Package ‘MultiDataSet’

May 4, 2024

Type Package

Title Implementation of MultiDataSet and ResultSet

Version 1.32.0

Date 2021-10-04

Maintainer Xavier Escribà Montagut <xavier.escriba@isglobal.org>

Description Implementation of the BRGE's (Bioinformatic Research Group in Epidemiology from Center for Research in Environmental Epidemiology) MultiDataSet and ResultSet. MultiDataSet is designed for integrating multi omics data sets and ResultSet is a container for omics results. This package contains base classes for MEAL and re xposome packages.

License file LICENSE

LazyData TRUE

biocViews Software, DataRepresentation

Depends R (>= 4.1), Biobase

Imports BiocGenerics, GenomicRanges, IRanges, S4Vectors, SummarizedExperiment, methods, utils, ggplot2, ggrepel, qqman, limma

RoxygenNote 7.1.0

Suggests brgedata, minfi, minfiData, knitr, rmarkdown, testthat, omicade4, iClusterPlus, GEOquery, MultiAssayExperiment, BiocStyle, RaggedExperiment

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/MultiDataSet
git_branch RELEASE_3_19
git_last_commit 736e5b9

git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-05-03

Author Carlos Ruiz-Arenas [aut, cre], Carles Hernandez-Ferrer [aut], Juan R. Gonzalez [aut]
Contents

add_eset .. 2
add_genexp ... 3
add_methy .. 4
add_rnaseq .. 5
add_rse .. 5
add_se ... 7
add_snps .. 8
add_table ... 8
chrNumToChar ... 9
commonIds .. 10
commonSamples ... 11
getAssociation ... 12
lambdaClayton ... 13
mae2mds .. 13
mds2mae ... 14
MultiDataSet ... 14
MultiDataSet-class .. 15
opt ... 20
qq_plot .. 20
ResultSet .. 21
rowRangesElements .. 23
rset ... 24
volcano_plot .. 24
w_iclusterplus ... 25
w_mcia ... 26

Index ... 27

add_eset Method to add an eSet to MultiDataSet.

Description

This method adds or overwrites a slot of a MultiDataSet with the content of the given eSet.

Usage

add_eset(
 object,
 set,
 dataset.type,
 dataset.name = NULL,
 sample.tables = NULL,
 feature.tables = NULL,
 warnings = TRUE,
 overwrite = FALSE,
Arguments

object MultiDataSet that will be filled.
set Object derived from eSet to be used to fill the slot.
dataset.type Character with the type of data of the omic set (e.g. expression, methylation...)
dataset.name Character with the specific name for this set (NULL by default). It is useful
when there are several sets of the same type (e.g. multiple expression assays)
sample.tables Character with the names of the slots with sample data besides phenoData.
feature.tables Character with the names of the slots with feature data besides featureData.
warnings Logical to indicate if warnings will be displayed.
overwrite Logical to indicate if the set stored in the slot will be overwritten.
GRanges GenomicRanges to be included in rowRanges slot.

Value

A new MultiDataSet with a slot filled.

See Also

add_methy, add_genexp, add_rnaseq, add_snps

Examples

multi <- createMultiDataSet()
eset <- new("ExpressionSet", exprs = matrix(runif(10), 5))
multi <- add_eset(multi, eset, "exampledata", GRanges = NA)
Arguments

- **object**: MultiDataSet that will be filled.
- **gexpSet**: ExpressionSet to be used to fill the slot.
- **...**: Arguments to be passed to `add_eset`.

Value

A new MultiDataSet with the slot "expression" filled.

Examples

```r
multi <- createMultiDataSet()
eset <- new("ExpressionSet", exprs = matrix(runif(4), 2))
fData(eset) <- data.frame(chromosome = c("chr1", "chr2"), start = c(12414, 1234321),
                        end = c(121241, 124124114), stringsAsFactors = FALSE)
multi <- add_genexp(multi, eset)
```

Description

This method adds or overwrites the slot "methylation" of a MultiDataSet with the content of the given MethylationSet or RatioSet. The fData of the input object must contain the columns chromosome and position.

Usage

```r
add_methy(object, methySet, ...)
```

Arguments

- **object**: MultiDataSet that will be filled.
- **methySet**: MethylationSet or RatioSet to be used to fill the slot.
- **...**: Further arguments to be passed to `add_eset`.

Value

A new MultiDataSet with the slot "methylation" filled.

