... 4
cluster_reads ... 5
cluster_regions ... 6
convert_methy_format ... 7
create_tabix_file .. 7
exons ... 8
exons<- ... 8
exons_to_genes ... 9
filter_methy .. 9
get_example_exons_mus_musculus 10
get_exons ... 10
get_exons_homo_sapiens .. 11
get_exons_mus_musculus ... 12
load_example_modbamresult ... 12
load_example_nanomethresult 13
methy ... 13
methy<- ... 14
methy_col_names .. 14
methy_to_bsseq .. 14
methy_to_edger .. 15
ModBamFiles .. 16
ModBamFiles-class ... 16
ModBamResult-class ... 17
modbam_to_tabix .. 19
mod_code .. 20
mod_code<- .. 20
NanoMethViz-package

NanoMethViz-package

NanoMethViz: Visualise methylation data from Oxford Nanopore sequencing

Description

NanoMethViz is a toolkit for visualising methylation data from Oxford Nanopore sequencing. It can be used to explore methylation patterns from reads derived from Oxford Nanopore direct DNA sequencing with methylation called by callers including nanopolish, f5c and megalodon. The plots in this package allow the visualisation of methylation profiles aggregated over experimental groups and across classes of genomic features.

Details

The main plotting functions in this package are `plot_gene()` and `plot_region()`.

- See `vignette("UserGuide", package = "NanoMethViz")` for documentation of how to use this package.

Author(s)

Maintainer: Shian Su <su.s@wehi.edu.au>
See Also

Useful links:

- https://github.com/shians/NanoMethViz
- Report bugs at https://github.com/Shians/NanoMethViz/issues

bsseq_to_edger

Convert BSseq object to edgeR methylation matrix

Description

Convert BSseq object to edgeR methylation matrix

Usage

```r
bsseq_to_edger(bsseq, regions = NULL)
```

Arguments

- `bsseq`
 the BSseq object.

- `regions`
 the regions to calculate log-methylation ratios over. If left NULL, ratios will be calculated per site.

Value

a matrix compatible with the edgeR differential methylation pipeline

Examples

```r
methy <- system.file("methy_subset.tsv.bgz", package = "NanoMethViz")
bsseq <- methy_to_bsseq(methy)
edger_mat <- bsseq_to_edger(bsseq)
```

bsseq_to_log_methy_ratio

Convert BSseq object to log-methylation-ratio matrix

Description

Creates a log-methylation-ratio matrix from a BSseq object that is useful for dimensionality reduction plots.
cluster_reads

Usage
bsseq_to_log_methy_ratio(
 bsseq,
 regions = NULL,
 prior_count = 2,
 drop_na = TRUE
)

Arguments
bsseq the BSseq object.
regions the regions to calculate log-methylation ratios over. If left NULL, ratios will be calculated per site.
prior_count the prior count added to avoid taking log of 0.
drop_na whether to drop rows with all NA values.

Value
a matrix containing log-methylation-ratios.

Examples
nmr <- load_example_nanomethresult()
bsseq <- methy_to_bsseq(nmr)
regions <- exons_to_genes(NanoMethViz::exons(nmr))
log_m_ratio <- bsseq_to_log_methy_ratio(bsseq, regions)

cluster_reads

Cluster reads based on methylation

Description
Cluster reads based on methylation

Usage
cluster_reads(x, chr, start, end, min_pts = 5)

Arguments
x a ModBamResult object.
chr the chromosome name where to find the region.
start the start position of the region.
end the end position of the region.
min_pts the minimum number of points needed to form a cluster (default = 10).
cluster_regions

Value

A tibble with information about each read’s cluster assignment and read statistics.

cluster_regions Cluster regions by K-means

Description

Cluster regions by k-means based on their methylation profiles. In order to cluster using k-means
the methylation profile of each region is interpolated and sampled at fixed points. The first 10
principal components are used for the k-means clustering. The clustering is best behaved in regions
of similar width and CpG density.

Usage

cluster_regions(x, regions, centers = 2, grid_method = c("density", "uniform"))

Arguments

x the NanoMethResult object.
regions a table of regions containing at least columns chr, strand, start and end.
centers number of centers for k-means, identical to the number of output clusters.
grid_method the method for generating the sampling grid. The default option "density" at-
ttempts to create a grid with similar density as the data, "uniform" creates a grid
of uniform density.

Value

the table of regions given by the 'regions' argument with the column 'cluster' added.

Examples

nmr <- load_example_nanomethresult()
gene_anno <- exons_to_genes(NanoMethViz::exons(nmr))
uniform grid due to low number of input features
gene_anno_clustered <- cluster_regions(nmr, gene_anno, centers = 2, grid_method = "uniform")
plot_agg_regions(nmr, gene_anno_clustered, group_col = "cluster")
convert_methy_format \hspace{1cm} Convert methylation calls to NanoMethViz format

Description

Convert methylation calls to NanoMethViz format

Usage

convert_methy_format(
 input_files,
 output_file,
 samples = fs::path_ext_remove(fs::path_file(input_files)),
 verbose = TRUE
)

Arguments

 input_files the files to convert
 output_file the output file to write results to (must end in .bgz)
 samples the names of samples corresponding to each file
 verbose TRUE if progress messages are to be printed

Value

 invisibly returns the output file path, creates a tabix file (.bgz) and its index (.bgz.tbi)

create_tabix_file \hspace{1cm} Create a tabix file using methylation calls

Description

Create a tabix file using methylation calls

Usage

create_tabix_file(
 input_files,
 output_file,
 samples = extract_file_names(input_files),
 verbose = TRUE
)
Arguments

