Package ‘NBAMSeq’
May 18, 2024

Type Package
Title Negative Binomial Additive Model for RNA-Seq Data
Version 1.20.0
Description High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation.
License GPL-2
URL https://github.com/reese3928/NBAMSeq
BugReports https://github.com/reese3928/NBAMSeq/issues
Encoding UTF-8
Imports DESeq2, mgcv(>= 1.8-24), BiocParallel, genefilter, methods, stats,
Depends R (>= 3.6), SummarizedExperiment, S4Vectors
Suggests knitr, rmarkdown, testthat, ggplot2
RoxygenNote 6.1.0
VignetteBuilder knitr
biocViews RNASeq, DifferentialExpression, GeneExpression, Sequencing, Coverage
git_url https://git.bioconductor.org/packages/NBAMSeq
git_branch RELEASE_3_19
git_last_commit e85c70f
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-17
Author Xu Ren [aut, cre], Pei Fen Kuan [aut]
Maintainer Xu Ren <xuren2120@gmail.com>
makeExample

Contents

makeExample .. 2
makeplot ... 3
NBAMSeq .. 3
NBAMSeq-methods 4
NBAMSeqDataSet 5
NBAMSeqDataSet-class 6
results ... 7

Index 8

makeExample Make an example NBAMSeqDataSet

Description
This function makes an example NBAMSeqDataSet

Usage
makeExample(n = 200, m = 30)

Arguments

n number of genes
m number of samples

Value
a NBAMSeqDataSet object

References

Examples

gsd = makeExample()
makeplot

Making plots to visualize nonlinear associations

Description

This function makes plots to visualize nonlinear associations.

Usage

makeplot(object, phenoname, genename, ...)

Arguments

object a NBAMSeqDataSet object
phenoname the name of nonlinear variable to be visualized
genename the name of gene to be visualized
... additional arguments provided to plot.gam

Value

the plot made by plot.gam() function

Examples

gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)
makeplot(gsd, "pheno", "gene3", main = "gene10")

NBAMSeq

Differential expression analysis based on negative binomial additive model

Description

This function performs differential expression analysis based on negative binomial additive model.

Usage

NBAMSeq(object, gamma = 2.5, parallel = FALSE, fitlin = FALSE, BPPARAM = bpparam(), ...)

Arguments

- **object**: a NBAMSeqDataSet object
- **gamma**: a number greater or equal to 1. Increase gamma to create smoother models. Default gamma is 2.5. See `gam` for details.
- **parallel**: either TRUE or FALSE indicating whether parallel should be used. Default is FALSE
- **fitlin**: either TRUE or FALSE indicating whether linear model should be fitted. Default is FALSE
- **BPPARAM**: an argument provided to `bplapply`. See `register` for details.
- ... additional arguments provided to `gam`

Value

- a NBAMSeqDataSet object

References

Examples

```r
gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)
```

Description

Accessor functions and replace methods for NBAMSeqDataSet object

For `getDesign()`: accessor to the design formula
For `getsf()`: accessor to the size factors

Replace methods for NBAMSeqDataSet object
For `setsf()`: replace size factors

Usage

```r
getDesign(theObject)
```

```r
## S4 method for signature 'NBAMSeqDataSet'
getDesign(theObject)
```

```r
gsf(theObject)
```
S4 method for signature 'NBAMSeqDataSet'
getsf(theObject)

setsf(theObject) <- value

S4 replacement method for signature 'NBAMSeqDataSet,numeric'
setsf(theObject) <- value

Arguments

- **theObject**: a NBAMSeqDataset object
- **value**: the values to be included in the object

Value

- For `getDesign()`: design formula
- For `getsf()`: size factor
- For `setsf()`: NBAMSeq object

References

Examples

```r
## For getDesign() ##
gsd = makeExample()
design_gsd = getDesign(gsd)
## For getsf() ##
gsd = makeExample()
sf = getsf(gsd)
## For setsf() ##
n = 100
m = 50
gsd = makeExample(n = n, m = m)
sf = sample(1:5, m, replace = TRUE)
setsf(gsd) = sf
```

NBAMSeqDataSet

NBAMSeqDataSet constructor

Description

NBAMSeqDataset constructor
Usage

NBAMSeqDataSet(countData, colData, design, ...)