Examples

```r
if (require(brgedata)){
multi <- createMultiDataSet()
multi <- add_methy(multi, brge_methy[1:100, ])
}
```
add_rnaseq

Method to add an expression RNA seq dataset to MultiDataSet.

Description

This method adds or overwrites the slot "rnaseq" of an MultiDataSet with the content of the given ExpressionSet. The fData of the ExpressionSet must contain the columns chromosome, start and end.

Usage

add_rnaseq(object, rnaSet, ...)

Arguments

object
MultiDataSet that will be filled.
rnaSet
ExpressionSet to be used to fill the slot.
...
Arguments to be passed to add_eset.

Value

A new MultiDataSet with the slot "rnaseq" filled.

Examples

multi <- createMultiDataSet()
eset <- new("ExpressionSet", exprs = matrix(runif(4), 2))
fData(eset) <- data.frame(chromosome = c("chr1", "chr2"), start = c(12414, 1234321),
 end = c(121241, 12122414), stringsAsFactors = FALSE)
multi <- add_genexp(multi, eset)

add_rse

Method to add a RangedSummarizedExperiment to MultiDataSet.

Description

This method adds or overwrites a slot of a MultiDataSet with the content of the given RangedSummarizedExperiment.
add_rse

Usage

add_rse(
 object,
 set,
 dataset.type,
 dataset.name = NULL,
 sample.tables = NULL,
 feature.tables = NULL,
 warnings = TRUE,
 overwrite = FALSE
)

Arguments

object MultiDataSet that will be filled.
set Object derived from RangedSummarizedExperiment to be used to fill the slot.
dataset.type Character with the type of data of the omic set (e.g. expression, methylation...)
dataset.name Character with the specific name for this set (NULL by default). It is useful when there are several sets of the same type (e.g. multiple expression assays)
sample.tables Character with the names of the slots with sample data besides colData.
feature.tables Character with the names of the slots with feature data besides rowData.
warnings Logical to indicate if warnings will be displayed.
overwrite Logical to indicate if the set stored in the slot will be overwritten.

Value

A new MultiDataSet with a slot filled.

Examples

```r
if (require(GenomicRanges) & require(SummarizedExperiment)){
  multi <- createMultiDataSet()
  counts <- matrix(runif(200 * 6, 1, 1e4), 200)
  rowRanges <- GRanges(rep(c("chr1", "chr2"), c(50, 150)),
                        IRanges(floor(runif(200, 1e5, 1e6)), width=100),
                        strand=sample(c("+", "-"), 200, TRUE),
                        feature_id=sprintf("ID%03d", 1:200))
  colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
                        row.names=LETTERS[1:6], id = LETTERS[1:6])
  names(rowRanges) <- 1:200
  rse <- SummarizedExperiment(assays=SimpleList(counts=counts),
                              rowRanges=rowRanges, colData=colData)
  multi <- add_rse(multi, rse, "rseEx")
}
```
add_se

Method to add a SummarizedExperiment to MultiDataSet.

Description

This method adds or overwrites a slot of a MultiDataSet with the content of the given SummarizedExperiment.

Usage

```r
add_se(
  object,
  set,
  dataset.type,
  dataset.name = NULL,
  sample.tables = NULL,
  feature.tables = NULL,
  warnings = TRUE,
  overwrite = FALSE,
  GRanges
)
```

Arguments

- `object` MultiDataSet that will be filled.
- `set` Object derived from SummarizedExperiment to be used to fill the slot.
- `dataset.type` Character with the type of data of the omic set (e.g. expression, methylation...)
- `dataset.name` Character with the specific name for this set (NULL by default). It is useful when there are several sets of the same type (e.g. multiple expression assays)
- `sample.tables` Character with the names of the slots with sample data besides colData.
- `feature.tables` Character with the names of the slots with feature data besidesrowData.
- `warnings` Logical to indicate if warnings will be displayed.
- `overwrite` Logical to indicate if the set stored in the slot will be overwritten.
- `GRanges` GenomicRanges to be included in rowRanges slot.

Value

A new MultiDataSet with a slot filled.

Examples

```r
multi <- createMultiDataSet()
se <- SummarizedExperiment::SummarizedExperiment(matrix(runif(10), 5))
multi <- add_se(multi, se, "exampledata", GRanges = NA)
```
Method to add a slot of SNPs to MultiDataSet.