- **input_files**: the files to convert
- **output_file**: the output file to write results to (must end in .bgz)
- **samples**: the names of samples corresponding to each file
- **verbose**: TRUE if progress messages are to be printed

Value

invisibly returns the output file path, creates a tabix file (.bgz) and its index (.bgz.tbi)

Examples

```r
methy_calls <- system.file(package = "NanoMethViz", c("sample1_nanopolish.tsv.gz", "sample2_nanopolish.tsv.gz"))
temp_file <- paste0(tempfile(), ".tsv.bgz")
create_tabix_file(methy_calls, temp_file)
```

exons

Get exon annotation

Description

Get exon annotation

Usage

```r
exons(object)
```

exons<-

Set exon annotation

Description

Set exon annotation

Usage

```r
exons(object) <- value
```
exons_to_genes

Convert exon annotation to genes

Description

Convert exon annotation to genes

Usage

```r
exons_to_genes(x)
```

Arguments

- `x`: the exon level annotation containing columns `"gene_id"`, `"chr"`, `"strand"` and `"symbol"`.

Value

the gene level annotation where each gene is taken to span the earliest start position and latest end position of its exons.

Examples

```r
nmr <- load_example_nanomethresult()
exons_to_genes(NanoMethViz::exons(nmr))
```

filter_methy

Create filtered methylation file

Description

Create a filtered methylation file from an existing one.

Usage

```r
filter_methy(x, output_file, ...)
```

Arguments

- `x`: the path to the methylation file or a NanoMethResult object.
- `output_file`: the output file to write results to (must end in .bgz).
- `...`: filtering criteria given in dplyr syntax. Use methy_col_names() to get available column names.
get_exons

Value

invisibly returns ‘output_file’ if x is a file path, otherwise returns NanoMethResult object with methy(x) replaced with filtered value.

Examples

```r
nmr <- load_example_nanomethresult()
output_file <- paste0(tempfile(), "_.tsv.bgz")
filter_methy(nmr, output_file = output_file, chr == "chrX")
filter_methy(methy(nmr), output_file = output_file, chr == "chrX")
```

get_example_exons_mus_musculus

Get example exon annotations for mus musculus (mm10)

Description

This is a small subset of the exons returned by get_exons_mus_musculus() for demonstrative purposes. It contains the exons for the genes Brca1, Brca2, Impact, Meg3, Peg3 and Xist.

Usage

```r
get_example_exons_mus_musculus()
```

Value

data.frame containing exons

Examples

```r
example_exons <- get_example_exons_mus_musculus()
```

get_exons

Get exon annotations

Description

Helper functions are provided for obtaining exon annotations from relevant TxDb packages on Bioconductor for the construction of NanoMethResults objects.
get_exons_homo_sapiens

Usage

get_exons_mm10()

get_exons_grcm39()

get_exons_hg19()

get_exons_hg38()

Value

tibble (data.frame) object containing exon annotation.

Examples

mm10_exons <- get_exons_mm10()

grcm39_exons <- get_exons_grcm39()

hg19_exons <- get_exons_hg19()

hg38_exons <- get_exons_hg38()

get_exons_homo_sapiens

Get exon annotations for Homo sapiens (hg19)

Description

Get exon annotations for Homo sapiens (hg19)

Usage

get_exons_homo_sapiens()

Value

data.frame containing exons

Examples

h_sapiens_exons <- get_exons_homo_sapiens()
get_exons_mus_musculus

Get exon annotations for Mus musculus (mm10)

Description

Get exon annotations for Mus musculus (mm10)

Usage

```r
get_exons_mus_musculus()
```

Value

data.frame containing exons

Examples

```r
m_musculus_exons <- get_exons_mus_musculus()
```

load_example_modbamresult

Load an example ModBamResult object

Description

Load an example ModBamResult object for demonstration of plotting functions. Run `load_example_modbamresult` without the function call to see how the object is constructed.

Usage

```r
load_example_modbamresult()
```

Value

a ModBamResult object

Examples

```r
mbr <- load_example_modbamresult()
```
load_example_nanomethresult

Load an example NanoMethResult object

Description

Load an example NanoMethResult object for demonstration of plotting functions. Run `load_example_nanomethresults` without the function call to see how the object is constructed.

Usage

`load_example_nanomethresult()`

Value

a NanoMethResults object

Examples

```r
nmr <- load_example_nanomethresult()
```

methy

Get methylation data

Description

Get methylation data

Usage

`methy(object)`

Arguments

- `object` the object.

Value

the path to the methylation data.

Examples

```r
showMethods("methy")
```
mehy<-

Set methylation data

Description
Set methylation data

Usage
mehy(object) <- value

mehy_col_names

Column names for methylation data

Description
Column names for methylation data

Usage
mehy_col_names()

Value
column names for methylation data

Examples
mehy_col_names()

mehy_to_bsseq

Create BSSeq object from methylation tabix file

Description
Create BSSeq object from methylation tabix file

Usage
mehy_to_bsseq(mehy, out_folder = tempdir(), verbose = TRUE)
methy_to_edger

Arguments

methy the path to the methylation tabix file.
out_folder the folder to store intermediate files. One file is created for each sample and contains columns "chr", "pos", "total" and "methylated".
verbose TRUE if progress messages are to be printed

Value

a BSSeq object.

