Package ‘MoonlightR’

April 2, 2024

Type Package
Title Identify oncogenes and tumor suppressor genes from omics data
Version 1.28.0
Date 07-08-2020
Depends R (>= 3.5), doParallel, foreach
Imports parmigene, randomForest, SummarizedExperiment, gplots, circlize, RColorBrewer, HiveR, clusterProfiler, DOSE, Biobase, limma, grDevices, graphics, TCGAbiolinks, GEOquery, stats, RISmed, grid, utils

Description Motivation: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). Results: We present an R/bioconductor package called MoonlightR which returns a list of candidate driver genes for specific cancer types on the basis of TCGA expression data. The method first infers gene regulatory networks and then carries out a functional enrichment analysis (FEA) (implementing an upstream regulator analysis, URA) to score the importance of well-known biological processes with respect to the studied cancer type. Eventually, by means of random forests, MoonlightR predicts two specific roles for the candidate driver genes: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, MoonlightR can be used to discover OCGs and TSGs in the same cancer type. This may help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV) in breast cancer. In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments.

License GPL (>= 3)
biocViews DNAMethylation, DifferentialMethylation, GeneRegulation, GeneExpression, MethylationArray, DifferentialExpression, Pathways, Network, Survival, GeneSetEnrichment, NetworkEnrichment
Suggests BiocStyle, knitr, rmarkdown, testthat, devtools, roxygen2, png, edgeR
VignetteBuilder knitr
LazyData true
URL https://github.com/ELELAB/MoonlightR
BugReports https://github.com/ELELAB/MoonlightR/issues
RoxygenNote 7.2.3
Encoding UTF-8
git_url https://git.bioconductor.org/packages/MoonlightR
git_branch RELEASE_3_18
git_last_commit 7dada82
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-01
Author Antonio Colaprico [aut], Catharina Olsen [aut], Matthew H. Bailey [aut], Gabriel J. Odom [aut], Thilde Terkelsen [aut], Mona Nourbakhsh [aut], Astrid Saksager [aut], Tiago C. Silva [aut], André V. Olsen [aut], Laura Cantini [aut], Andrei Zinovyev [aut], Emmanuel Barillot [aut], Houtan Noushmehr [aut], Gloria Bertoli [aut], Isabella Castiglioni [aut], Claudia Cava [aut], Gianluca Bontempi [aut], Xi Steven Chen [aut], Elena Papaleo [aut], Matteo Tiberti [cre, aut]
Maintainer Matteo Tiberti <tiberti@cancer.dk>

R topics documented:

dataFilt
dataFilt

Gene Expression (Rnaseqv2) data from TCGA LUAD

Description

A data set containing the following data:

Usage

`data(dataFilt)`

Format

A 13742x20 matrix

Details

- dataFilt matrix with 13742 rows (genes) and 20 columns samples with TCGA’s barcodes (10TP, 10NT)
Value
- a 13742x20 matrix

dataGRN

GRN gene regulatory network output

Description
- output from GRN function

Usage
- `data(dataGRN)`

Format
- A large list of 2 elements

Details
- dataGRN list of 2 elements miTFGenes, maxmi from GRN function

Value
- a large list of 2 elements

dataURA

Output example from function Upstream Regulator Analysis

Description
- A data set containing the following data:

Usage
- `data(dataURA)`

Format
- A data frame with 100 rows and 2 variables

Details
- dataURA matrix with 100 rows (genes) and 2 columns "apoptosis" "proliferation of cells"

Value
- a 100x2 matrix
DEGsmatrix

Description
A data set containing the following data:

Usage
data(DEGsmatrix)

Format
A 3502x5 matrix

Details
- DEGsmatrix matrix with 3502 rows (genes) and five columns "logFC" "logCPM" "LR" "PValue" "FDR"

Value
the 3502x5 matrix

DiseaseList

Description
A data set containing the following data:

Usage
data(DiseaseList)

Format
A list of 101 matrices

Details
- DiseaseList list for 101 biological processes, each containing a matrix with five columns: ID, Genes.in.dataset, Prediction based on expression direction, Log ratio, Findings

Value
list of 101 matrices
Description

This function carries out the differential phenotypes analysis.

Usage

DPA(
 dataType, # selected
 dataFilt, # obtained from getDataTCGA
 dataConsortium = "TCGA",
 fdr.cut = 0.01,
 logFC.cut = 1,
 diffmean.cut = 0.25,
 samplesType,
 colDescription,
 gset,
 gsetFile = "gsetFile.RData"
)

Arguments

dataType selected
dataFilt obtained from getDataTCGA
dataConsortium is TCGA or GEO, default TCGA
fdr.cut is a threshold to filter DEGs according their p-value corrected
logFC.cut is a threshold to filter DEGs according their logFC
diffmean.cut diffmean.cut for DMR
samplesType samplesType
colDescription colDescription
gset gset
gsetFile gsetFile

Value

result matrix from differential phenotype analysis

Examples

dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
Description

A data set containing the following data:

Usage

```r
data(EAGenes)
```

Format

A 20038x5 matrix

Details

- EAGenes matrix with 20038 rows (genes) and five columns "ID" "Gene" "Description" "Location" "Family"

Value

a 20038x5 matrix

FEA

Description

This function carries out the functional enrichment analysis (FEA)

Usage

```r
FEA(BPname = NULL, DEGsmatrix)
```

Arguments

- `BPname` : BPname biological process such as "proliferation of cells", "ALL" (default) if FEA should be carried out for all 101 biological processes
- `DEGsmatrix` : DEGsmatrix output from DEA such as dataDEGs

Value

matrix from FEA
Examples

dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
dataFEA <- FEA(DEGsmatrix = dataDEGs)

GDCprojects

Information on GDC projects

Description

A character vector of GDC projects:

Usage

data(GDCprojects)

Format

A character vector of 39 elements

Details

• character vector for GDC projects.

Value

character vector of 39 elements

geneInfo

Information about genes for normalization

Description

A data set containing the following data:

Usage

data(geneInfo)

Format

A data frame with 20531 rows and 3 variables

Details

• geneInfo matrix with 20531 rows (genes) and 3 columns "geneLength" "gcContent" "chr"
VALUE

a 20531x3 matrix

GEO_TCGAtab

Information on GEO data (and overlap with TCGA)#’ A data set containing the following data:

DESCRIPTION

• GEO_TCGAtab a 18x12 matrix that provides the GEO data set we matched to one of the 18
given TCGA cancer types

USAGE

data(GEO_TCGAtab)

FORMAT

A 101x3 matrix

VALUE

a 101x3 matrix

getDataGEO

gDataGEO

DESCRIPTION

This function retrieves and prepares GEO data

USAGE

gDataGEO(GEOobject = "GSE39004", platform = "GPL6244", TCGAtumor = NULL)

ARGUMENTS

GEOobject GEOobject
platform platform
TCGAtumor tumor name

VALUE

return GEO gset
Examples

```r
## Not run:
dataGEO <- getDataGEO(GEOobject = "GSE20347", platform = "GPL571")
## End(Not run)
```

Description
This function retrieves and prepares TCGA data

Usage

```r
dataGetTCGA(
    cancerType,  # select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer
    dataType,  # is dataType such as gene expression, cnv, methylation etc.
    directory,  # Directory/Folder where the data was downloaded. Default: GDCdata
    cor.cut = 0.6,  # correlation cut-off
    qnt.cut = 0.25,  # quantile cut-off
    nSample,  # number of samples
    stage = "ALL",  # stage of the cancer type
    subtype = 0,  # subtype of the cancer type
    samples = NULL  # samples to be included
)
```

Arguments

- `cancerType`: select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer
- `dataType`: is dataType such as gene expression, cnv, methylation etc.
- `directory`: Directory/Folder where the data was downloaded. Default: GDCdata
- `cor.cut`: correlation cut-off
- `qnt.cut`: quantile cut-off
- `nSample`: number of samples
- `stage`: stage of the cancer type
- `subtype`: subtype of the cancer type
- `samples`: samples to be included

Value

returns filtered TCGA data
Not run:
```r
dataFilt <- getDataTCGA(cancerType = "LUAD",
                       dataType = "Gene expression", directory = "data", nSample = 4)

## End(Not run)
```

GRN

Generate network

This function carries out the gene regulatory network inference using parmigene.

Usage

```r
GRN(
  TFs,
  DEGsmatrix,
  DiffGenes = FALSE,
  normCounts,
  kNearest = 3,
  nGenesPerm = 10,
  nBoot = 10
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFs</td>
<td>a vector of genes.</td>
</tr>
<tr>
<td>DEGsmatrix</td>
<td>DEGsmatrix output from DEA such as dataDEGs</td>
</tr>
<tr>
<td>DiffGenes</td>
<td>if TRUE consider only diff.expr genes in GRN</td>
</tr>
<tr>
<td>normCounts</td>
<td>is a matrix of gene expression with genes in rows and samples in columns.</td>
</tr>
<tr>
<td>kNearest</td>
<td>the number of nearest neighbors to consider to estimate the mutual information. Must be less than the number of columns of normCounts.</td>
</tr>
<tr>
<td>nGenesPerm</td>
<td>nGenesPerm</td>
</tr>
<tr>
<td>nBoot</td>
<td>nBoot</td>
</tr>
</tbody>
</table>

Value

an adjacent matrix

Examples