Description

This method adds or overwrites the slot "snps" of an MultiDataSet with the content of the given SnpSet. The fData of the SnpSet must contain the columns chromosome and position.

Usage

```r
add_snps(object, snpSet, ...)
```

Arguments

- `object` MultiDataSet that will be filled.
- `snpSet` SnpSet to be used to fill the slot.
- `...` Arguments to be passed to add_eset.

Value

A new MultiDataSet with the slot "snps" filled.

Examples

```r
multi <- createMultiDataSet()
geno <- matrix(c(3,1,2,1), ncol = 2)
colnames(geno) <- c("VAL0156", "VAL0372")
rownames(geno) <- c("rs3115860", "SNP1-1628854")
map <- AnnotatedDataFrame(data.frame(chromosome = c("chr1", "chr2"), position = c(12414, 1234321), stringsAsFactors = FALSE))
rownames(map) <- rownames(geno)
snpSet <- new("SnpSet", call = geno, featureData = map)
pheno <- data.frame(id = c("VAL0156", "VAL0372"))
rownames(pheno) <- c("VAL0156", "VAL0372")
pData(snpSet) <- pheno
multi <- add_snps(multi, snpSet)
```

Method to add a matrix to MultiDataSet.

Description

This method adds or overwrites a slot of a MultiDataSet with the content of the given matrix.
Usage

```r
add_table(
  object,
  set,
  dataset.type,
  dataset.name = NULL,
  warnings = TRUE,
  overwrite = FALSE
)
```

Arguments

- `object` MultiDataSet that will be filled.
- `set` matrix used to fill the slot.
- `dataset.type` Character with the type of data
- `dataset.name` Character with the specific name for this set (NULL by default). It is useful when there are several sets of the same type.
- `warnings` Logical to indicate if warnings will be displayed.
- `overwrite` Logical to indicate if the set stored in the slot will be overwritten.

Value

A new MultiDataSet with a slot filled.

Examples

```r
multi <- createMultiDataSet()
mat <- matrix(runif(12), nrow = 3)
colnames(mat) <- paste0("S", 1:4)
rownames(mat) <- paste0("F", 1:3)
multi <- add_table(multi, mat, "exampledata")
```

chrNumToChar

Description

Given a vector of number representing the chromosomes, convert them to string (e.g. 1 to chr1). 23 is consider chrX, 24 is chrY, 25 is chrXY (probes shared between chromosomes X and Y) and 26 is chrMT.

Usage

```r
chrNumToChar(vector)
```
commonIds

Arguments

- **vector**: The vector with the chromosome numbers

Value

A vector with the chromosomes in string format.

Examples

```r
c(1, 3, 4, 23, 15)
chrNumToChar(c(1, 3, 4, 23, 15))
```

commonIds

Get the name of the ids common to all datasets

Description

Get the name of the ids common to all datasets

Usage

```r
commonIds(object)
```

Arguments

- **object**: MultiDataSet that will be filtered.

Value

Character vector with the common ids.

Examples

```r
multi <- createMultiDataSet()
eset <- new("ExpressionSet", exprs = matrix(runif(9), ncol = 3))
fData(eset) <- data.frame(chromosome = c("chr1", "chr1", "chr1"),
                          start = c(1, 5, 10), end = c(4, 6, 14),
                          stringsAsFactors = FALSE)
sampleNames(eset) <- c("S1", "S2", "S3")
pData(eset) <- data.frame(id = c("S1", "S2", "S3"))
rownames(pData(eset)) <- c("S1", "S2", "S3")
multi <- add.genexp(multi, eset, dataset.name = "g1")
eset <- new("ExpressionSet", exprs = matrix(runif(8), ncol = 2))
fData(eset) <- data.frame(chromosome = c("chr1", "chr1", "chr1", "chr1"),
                          start = c(1, 14, 25, 104), end = c(11, 16, 28, 115),
                          stringsAsFactors = FALSE)
sampleNames(eset) <- c("S1", "G2")
pData(eset) <- data.frame(id = c("S1", "G2"))
```
commonSamples

rownames(pData(eset)) <- c("S1", "G2")

multi <- add_genexp(multi, eset, dataset.name = "g2")
commonIds(multi)

commonSamples

Method to select samples that are present in all datasets.

Description
This method subsets the datasets to only contain the samples that are in all datasets. All sets will have the samples in the same order, taking into account that there can be duplicates.