Examples

```r
nmr <- load_example_nanomethresult()
bseq <- methy_to_bsseq(nmr)
```

methy_to_edger Convert NanoMethResult object to edgeR methylation matrix

Description

Convert NanoMethResult object to edgeR methylation matrix

Usage

```r
methy_to_edger(methy, regions = NULL, out_folder = tempdir(), verbose = TRUE)
```

Arguments

methy the path to the methylation tabix file.
regions the regions to calculate log-methylation ratios over. If left NULL, ratios will be calculated per site.
out_folder the folder to store intermediate files. One file is created for each sample and contains columns "chr", "pos", "total" and "methylated".
verbose TRUE if progress messages are to be printed

Value

a matrix compatible with the edgeR differential methylation pipeline

Examples

```r
nmr <- load_example_nanomethresult()
edger_mat <- methy_to_edger(nmr)
```
ModBamFiles-class

ModBamFiles
Constructor for a ModBamFiles object

Description

This function creates a ModBamFiles object containing information about the samples and file paths. This constructor checks that the files are readable and have an index.

Usage

```r
ModBamFiles(samples, paths)
```

```
## S4 method for signature 'ModBamFiles'
show(object)
```

Arguments

- `samples`: a character vector with the names of the samples.
- `paths`: a character vector with the file paths for the BAM files.
- `object`: a ModBamFiles object.

Value

A ModBamFiles object with the sample and path information.

ModBamFiles-class
ModBamFiles class

Description

This is a class for holding information about modbam files. It is a data.frame containing information about samples and paths to modbam files.
ModBamResult-class

Modbam methylation results

Description

A ModBamResult object stores modbam data used for NanoMethViz visualisation. It contains stores a ModBamFiles object, sample information and optional exon information. The object is constructed using the ModBamResult() constructor function described in "Usage".

Usage

```r
## S4 method for signature 'ModBamResult'
methy(object)

## S4 replacement method for signature 'ModBamResult,ModBamFiles'
methy(object) <- value

## S4 method for signature 'ModBamResult'
samples(object)

## S4 replacement method for signature 'ModBamResult,data.frame'
samples(object) <- value

## S4 method for signature 'ModBamResult'
exons(object)

## S4 replacement method for signature 'ModBamResult,data.frame'
exons(object) <- value

## S4 method for signature 'ModBamResult'
mod_code(object)

## S4 replacement method for signature 'ModBamResult,character'
mod_code(object) <- value
```

```r
ModBamResult(methy, samples, exons = NULL, mod_code = "m")
```

Arguments

- `object` - the ModBamResult object.
- `value` - the mod code.
- `methy` - a ModBamFiles object.
- `samples` - the data.frame of sample annotation containing at least columns sample and group.
- `exons` - (optional) the data.frame of exon information containing at least columns gene_id, chr, strand, start, end, transcript_id and symbol.
ModBamResult-class

mod_code a character with the mod code of interest. Defaults to "m" for 5mC. See details for other options.

Details

The possible tags for mod_code can be found at https://samtools.github.io/hts-specs/SAMtags.pdf under the 'Base modifications' section.

Value

a NanoMethResult object to be used with plotting functions
a ModBamFiles data.frame.
the sample annotation.
the exon annotation.
the mod code.

Functions

- methy(ModBamResult): modbam information getter.
- methy(object = ModBamResult) <- value: modbam information setter.
- samples(ModBamResult): sample annotation getter.
- samples(object = ModBamResult) <- value: sample annotation setter.
- exons(ModBamResult): exon annotation getter.
- exons(object = ModBamResult) <- value: exon annotation setter.
- mod_code(ModBamResult): mod code getter.
- mod_code(object = ModBamResult) <- value: mod code setter.
- ModBamResult(): Constructor

Slots

methy a ModBamFiles data.frame specifying the samples and paths to bam files.
samples the data.frame of sample annotation containing at least columns sample and group.
exons the data.frame of exon information containing at least columns gene_id, chr, strand, start, end, transcript_id and symbol.
mod_code the modification code of interest.
modbam_to_tabix

Convert BAM with modifications to tabix format

Description

The `modbam_to_tabix` function takes a ModBamResult object and converts it into a tabix file format, which is efficient for indexing and querying large datasets.

Usage

```r
modbam_to_tabix(x, out_file, mod_code = NanoMethViz::mod_code(x))
```

Arguments

- `x`: the ModBamResult object.
- `out_file`: the path of the output tabix.
- `mod_code`: the modification code to use, defaults to 'm' for 5mC methylation.

Details

The possible tags for `mod_code` can be found at https://samtools.github.io/hts-specs/SAMtags.pdf under the 'Base modifications' section.

Value

invisibly returns the name of the created tabix file.

Examples

```r
out_file <- paste0(tempfile(), "\.tsv.bgz")
mbr <- ModBamResult(
  methy = ModBamFiles(
    samples = "sample1",
    paths = system.file("peg3.bam", package = "NanoMethViz")
  ),
  samples = data.frame(
    sample = "sample1",
    group = "group1"
  )
)
modbam_to_tabix(mbr, out_file)
```
mod_code

Get mod code

Description

Get mod code

Usage

mod_code(object)

mod_code<-

Set mod code

Description

Set mod code

Usage

mod_code(object) <- value

NanoMethResult-class Nanopore Methylation Result

Description

A NanoMethResult object stores data used for NanoMethViz visualisation. It contains stores a path to the methylation data, sample information and optional exon information. The object is constructed using the NanoMethResult() constructor function described in "Usage".