Arguments

 countData a matrix or data frame contains gene count
 colData a DataFrame or data.frame
 design a mgcv type design. e.g. ~ s(phen0) or ~ s(phen0) + var1 + var2
 ... optional arguments passed to SummarizedExperiment

Value

 a NBAMSeqDataSet object

Examples

 n = 100 ## n stands for number of genes
 m = 20 ## m stands for sample size
 countData = matrix(rnbinom(n*m, mu=100, size=1/3), ncol = m)
 mode(countData) = "integer"
 colnames(countData) = paste0("sample", 1:m)
 rownames(countData) = paste0("gene", 1:n)
 pheno = runif(m, 20, 80)
 colData = data.frame(phen0 = pheno)
 rownames(colData) = paste0("sample", 1:m)
 gsd = NBAMSeqDataSet(countData = countData,
 colData = colData, design = ~s(phen0))

Description

NBAMSeqDataSet is a class inherited from SummarizedExperiment. It is used to store the count matrix, colData, and design formula in differential expression analysis.

Slots

 design a mgcv-type design formula

References

results

Description

This function pulls out result from NBAMSeqDataSet object returned by \texttt{NBAMSeq}

Usage

\begin{verbatim}
results(object, name, contrast, indepfilter = TRUE, alpha = 0.1,
pAdjustMethod = "BH", parallel = FALSE, BPPARAM = bpparam(), ...)
\end{verbatim}

Arguments

- \texttt{object}: a NBAMSeqDataSet object returned by \texttt{NBAMSeq}
- \texttt{name}: the name of nonlinear variable or continuous linear variable
- \texttt{contrast}: a character of length 3. 1st element: name of factor variable; 2nd element: name of numerator level; 3rd element: name of denominator level. \texttt{contrast = c("group", "treatment", "control")} means comparing treatment vs control for group variable.
- \texttt{indepfilter}: either TRUE or FALSE indicating whether independent filtering should be performed. Default is TRUE.
- \texttt{alpha}: significant threshold for declaring genes as differentially expressed. Default is 0.1.
- \texttt{pAdjustMethod}: pvalue adjustment method. Default is "BH". See \texttt{p.adjust} for details.
- \texttt{parallel}: either TRUE or FALSE indicating whether parallel should be used. Default is FALSE.
- \texttt{BPPARAM}: an argument provided to \texttt{bplapply}. See \texttt{register} for details.
- \texttt{...}: additional arguments provided to \texttt{pvalueAdjustment} function in DESeq2. See \texttt{results} for details.

Value

a DataFrame which contains the result

References

Examples

\begin{verbatim}
gsd = makeExample(n = 3, m = 10)
gsd = NBAMSeq(gsd)
res = results(gsd, name = "pheno")
\end{verbatim}
Index

bplapply, 4, 7

gam, 4
gam(NBAMSeq-methods), 4
gam(NBAMSeq-methods), 4
gam(NBAMSeq-methods), 4

getsf, 4, 7

getsf, 4, 7

getsf(NBAMSeq-methods), 4
getsf,NBAMSeqDataSet-method
(NBAMSeq-methods), 4

makeExample, 2
makeplot, 3

NBAMSeq, 3, 7
NBAMSeq-methods, 4
NBAMSeqDataSet, 5
NBAMSeqDataSet-class, 6

p.adjust, 7
plot.gam, 3

register, 4, 7
results, 7, 7

setsf<- (NBAMSeq-methods), 4
setsf<-,NBAMSeqDataSet,numeric-method
(NBAMSeq-methods), 4

SummarizedExperiment, 6