Usage
commonSamples(object, unify.names = FALSE)

Arguments
object MultiDataSet that will be filtered.
unify.names Logical indicating if sample names of the sets should be unified.

Details
If unify.names is TRUE, the sample names of the sets will be unified using the id column of phenodata. This option is only possible when there are no duplicated ids.

Value
A new MultiDataSet with only the common samples.

Examples
multi <- createMultiDataSet()
eset <- new("ExpressionSet", exprs = matrix(runif(9), ncol = 3))
fData(eset) <- data.frame(chromosome = c("chr1", "chr1", "chr1"),
start = c(1, 5, 10), end = c(4, 6, 14),
stringsAsFactors = FALSE)
sampleNames(eset) <- c("S1", "S2", "S3")
pData(eset) <- data.frame(id = c("S1", "S2", "S3"))
rownames(pData(eset)) <- c("S1", "S2", "S3")
multi <- add_genexp(multi, eset, dataset.name = "g1")
eset <- new("ExpressionSet", exprs = matrix(runif(8), ncol = 2))
fData(eset) <- data.frame(chromosome = c("chr1", "chr1", "chr1", "chr1"),
start = c(1, 14, 25, 104), end = c(11, 16, 28, 115),
stringsAsFactors = FALSE)
sampleNames(eset) <- c("S1", "G2")
pData(eset) <- data.frame(id = c("S1", "G2"))
rownames(pData(eset)) <- c("S1", "G2")
getAssociation

Method to extract feature result from a ResultSet

Description

Homologous methods from limma, getAssociation returns a data.frame with the logFC and PValue per feature for the selected coef and for given result (rid).

Usage

getAssociation(object, rid = 1, coef = 2, contrast = NULL, fNames = NULL, ...)

Arguments

object
A ResultSet object.

rid
The name or index of the result to be extracted.

coef
(default 2) Index of the coefficient to be extracted.

contrast
(default 1) When code corresponds to a multicategorical variable, contrast selects the comparison.

fNames
(default c("chromosome", "start", "end", "genesymbol")) Corresponds to the columns selected from fData that will be incorporated into the resulting data.frame.

...
Further arguments passed to topTable

Value

A data.frame with the result of the association study, including P-Value and Fold Change.

Examples

data(rset)
getAssociation(rset, rid=1, fNames = c("chromosome", "position"))
lambdaClayton

Lambda Calculation for a vector of P-Values

Description

Implementation of Clayton’s lambda score for a vector of P-Values

Usage

lambdaClayton(x, trim = 0.5)

Arguments

x Vector of P-Value
trim (default 0.5)

Value

A lambda value, indicating the inflation/deflation of the analysis.

Author(s)

Juan R. Gonzalez

Examples

lambdaClayton(runif(30))

mae2mds

Convert a MultiAssayExperiment to a MultiDataSet

Description

This function creates a MultiDataSet using the data of a MultiAssayExperiment.

Usage

mae2mds(MAE, warnings = TRUE)

Arguments

MAE a MultiAssayExperiment
warnings Logical to indicate if warnings will be displayed.

Value

MultiDataSet with the of the incoming MultiAssayExperiment.

mds2mae

Convert a MultiDataSet to a MultiAssayExperiment

Description

This function creates a MultiAssayExperiment using the data of a MultiDataSet.

Usage

```r
mds2mae(MDS)
```

Arguments

- **MDS**
 - a MultiDataSet

Value

MultiAssayExperiment with the of the incoming MultiDataSet.

MultiDataSet

MultiDataSet: Implementation of the BRGE’s basic classes

Description

Implementation of the BRGE’s (Bioinformatic Research Group in Epidemiology from Center for Research in Environmental Epidemiology) MultiDataSet and MethylationSet. MultiDataSet is designed for integrating multi omics data sets and MethylationSet to contain normalized methylation data. MultiDataSet for integrating multi omics data sets

See Also

- MultiDataSet
MultiDataSet-class

MultiDataSet-class

MultiDataSet instances

Description

The class MultiDataSet is a superior class to store multiple datasets in form of triplets (assayData-phenodata-featureData). The datasets can be eSet or SummarizedExperiment derived or matrices.