Usage

NanoMethResult(methy, samples, exons = NULL)

S4 method for signature 'NanoMethResult'
methy(object)

S4 replacement method for signature 'NanoMethResult,ANY'
methy(object) <- value

S4 method for signature 'NanoMethResult'
samples(object)
NanoMethResult-class

```r
## S4 replacement method for signature 'NanoMethResult,data.frame'
samples(object) <- value

## S4 method for signature 'NanoMethResult'
exons(object)

## S4 replacement method for signature 'NanoMethResult,data.frame'
exons(object) <- value
```

Arguments

- `methy` the path to the methylation tabix file.
- `samples` the data.frame of sample annotation containing at least columns sample and group.
- `exons` (optional) the data.frame of exon information containing at least columns gene_id, chr, strand, start, end, transcript_id and symbol.
- `object` the NanoMethResult object.
- `value` the exon annotation.

Value

- a NanoMethResult object to be used with plotting functions
- the path to the methylation data.
- the sample annotation.
- the exon annotation.

Functions

- `NanoMethResult()`: Constructor
- `methy(NanoMethResult)`: methylation data path getter.
- `methy(object = NanoMethResult) <- value`: methylation data path setter.
- `samples(NanoMethResult)`: sample annotation getter.
- `samples(object = NanoMethResult) <- value`: sample annotation setter.
- `exons(NanoMethResult)`: exon annotation getter.
- `exons(object = NanoMethResult) <- value`: exon annotation setter.

Slots

- `methy` the path to the methylation tabix file.
- `samples` the data.frame of sample annotation containing at least columns sample and group.
- `exons` the data.frame of exon information containing at least columns gene_id, chr, strand, start, end, transcript_id and symbol.
Examples

```r
methy <- system.file(package = "NanoMethViz", "methy_subset.tsv.bgz")
sample <- c(
  "B6Cast_Prom_1_bl6",
  "B6Cast_Prom_1_cast",
  "B6Cast_Prom_2_bl6",
  "B6Cast_Prom_2_cast",
  "B6Cast_Prom_3_bl6",
  "B6Cast_Prom_3_cast"
)
group <- c(
  "bl6",
  "cast",
  "bl6",
  "cast",
  "bl6",
  "cast"
)
sample_anno <- data.frame(sample, group, stringsAsFactors = FALSE)
exon_tibble <- get_example_exons_mus_musculus()
NanoMethResult(methy, sample_anno, exon_tibble)

x <- load_example_nanomethresult()
methy(x)
```

plot_agg_genes

Plot gene aggregate plot

Description

Plot gene aggregate plot

Usage

```r
plot_agg_genes(
  x,
  genes = NULL,
  binary_threshold = 0.5,
  group_col = NULL,
  flank = 2000,
  stranded = TRUE,
  span = 0.05,
  palette = ggplot2::scale_colour_brewer(palette = "Set1")
)
```
Arguments

- **x**
 the NanoMethResult object.

- **genes**
 a character vector of genes to include in aggregate plot, if NULL then all genes are used.

- **binary_threshold**
 the modification probability such that calls with modification probability above the threshold are considered methylated, and those with probability equal or below are considered unmethylated.

- **group_col**
 the column to group aggregated trends by. This column can be in from the regions table or samples(x).

- **flank**
 the number of flanking bases to add to each side of each region.

- **stranded**
 TRUE if negative strand features should have coordinates flipped to reflect features like transcription start sites.

- **span**
 the span for loess smoothing.

- **palette**
 the ggplot colour palette used for groups.

Value

a ggplot object containing the aggregate methylation trend of genes.

Examples

```r
nmr <- load_example_nanomethresult()
plot_agg_genes(nmr)
```

plot_agg_regions

Plot aggregate regions

Description

Plot aggregate regions

Usage

```r
plot_agg_regions(  
  x,  
  regions,  
  binary_threshold = 0.5,  
  group_col = NULL,  
  flank = 2000,  
  stranded = TRUE,  
  span = 0.05,  
  palette = ggplot2::scale_colour_brewer(palette = "Set1")  
)
```
Argumens

x the NanoMethResult object.

regions a table of regions containing at least columns chr, strand, start and end. Any additional columns can be used for grouping.

binary_threshold the modification probability such that calls with modification probability above the threshold are considered methylated, and those with probability equal or below are considered unmethylated.

group_col the column to group aggregated trends by. This column can be in from the regions table or samples(x).

flank the number of flanking bases to add to each side of each region.

stranded TRUE if negative strand features should have coordinates flipped to reflect features like transcription start sites.

span the span for loess smoothing.

palette the ggplot colour palette used for groups.

Value

a ggplot object containing the aggregate methylation trend.

Examples

```r
nmr <- load_example_nanomethresult()
gene_anno <- exons_to_genes(NanoMethViz::exons(nmr))
plot_agg_regions(nmr, gene_anno)
plot_agg_regions(nmr, gene_anno, group_col = "sample")
plot_agg_regions(nmr, gene_anno, group_col = "group")
```

Description

Plot the methylation of a gene symbol specified within the exon(x) slot.

Usage

```r
plot_gene(x, gene, ...)
```

S4 method for signature 'NanoMethResult,character'

```r
plot_gene(
x,
genec,
window_prop = 0.3,
```
Arguments

x
 the NanoMethResult or ModBamResult object.
gene
 the gene symbol for the gene to plot.
...
 additional arguments.
window_prop
 the size of flanking region to plot. Can be a vector of two values for left and right window size. Values indicate proportion of gene length.
anno_regions
 the data.frame of regions to be annotated.
binary_threshold
 the modification probability such that calls with modification probability above the threshold are set to 1 and probabilities equal to or below the threshold are set to 0.
avg_method
 the average method for pre-smoothing at each genomic position. Data is pre-smoothed at each genomic position before the smoothed aggregate line is generated for performance reasons. The default is "mean" which corresponds to the
plot_gene

average methylation fraction. The alternative "median" option is closer to an average within the more common methylation state.

spaghetti whether or not individual reads should be shown.
heatmap whether or not read-methylation heatmap should be shown.
heatmap_subsample how many packed rows of reads to subsample to.
smoothing_window the window size for smoothing the trend line.
gene_anno whether to show gene annotation.
palette the ggplot colour palette used for groups.
line_size the size of the lines.
mod_scale the scale range for modification probabilities. Default c(0, 1), set to "auto" for automatic limits.
span DEPRECATED, use smoothing_window instead. Will be removed in next version.

Details

This function plots the methylation data for a given gene. Since V3.0.0 NanoMethViz has changed the smoothing strategy from a loess smoothing to a weighted moving average. This is because the loess smoothing was too computationally expensive for large datasets and had a span parameter that was difficult to tune. The new smoothing strategy is controlled by the smoothing_window argument.

Value

a patchwork plot containing the methylation profile in the specified region.

Functions

• plot_gene(x = ModBamResult, gene = character): S4 method for ModBamResult

Examples

nmr <- load_example_nanomethresult()
plot_gene(nmr, "Peg3")
plot_gene_heatmap

Plot gene methylation heatmap

Description

Plot the methylation heatmap of a gene symbol specified within the exon(x) slot.

Usage

plot_gene_heatmap(x, gene, ...)

S4 method for signature 'NanoMethResult,character'
plot_gene_heatmap(
 x,
 gene,
 window_prop = 0.3,
 pos_style = c("to_scale", "compact"),
 subsample = 50
)

S4 method for signature 'ModBamResult,character'
plot_gene_heatmap(
 x,
 gene,
 window_prop = 0.3,
 pos_style = c("to_scale", "compact"),
 subsample = 50
)

Arguments

x the NanoMethResult or ModBamResult object.
gene the gene symbol for the gene to plot.
... additional arguments.
window_prop the size of flanking region to plot. Can be a vector of two values for left and right window size. Values indicate proportion of gene length.
pos_style the style for plotting the base positions along the x-axis. Defaults to "to_scale", plotting (potentially) overlapping squares along the genomic position to scale. The "compact" options plots only the positions with measured modification.
subsample the number of read of packed read rows to subsample to.

Value

a ggplot object of the heatmap
a ggplot plot containing the heatmap.
Examples

```r
nmr <- load_example_nanomethresult()
plot_gene_heatmap(nmr, "Peg3")
```

plot_grange

Plot GRanges

Description

Plot GRanges

Usage

```r
plot_grange(
  x,
  grange,
  anno_regions = NULL,
  binary_threshold = NULL,
  avg_method = c("mean", "median"),
  spaghetti = FALSE,
  heatmap = TRUE,
  heatmap_subsample = 50,
  gene_anno = TRUE,
  smoothing_window = 2000,
  window_prop = 0,
  palette = ggplot2::scale_colour_brewer(palette = "Set1"),
  line_size = 1,
  span = NULL
)
```

Arguments

- **x**
 - the NanoMethResult object.
- **grange**
 - the GRanges object with one entry.
- **anno_regions**
 - the data.frame of regions to be annotated.
- **binary_threshold**
 - the modification probability such that calls with modification probability above the threshold are set to 1 and probabilities equal to or below the threshold are set to 0.
- **avg_method**
 - the average method for pre-smoothing at each genomic position. Data is pre-smoothed at each genomic position before the smoothed aggregate line is generated for performance reasons. The default is "mean" which corresponds to the average methylation fraction. The alternative "median" option is closer to an average within the more common methylation state.
- **spaghetti**
 - whether or not individual reads should be shown.
plot_grange_heatmap

heatmap whether or not read-methylation heatmap should be shown.
heatmap_subsample how many packed rows of reads to subsample to.
gene_anno whether to show gene annotation.
smoothing_window the window size for smoothing the trend line.
window_prop the size of flanking region to plot. Can be a vector of two values for left and right window size. Values indicate proportion of gene length.
palette the ggplot colour palette used for groups.
line_size the size of the lines.
span DEPRECATED, use smoothing_window instead. Will be removed in next version.

Value

a patchwork plot containing the methylation profile in the specified region.

Examples

```r
nmr <- load_example_nanomethresult()
plot_grange(nmr, GenomicRanges::GRanges("chr7:6703892-6730431"))
```

plot_grange_heatmap Plot GRanges heatmap

Description

Plot GRanges heatmap

Usage

```r
plot\_grange\_heatmap(
  x, 
grange, 
pos\_style = c("to\_scale", "compact"),
  window\_prop = 0,
  subsample = 50
)
```
Description

Plot multi-dimensional scaling plot using algorithm of limma::plotMDS(). It is recommended this be done with the log-methylation-ratio matrix generated by bsseq_to_log_methy_ratio().

Usage

plot_mds(
 x,
 top = 500,
 plot_dims = c(1, 2),
 labels = colnames(x),
 groups = NULL,
 legend_name = "group"
)

Arguments

x the log-methylation-ratio matrix.