Usage

```r
## S4 method for signature 'MultiDataSet,eSet'
add_eSet(object, set, dataset.type, dataset.name = NULL, sample.tables = "protocolData", feature.tables = NULL, warnings = TRUE, overwrite = FALSE, GRanges)

## S4 method for signature 'MultiDataSet,ExpressionSet'
add_genexp(object, gexpSet, ...)

## S4 method for signature 'MultiDataSet,ExpressionSet'
add_rnaseq(object, rnaSet, ...)

## S4 method for signature 'MultiDataSet,GenomicRatioSet'
add_methy(object, methySet, ...)

## S4 method for signature 'MultiDataSet,RangedSummarizedExperiment'
add_rse(object, set, dataset.type, dataset.name = NULL, sample.tables = NULL, feature.tables = "elementMetadata", warnings = TRUE, overwrite = FALSE)

## S4 method for signature 'MultiDataSet,SummarizedExperiment'
add_se(object,
```

MultiDataSet-class

set,
dataset.type,
dataset.name = NULL,
sample.tables = NULL,
feature.tables = "elementMetadata",
warnings = TRUE,
overwrite = FALSE,
GRanges
)

S4 method for signature 'MultiDataSet,SnpSet'
add_snps(object, snpSet, ...)

S4 method for signature 'MultiDataSet,matrix'
add_table(
 object,
 set,
 dataset.type,
 dataset.name = NULL,
 warnings = TRUE,
 overwrite = FALSE
)

S4 method for signature 'MultiDataSet'
as.list(x)

S4 method for signature 'MultiDataSet'
commonIds(object)

S4 method for signature 'MultiDataSet'
commonSamples(object, unify.names = FALSE)

createMultiDataSet()

S4 method for signature 'MultiDataSet'
dims(x)

S4 method for signature 'MultiDataSet'
w_iclusterplus(object, commonSamples = TRUE, ...)

S4 method for signature 'MultiDataSet'
length(x)

S4 method for signature 'MultiDataSet'
w_mcia(object, ...)

S4 method for signature 'MultiDataSet'
names(x)
S4 method for signature 'MultiDataSet'
ncol(x)

S4 method for signature 'MultiDataSet'
nrow(x)

S4 method for signature 'MultiDataSet'
rowRangesElements(object)

S4 method for signature 'MultiDataSet'
sampleNames(object)

S4 method for signature 'MultiDataSet'
assayData(object)

S4 method for signature 'MultiDataSet'
fData(object)

S4 method for signature 'MultiDataSet'
featureData(object)

S4 method for signature 'MultiDataSet'
pData(object)

S4 method for signature 'MultiDataSet'
phenoData(object)

S4 method for signature 'MultiDataSet'
rowRanges(x)

S4 method for signature 'MultiDataSet,ANY,ANY'
x[[i]]

S4 method for signature 'MultiDataSet,ANY,ANY,ANY'
x[i, j, k, ..., drop = FALSE]

S4 method for signature 'MultiDataSet'
subset(x, feat, phe, warnings = TRUE, keep = TRUE)

Arguments

- **object**: MultiDataSet
- **set**: Object derived from eSet to be used to fill the slot.
- **dataset.type**: Character with the type of data of the omic set (e.g. expression, methylation...)
- **dataset.name**: Character with the specific name for this set (NULL by default). It is useful when there
- **sample.tables**: Character with the names of the slots with sample data besides phenoData.
feature.tables Character with the names of the slots with feature data besides featureData.
warnings Logical to indicate if warnings will be displayed.
overwrite Logical to indicate if the set stored in the slot will be overwritten.
GRanges GenomicRanges to be included in rowRanges slot.
gexpSet ExpressionSet to be used to fill the slot.
... Further arguments passed to add_rse or add_se
rnaSet ExpressionSet to be used to fill the slot.
methySet GenomicRatioSet to be used to fill the slot.
snpSet SnpSet to be used to fill the slot.
x MultiDataSet
unify.names Logical indicating if sample names of the sets should be unified.
commonSamples Logical to indicate if common samples are selected
i Character corresponding to selected sample names. They should match the id column of phenoData.
j Character with the name of the selected tables.
k GenomicRange used to filter the features.
drop If TRUE, sets with no samples or features will be discarded
feat Logical expression indicating features to keep
phe Logical expression indicating the phenotype of the samples to keep
keep If FALSE, sets where the expression cannot be evaluated will be discarded.

Details
The names of the three lists (assayData, phenoData and featureData) must be the same.