Example

nmr <- load_example_nanomethresult()
plot_grange_heatmap(nmr, GenomicRanges::GRanges("chr7:6703892-6730431"))

plot_mds
Plot MDS
plot_pca

The function `plot_pca` is used to plot multi-dimensional scaling (MDS) using the algorithm of BiocSingular::runPCA(). It is recommended to use this function with the log-methylation-ratio matrix generated by `bsseq_to_log_methy_ratio()`.

Usage

```r
plot_pca(
  x,
  plot_dims = c(1, 2),
  labels = colnames(x),
  groups = NULL,
  legend_name = "group"
)
```

Arguments

- `x`: the log-methylation-ratio matrix.
- `plot_dims`: the numeric vector of the two dimensions to be plotted.
- `labels`: the character vector of labels for data points. By default uses column names of `x`, set to NULL to plot points.
- `groups`: the character vector of groups the data points will be coloured by.
- `legend_name`: the name for the legend.

Value

A ggplot object of the MDS plot.

Examples

```r
nmr <- load_example_nanomethresult()
bss <- methy_to_bsseq(nmr)
lmr <- bsseq_to_log_methy_ratio(bss)
plot_mds(lmr)
```

Description

Plot multi-dimensional scaling plot using algorithm of BiocSingular::runPCA(). It is recommended to use this function with the log-methylation-ratio matrix generated by `bsseq_to_log_methy_ratio()`.
Value

`ggplot` object of the MDS plot.

Examples

```r
nmr <- load_example_nanomethresult()
bss <- methy_to_bsseq(nmr)
lmr <- bsseq_to_log_methy_ratio(bss)
plot_pca(lmr)
```

Description

Plot the methylation of a genomic region.

Usage

```r
plot_region(x, chr, start, end, ...)
```

```r
## S4 method for signature 'NanoMethResult,character,numeric,numeric'
plot_region(
  x,
  chr,
  start,
  end,
  anno_regions = NULL,
  binary_threshold = NULL,
  avg_method = c("mean", "median"),
  spaghetti = FALSE,
  heatmap = TRUE,
  heatmap_subsample = 50,
  smoothing_window = 2000,
  gene_anno = TRUE,
  window_prop = 0,
  palette = ggplot2::scale_colour_brewer(palette = "Set1"),
  line_size = 1,
  mod_scale = c(0, 1),
  span = NULL
)
```

```r
## S4 method for signature 'ModBamResult,character,numeric,numeric'
plot_region(
  x,
  chr,
```
plot_region

start,
end,
anno_regions = NULL,
binary_threshold = NULL,
avg_method = c("mean", "median"),
spaghetti = FALSE,
heatmap = TRUE,
heatmap_subsample = 50,
smoothing_window = 2000,
gene_anno = TRUE,
window_prop = 0,
palette = ggplot2::scale_colour_brewer(palette = "Set1"),
line_size = 1,
mod_scale = c(0, 1),
span = NULL
)

S4 method for signature 'NanoMethResult,factor,numeric,numeric'
plot_region(
x,
chr,
start,
end,
anno_regions = NULL,
binary_threshold = NULL,
avg_method = c("mean", "median"),
spaghetti = FALSE,
heatmap = TRUE,
heatmap_subsample = 50,
smoothing_window = 2000,
gene_anno = TRUE,
window_prop = 0,
palette = ggplot2::scale_colour_brewer(palette = "Set1"),
line_size = 1,
mod_scale = c(0, 1),
span = NULL
)

S4 method for signature 'ModBamResult,factor,numeric,numeric'
plot_region(
x,
chr,
start,
end,
anno_regions = NULL,
binary_threshold = NULL,
avg_method = c("mean", "median"),
spaghetti = FALSE,
heatmap = TRUE,
heatmap_subsample = 50,
smoothing_window = 2000,
gene_anno = TRUE,
window_prop = 0,
palette = ggplot2::scale_colour_brewer(palette = "Set1"),
line_size = 1,
mod_scale = c(0, 1),
span = NULL
}

Arguments

x the NanoMethResult or ModBamResult object.
chr the chromosome to plot.
start the start of the plotting region.
end the end of the plotting region.
... additional arguments.
anno_regions the data.frame of regions to be annotated.
binary_threshold the modification probability such that calls with modification probability above the threshold are set to 1 and probabilities equal to or below the threshold are set to 0.
avg_method the average method for pre-smoothing at each genomic position. Data is pre-smoothed at each genomic position before the smoothed aggregate line is generated for performance reasons. The default is "mean" which corresponds to the average methylation fraction. The alternative "median" option is closer to an average within the more common methylation state.
spaghetti whether or not individual reads should be shown.
heatmap whether or not read-methylation heatmap should be shown.
heatmap_subsample how many packed rows of reads to subsample to.
smoothing_window the window size for smoothing the trend line.
gene_anno whether to show gene annotation.
window_prop the size of flanking region to plot. Can be a vector of two values for left and right window size. Values indicate proportion of gene length.
palette the ggplot colour palette used for groups.
line_size the size of the lines.
mod_scale the scale range for modification probabilities. Default c(0, 1), set to "auto" for automatic limits.
span DEPRECATED, use smoothing_window instead. Will be removed in next version.
Details

This function plots the methylation data for a given region. The region is specified by chromosome, start and end positions. The basic plot contains a smoothed line plot of the methylation of each experimental group. Since V3.0.0 NanoMethViz has changed the smoothing strategy from a loess smoothing to a weighted moving average. This is because the loess smoothing was too computationally expensive for large datasets and had a span parameter that was difficult to tune. The new smoothing strategy is controlled by the smoothing_window argument.