Value
MultiDataSet
MultiDataSet

Methods (by generic)
- add_eset: Method to add an eSet to MultiDataSet.
- add_genexp: Method to add a slot of expression to MultiDataSet.
- add_rnaseq: Method to add a slot of (RNASeq) expression to MultiDataSet.
- add_methy: Method to add a slot of methylation to MultiDataSet from a GenomicRatioSet.
- add_rse: Method to add a RangedSummarizedExperiment to MultiDataSet.
- add_se: Method to add a SummarizedExperiment to MultiDataSet.
- add_snps: Method to add a slot of SNPs to MultiDataSet.
- add_table: Method to add a matrix to MultiDataSet.
- as.list: Returns a list with the first matrix of each dataset.
- commonIds: Get the name of the ids common to all datasets
- commonSamples: Get a MultiDataSet only with the samples present in all the tables
- dims: Returns the dimensions of the sets
- w_iclusterplus: Apply iClusterPlus clustering method to a MultiDataSet object
- length: Returns the number of sets into the object.
- w_mcia: Apply mcia integration method to a MultiDataSet object
- names: Get the names of the slots.
- ncol: Get number of samples of each set
- nrow: Get number of features of each set
- rowRangesElements: Get the name of the datasets that have rowRanges
- sampleNames: Get sample names
- assayData: Retrieve all assay data blocks.
- fData: Retrieve information on features.
- featureData: Retrieve information on features.
- pData: Retrieve information on experimental phenotypes
- phenoData: Retrieve information on experimental phenotypes
- rowRanges: Retrieve information on feature ranges.
- [\[\]: Get a set from a slot
- \[\] : Subset a MultiDataSet
- subset: Filter a subset using feature ids or phenotypes

Slots

assayData List of assayData elements.
phenoData List of AnnotatedDataFrame containing the phenoData of each assayData.
featureData List of AnnotatedDataFrame containing the featureData of each assayData.
rowRanges List of GenomicRanges containing the rowRanges of each assayData.
extraData List of other slots of the original object.
return_method List of functions used to create the original object.

See Also

add_eset, add_rse

Examples

createMultiDataSet()
opt
Method to get the options sued to create the ResultSet

Description
Method that returns a list with the options used to create the ResultSet.

Usage
```r  
opt(object)  
```

Arguments
- `object`
 A `ResultSet` object.

Value
A list with the options used to create the ResultSet.

Examples
```r  
data(rset)  
opt(rset)  
```

qq_plot
Function to draw a QQ Plot from a vector of numbers

Description
Function to draw a QQ Plot from a vector of numbers

Usage
```r  
qq_plot(values, show.lambda = TRUE)  
```

Arguments
- `values`
 Numeric vector of P.Values

- `show.lambda`
 (default: TRUE) If TRUE shows lambda score for the given model.

Value
An object obtained from `ggplot`.

Examples
```r  
data(rset)  
rst <- getAssociation(rset, rid = 1, fNames = NULL)  
qq_plot(rst$P.Value)  
```
ResultSet

Class ResultSet

Description

Class ResultSet used to encapsulate results from MEAL and omicrexsosome.

Usage

```r
## S4 method for signature 'ResultSet'
fData(object)

## S4 method for signature 'ResultSet'
getAssociation(object, rid = 1, coef = 2, contrast = NULL, fNames = NULL, ...)

## S4 method for signature 'ResultSet'
length(x)

## S4 method for signature 'ResultSet'
names(x)

## S4 method for signature 'ResultSet'
opt(object)

## S4 method for signature 'ResultSet,ANY'
plot(
  x,
  y,
  rid = 1,
  coef = 2,
  contrast = NULL,
  type,
  tFC = 2,
  tPV = -log10(0.001),
  show.labels = TRUE,
  show.effect = FALSE,
  show.lambda = TRUE,
  fNames = c("chromosome", "start"),
  subset,
  highlight,
  ...
)

## S4 method for signature 'ResultSet'
varLabels(object)

create_resultset(fOrigin, lResults, fData, lOptions = list())
```
Arguments

- **object**: A ResultSet object.
- **rid**: Name or index of the internal result to be used.
- **coef**: Coefficient to be returned, usually 2.
- **contrast**: Numeric matrix with the contrasts used to perform the analyses.
- **fNames**: Character vector with the names of the fData columns that will be added to the results data.frame.
- **...**: Further arguments passed to `topTable`.
- **x**: A ResultSet object.
- **y**: Type of plot to be drawn.
- **tFC**: Threshold for log FC of effect.
- **tPV**: Threshold for P-Value.
- **show.labels**: (default TRUE) If set to TRUE, features are labelled.
- **show.effect**: (default: TRUE). Used in volcano plot. If TRUE, effect is shown as FC instead of logFC.
- **show.lambda**: (default: TRUE) If TRUE shows lambda score for the given model.
- **subset**: GenomicRanges used to zoom a region in Manhattan plot.
- **highlight**: GenomicRanges used to highlight a region in Manhattan plot.
- **fOrigin**: Character with the function used to run the analysis.
- **lResults**: List with the results.
- **fData**: List with the feature data.
- **lOptions**: List with additional options.