Value

a patchwork plot containing the methylation profile in the specified region.

Examples

```r
nmr <- load_example_nanomethresult()
plot_region(nmr, "chr7", 6703892, 6730431)
```

S4 method for signature 'NanoMethResult,character,numeric,numeric'
plot_region_heatmap(x, chr, start, end, ...)

S4 method for signature 'ModBamResult,character,numeric,numeric'
plot_region_heatmap(x, chr, start, end, pos_style = c("to_scale", "compact"), window_prop = 0, subsample = 50)

Description

Plot the methylation heatmap of a genomic region.

Usage

```r
plot_region_heatmap(x, chr, start, end, ...)
```

```r
## S4 method for signature 'NanoMethResult,character,numeric,numeric'
plot_region_heatmap(x, chr, start, end, pos_style = c("to_scale", "compact"), window_prop = 0, subsample = 50)
```

```r
## S4 method for signature 'ModBamResult,character,numeric,numeric'
plot_region_heatmap(x, chr, start, end, pos_style = c("to_scale", "compact"),
```
window_prop = 0,
subsample = 50
)

S4 method for signature 'NanoMethResult,factor,numeric,numeric'
plot_region_heatmap(
 x,
 chr,
 start,
 end,
 pos_style = c("to_scale", "compact"),
 window_prop = 0,
 subsample = 50
)

S4 method for signature 'ModBamResult,factor,numeric,numeric'
plot_region_heatmap(
 x,
 chr,
 start,
 end,
 pos_style = c("to_scale", "compact"),
 window_prop = 0,
 subsample = 50
)

Arguments

x the NanoMethResult or ModBamResult object.
chr the chromosome to plot.
start the start of the plotting region.
end the end of the plotting region.
... additional arguments.
pos_style the style for plotting the base positions along the x-axis. Defaults to "to_scale", plotting (potentially) overlapping squares along the genomic position to scale. The "compact" options plots only the positions with measured modification.
window_prop the size of flanking region to plot. Can be a vector of two values for left and right window size. Values indicate proportion of gene length.
subsample the number of read of packed read rows to subsample to.

Value

a ggplot object of the heatmap.
a ggplot plot containing the heatmap.
plot_violin

Examples

```r
nmr <- load_example_nanomethresult()
plot_region_heatmap(nmr, "chr7", 6703892, 6730431)
```

Description

This function plots a violin plot of the methylation proportion for each region in the regions table. The methylation proportion is calculated as the mean of the modification probability within each region and the violin represents the . The regions are then grouped and coloured by the group_col column in the regions table or samples(x).

Usage

```r
plot_violin(
  x,
  regions,
  binary_threshold = 0.5,
  group_col = "group",
  palette = ggplot2::scale_colour_brewer(palette = "Set1")
)
```

Arguments

- `x` the NanoMethResult object.
- `regions` a table of regions containing at least columns chr, strand, start and end. Any additional columns can be used for grouping.
- `binary_threshold` the modification probability such that calls with modification probability above the threshold are considered methylated, and those with probability equal or below are considered unmethylated.
- `group_col` the column to group aggregated trends by. This column can be in from the regions table or samples(x).
- `palette` the ggplot colour palette used for groups.

Value

a ggplot object containing the methylation violin plot.
Examples

```r
nmr <- load_example_nanomethresult()
gene_anno <- exons_to_genes(NanoMethViz::exons(nmr))
plot_violin(nmr, gene_anno)
plot_violin(nmr, gene_anno, group_col = "sample")
```

query_exons

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query a data.frame, NanoMethResult or ModBamResult for exon annotation.</td>
</tr>
</tbody>
</table>

Usage

```r
query_exons_region(x, chr, start, end)
query_exons_gene_id(x, gene_id)
query_exons_symbol(x, symbol)
```

Arguments

- `x`: the object to query.
- `chr`: the chromosome to query.
- `start`: the start of the query region.
- `end`: the end of the query region.
- `gene_id`: the gene_id to query.
- `symbol`: the gene_id to query.

Value

data.frame of queried exons.

Functions

- `query_exons_region()`: Query region.
- `query_exons_gene_id()`: Query gene ID.
- `query_exons_symbol()`: Query gene symbol.
query_methy

Query methylation data

Description

Query methylation data

Usage

query_methy(
 x,
 chr,
 start,
 end,
 simplify = TRUE,
 force = FALSE,
 truncate = TRUE,
 site_filter = getOption("NanoMethViz.site_filter", 1L)
)

Arguments

x the NanoMethResults object or a path to the methylation data (tabix-bgzipped).
chr the vector of chromosomes
start the vector of start positions
end the vector of end positions
simplify whether returned results should be row-concatenated
force whether to force empty output when query region 'chr' does not appear in data. Without 'force', an empty result indicates that the requested 'chr' appears in the data but no data overlaps with requested region, and an invalid 'chr' will cause an error.
truncate when querying from ModBamFiles, whether or not to truncate returned results to only those within the specified region. Otherwise methylation data for entire reads overlapping the region will be returned.
site_filter the minimum amount of coverage to report a site. This filters the queried data such that any site with less than the filter is not returned. The default is 1, which means that all sites are returned. This option can be set globally using the options(site_filter = ...) which will affect all plotting functions in NanoMethviz.

Details

The argument site_filter can be set globally using the options(site_filter = ...) command.
Value

A table containing the data within the queried regions. If simplify is TRUE (default) then all data is
contained within one table, otherwise it is a list of tables where each element is the data from one
region.

Examples

```r
nmr <- load_example_nanomethresult()
query_methy(methy(nmr), "chr7", 6703892, 6730431)
```

raw_methy_to_tabix

Convert methylation file to tabix format

Description

Convert methylation file to tabix format

Usage

```r
raw_methy_to_tabix(x)
```

Arguments

- `x` the path to the sorted methylation file

Value

invisibly returns the path to the tabix file

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

- e1071 sigmoid
region_methy_stats Calculate region methylation statistics

Description
Calculate the average methylation probability and prevalence based on specified probability threshold.

Usage
region_methy_stats(nmr, regions, threshold = 0.5)

Arguments
- nmr: the NanoMethResult object.
- regions: the table of regions to query statistics for.
- threshold: the threshold to use for determining methylation calls for the calculation of prevalence.

Value
table of regions with additional columns of methylation summary statistics.

Examples
nmr <- load_example_nanomethresult()
gene_anno <- exons_to_genes(NanoMethViz::exons(nmr))
region_methy_stats(nmr, gene_anno)

samples Get sample annotation

Description
Get sample annotation

Usage
samples(object)
samples<-

Set sample annotation

Description
Set sample annotation

Usage
samples(object) <- value

sort_methy_file

Sort methylation file

Description
Sort methylation file

Usage
sort_methy_file(x)

Arguments
x
the path to the methylation file to sort

Value
invisibly returns path of sorted file
Index

* internal
 convert_methy_format, 7
 exons, 8
 exons<-, 8
 methy, 13
 methy<-, 14
 mod_code, 20
 mod_code<-, 20
 NanoMethViz-package, 3
 raw_methy_to_tabix, 40
 reexports, 40
 samples, 41
 samples<-, 42
 sort_methy_file, 42
bsseq_to_edger, 4
bsseq_to_log_methy_ratio, 4
cluster_reads, 5
cluster_regions, 6
convert_methy_format, 7
create_tabix_file, 7
exons, 8
exons, ModBamResult-method
 (ModBamResult-class), 17
exons, NanoMethResult-method
 (NanoMethResult-class), 20
exons<-, 8
exons<-, ModBamResult, data.frame-method
 (ModBamResult-class), 17
exons<-, NanoMethResult, data.frame-method
 (NanoMethResult-class), 20
exons_to_genes, 9
filter_methy, 9
get_example_exons_mus_musculus, 10
get_exons, 10
get_exons_grcm39 (get_exons), 10
get_exons_hg19 (get_exons), 10
get_exons_hg38 (get_exons), 10
get_exons_homo_sapiens, 11
get_exons_mm10 (get_exons), 10
get_exons_mus_musculus, 12
load_example_modbamresult, 12
load_example_nanomethresult, 13
methy, 13
methy, ModBamResult-method
 (ModBamResult-class), 17
methy, NanoMethResult-method
 (NanoMethResult-class), 20
methy<-, 14
methy<-, ModBamResult, ModBamFiles-method
 (ModBamResult-class), 20
methy<-, NanoMethResult, ANY-method
 (NanoMethResult-class), 20
methy_col_names, 14
methy_to_bsseq, 14
methy_to_edger, 15
mod_code, 20
mod_code, ModBamResult-method
 (ModBamResult-class), 17
mod_code<-, 20
mod_code<-, ModBamResult, character-method
 (ModBamResult-class), 20
modbam_to_tabix, 19
ModBamFiles, 16
ModBamFiles-class, 16
ModBamResult (ModBamResult-class), 17
ModBamResult-class, 17
NanoMethResult (NanoMethResult-class), 20
NanoMethResult-class, 20
NanoMethViz (NanoMethViz-package), 3
NanoMethViz-package, 3
plot_agg_genes, 22
plot_agg_regions, 23
plot_gene, 24
plot_gene(), 3
plot_gene, ModBamResult, character-method
(plot_gene), 24
plot_gene, NanoMethResult, character-method
(plot_gene), 24
plot_gene_heatmap, 27
plot_gene_heatmap, ModBamResult, character-method
(plot_gene_heatmap), 27
plot_gene_heatmap, NanoMethResult, character-method
(plot_gene_heatmap), 27
plot_grange, 28
plot_grange_heatmap, 29
plot_mds, 30
plot_pca, 31
plot_region, 32
plot_region(), 3
plot_region, ModBamResult, character, numeric, numeric-method
(plot_region), 32
plot_region, ModBamResult, factor, numeric, numeric-method
(plot_region), 32
plot_region, NanoMethResult, character, numeric, numeric-method
(plot_region), 32
plot_region, NanoMethResult, factor, numeric, numeric-method
(plot_region), 32
plot_region_heatmap, 35
plot_region_heatmap, ModBamResult, character, numeric, numeric-method
(plot_region_heatmap), 35
plot_region_heatmap, ModBamResult, factor, numeric, numeric-method
(plot_region_heatmap), 35
plot_region_heatmap, NanoMethResult, character, numeric, numeric-method
(plot_region_heatmap), 35
plot_region_heatmap, NanoMethResult, factor, numeric, numeric-method
(plot_region_heatmap), 35
plot_violin, 37
query_exons, 38
query_exons_gene_id (query_exons), 38
query_exons_region (query_exons), 38
query_exons_symbol (query_exons), 38
query_methy, 39
raw_methy_to_tabix, 40
reexports, 40
region_methy_stats, 41
samples, 41