Value

An object of class ResultSet.

Methods (by generic)

- **fData**: Returns data.frame with feature’s data.
- **getAssociation**: Getter to obtain the raw data.frame from association and integration analysis.
- **length**: Returns the amount of analyses stored in the ResultSet.
- **names**: Returns the names of the omics data used to create the ResultSet.
- **opt**: Returns a list with the options used to create the ResultSet.
- **plot**: Allows to plot a series of plots (QQ plot, Manhattan plot and Volcano plot) depending on the results stored in the ResultSet.
- **varLabels**: Returns the names of the variables of the models used in a ResultSet.
rowRangesElements

Slots

fun_origin Character containing the function that creates the object.
results List containing the results of the association/integration.
fData List containing the feature-data of the original objects.
options list of options used to create the ResultSet.

Examples

create_resultset("hello", list(), list(), list())

rowRangesElements(object)

Arguments

object MultiDataSet

Value

Character vector with the slots that have rowRanges.

Examples

multi <- createMultiDataSet()
eset <- new("ExpressionSet", exprs = matrix(runif(10), 5))
eset2 <- new("ExpressionSet", exprs = matrix(runif(8), ncol = 2))
fData(eset2) <- data.frame(chromosome = c("chr1", "chr1", "chr1", "chr1"),
 start = c(1, 14, 25, 104), end = c(11, 16, 28, 115),
 stringsAsFactors = FALSE)
multi <- add_eset(multi, eset, "exampledata", GRanges = NA)
multi <- add_genexp(multi, eset2)
rowRangesElements(multi)
rset

Example ResultSet

Description

Example ResultSet used in the functions examples and in the tests. The script used to generate it can be found in inst/scripts.

Usage

rset

Format

ResultSet

volcano_plot

Function to draw a Volcano Plot

Description

Function that takes two numeric vectors (P-Value and fold change) and draws a volcano plot using ggplot2.

Usage

volcano_plot(
 pval,
 fc,
 names,
 size = 2,
 tFC = 2,
 tPV = -log10(0.001),
 show.labels = TRUE,
 show.effect = FALSE
)

Arguments

pval numeric vector of P-Values
fc numeric vector of fold change
names character vector with the feature’s names.
size (default 2) Size of the labels in case they are placed.
tFC (default 2) fold change threshold. It can be set to NULL to not filter.
w_iclusterplus

- tPV: (default -log10(0.001)) P-Value threshold. It can be set to NULL to not filter.
- show.labels: (default TRUE) If set to TRUE, features are labelled.
- show.effect: (default FALSE) If set to TRUE, the X-axis will show 2^logFC instead of the default logFC.

Value

A ggplot object

Examples

data(rset)
w1 <- getAssociation(rset, rid = 1, fNames = NULL)
volcano_plot(w1$P.Value, w1$logFC, rownames(w1))

w_iclusterplus

Apply iClusterPlus clustering method to a MultiDataSet object

Description

Method iClusterPlus is applied on a MultiDataSet object after getting the common samples along all the contained datasets.

Usage

w_iclusterplus(object, commonSamples = TRUE, ...)

Arguments

- object: MultiDataSet
- commonSamples: Logical to indicate if common samples are selected
- ...: Arguments passed to function iClusterPlus

Value

A list of results from iClusterPlus

Note

Argument type for iClusterPlus is filled within the method.
Apply mcia integration method to a MultiDataSet object

Description

Method mcia is applied on a MultiDataSet object after getting the common samples along all the contained datasets.

Usage

w_mcia(object, ...)

Arguments

object MultiDataSet
... Arguments passed to function mcia

Value

A list of results from mcia
Index

* datasets
 rset, 24
 [(MultiDataSet-class), 15
 [,MultiDataSet,ANY,ANY,ANY-method
 (MultiDataSet-class), 15
 [[,MultiDataSet,ANY,ANY-method
 (MultiDataSet-class), 15
 add_eset, 2, 19
 add_eset,MultiDataSet,eset-method
 (MultiDataSet-class), 15
 add_genexp, 3, 3
 add_genexp,MultiDataSet,ExpressionSet-method
 (MultiDataSet-class), 15
 add_methy, 3, 4
 add_methy,MultiDataSet,GenomicRatioSet-method
 fData,MultiDataSet-method
 (MultiDataSet-class), 15
 add_rnaseq, 3, 5
 add_rnaseq,MultiDataSet,ExpressionSet-method
 (MultiDataSet-class), 15
 add_rse, 5, 19
 add_rse,MultiDataSet,RangedSummarizedExperiment-method
 (MultiDataSet-class), 15
 add_se, 7
 add_se,MultiDataSet,SummarizedExperiment-method
 (MultiDataSet-class), 15
 add_snps, 3, 8
 add_snps,MultiDataSet,SnpSet-method
 (MultiDataSet-class), 15
 add_table, 8
 add_table,MultiDataSet,matrix-method
 (MultiDataSet-class), 15
 as.list (MultiDataSet-class), 15
 as.list,MultiDataSet-method
 (MultiDataSet-class), 15
 assayData (MultiDataSet-class), 15
 assayData,MultiDataSet-method
 (MultiDataSet-class), 15
 chrNumToChar, 9
 commonIds, 10
 commonIds,MultiDataSet-method
 (MultiDataSet-class), 15
 commonSamples, 11
 commonSamples,MultiDataSet-method
 (MultiDataSet-class), 15
 create_resultset (ResultSet), 21
 createMultiDataSet
 (MultiDataSet-class), 15
 dms (MultiDataSet-class), 15
 dms,MultiDataSet-method
 dims (MultiDataSet-class), 15
 dims,MultiDataSet-method
 fData (MultiDataSet-class), 15
 fData,ResultSet-method (ResultSet), 21
 featureData (MultiDataSet-class), 15
 featureData,MultiDataSet-method
 (MultiDataSet-class), 15
 getAssociation, 12
 getAssociation,ResultSet-method
 (ResultSet), 21
 ggplot, 20
 iClusterPlus, 25
 iClusterPlus
 lambdaClayton, 13
 length (MultiDataSet-class), 15
 length,MultiDataSet-method
 (MultiDataSet-class), 15
 length,ResultSet-method (ResultSet), 21
 mae2mds, 13
 mcia, 26
 mds2mae, 14
 MultiDataSet, 14, 14, 25, 26
 MultiDataSet-class, 15
INDEX

MultiDataSet-methods
 (MultiDataSet-class), 15
MultiDataSet-methods,
 (MultiDataSet-class), 15

names (MultiDataSet-class), 15
names, MultiDataSet-method
 (MultiDataSet-class), 15
names, ResultSet-method (ResultSet), 21
ncol (MultiDataSet-class), 15
ncol, MultiDataSet-method
 (MultiDataSet-class), 15
nrow (MultiDataSet-class), 15
nrow, MultiDataSet-method
 (MultiDataSet-class), 15

opt, 20
opt, ResultSet-method (ResultSet), 21

pData (MultiDataSet-class), 15
pData, MultiDataSet-method
 (MultiDataSet-class), 15
phenoData (MultiDataSet-class), 15
phenoData, MultiDataSet-method
 (MultiDataSet-class), 15
plot, ResultSet, ANY-method (ResultSet),
 21

qq_plot, 20

ResultSet, 12, 20, 21
ResultSet-class (ResultSet), 21
ResultSet-methods (ResultSet), 21
rowRanges (MultiDataSet-class), 15
rowRanges, MultiDataSet-method
 (MultiDataSet-class), 15
rowRangesElements, 23
rowRangesElements, MultiDataSet-method
 (MultiDataSet-class), 15
rset, 24

sampleNames, MultiDataSet-method
 (MultiDataSet-class), 15
subset, MultiDataSet-method
 (MultiDataSet-class), 15

topTable, 12, 22

varLabels, ResultSet-method (ResultSet),
 21

volcano_plot, 24

w_iclusterplus, 25
w_iclusterplus, MultiDataSet-method
 (MultiDataSet-class), 15
w_mcia, 26
w_mcia, MultiDataSet-method
 (MultiDataSet-class), 15