```r
dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
              DEGsmatrix = dataDEGs,
              DiffGenes = TRUE,
              normCounts = dataFilt)
```
GSEA

Description
This function carries out the GSEA enrichment analysis.

Usage
GSEA(DEGsmatrix, top, plot = FALSE)

Arguments
- **DEGsmatrix**: DEGsmatrix output from DEA such as dataDEGs
- **top**: is the number of top BP to plot
- **plot**: if TRUE return a GSEA's plot

Value
return GSEA result

Examples
```r
dataDEGs <- DEGsmatrix
# dataFEA <- GSEA(DEGsmatrix = dataDEGs)
```

knownDriverGenes

Description
Information on known cancer driver gene from COSMIC

Usage
data(knownDriverGenes)

Format
A 101x3 matrix

Details
- TSG known tumor suppressor genes
- OCG known oncogenes
listMoonlight

Value

a 101x3 matrix

Description

A list containing the following data:

Usage

data(listMoonlight)

Format

A Large list with 5 elements

Details

- listMoonlight output from moonlight’s pipeline containing dataDEGs, dataURA, listCandidates

Value

output from moonlight pipeline

LPA

Description

This function carries out the literature phenotype analysis (LPA)

Usage

LPA(dataDEGs, BP, BPlist)

Arguments

- **dataDEGs**: is output from DEA
- **BP**: is biological process
- **BPlist**: is list of genes annotated in BP
Value

table with number of pubmed that affects, increase or decrease genes annotated in BP

Examples

data(DEGsmatrix)
BPselected <- c("apoptosis")
BPannotations <- DiseaseList[[match(BPselected, names(DiseaseList))]]$ID

Description

moonlight is a tool for identification of cancer driver genes. This function wraps the different steps of the complete analysis workflow. Providing different solutions:

1. MoonlighR::FEA
2. MoonlighR::URA
3. MoonlighR::PIA

Usage

moonlight(
 cancerType = "panCancer",
 dataType = "Gene expression",
 directory = "GDCdata",
 BPname = NULL,
 cor.cut = 0.6,
 qnt.cut = 0.25,
 Genelist = NULL,
 fdr.cut = 0.01,
 logFC.cut = 1,
 corThreshold = 0.6,
 kNearest = 3,
 nGenesPerm = 10,
 DiffGenes = FALSE,
 nBoot = 100,
 nTF = NULL,
 nSample = NULL,
 thres.role = 0,
 stage = NULL,
 subtype = 0,
 samples = NULL
)
Arguments

cancerType select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer
dataType dataType
directory directory
BPname biological processes to use, if NULL: all processes will be used in analysis. RF for candidate; if not NULL the candidates for these processes will be determined (no learning)
cor.cut cor.cut Threshold
qnt.cut qnt.cut Threshold
Genelist Genelist
fdr.cut fdr.cut Threshold
logFC.cut logFC.cut Threshold
corThreshold corThreshold
kNearest kNearest
nGenesPerm nGenesPerm
DiffGenes DiffGenes
nBoot nBoot
nTF nTF
nSample nSample
thres.role thres.role
stage stage
subtype subtype
samples samples

Value

table with cancer driver genes TSG and OCG.

Examples

dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
to change with moonlight

Description

MoonlightR is a package designed for the identification of cancer driver genes. Please see the documentation on our Bioconductor page for more details: https://www.bioconductor.org/packages/release/bioc/html/MoonlightR.html
If you experience issues with the package, please open an Issue on our GitHub repository: https://github.com/ELELAB/MoonlightR
If you use this package in your research, please cite this paper: https://doi.org/10.1038/s41467-019-13803-0
plotCircos

Description

This function visualize the plotCircos

Usage

```r
plotCircos(
  listMoonlight, 
  listMutation = NULL, 
  additionalFilename = NULL, 
  intensityColOCG = 0.5, 
  intensityColTSG = 0.5, 
  intensityColDual = 0.5, 
  fontSize = 1
)
```

Arguments

- `listMoonlight` output Moonlight function
- `listMutation` listMutation
- `additionalFilename` additionalFilename
- `intensityColOCG` intensityColOCG
- `intensityColTSG` intensityColTSG
- `intensityColDual` intensityColDual
- `fontSize` fontSize

Value

no return value, plot is saved

Examples

```r
plotCircos(listMoonlight = listMoonlight, additionalFilename = "_ncancer5")
```
Description

This function visualizes the functional enrichment analysis (FEA)’s barplot.

Usage

plotFEA(
 dataFEA,
 topBP = 10,
 additionalFilename = NULL,
 height,
 width,
 offsetValue = 5,
 angle = 90,
 xleg = 35,
 yleg = 5,
 titleMain,
 minY = -5,
 maxY = 10,
 mycols = c("#8DD3C7", "#FFFFB3", "#BEBADA")
)

Arguments

dataFEA	dataFEA
topBP | topBP
additionalFilename | additionalFilename
height | Figure height
width | Figure width
offsetValue | offsetValue
angle | angle
xleg | xleg
yleg | yleg
titleMain | title of the plot
minY | minY
maxY | maxY
mycols | colors to use for the plot
Value

no return value, FEA result is plotted

Examples

```r
dataFEA <- FEA(DEGsmatrix = DEGsmatrix)
plotFEA(dataFEA = dataFEA, additionalFilename = "_example", height = 20, width = 10)
```

plotNetworkHive

plotNetworkHive: Hive network plot

Description

This function visualizes the GRN as a hive plot

Usage

```r
plotNetworkHive(dataGRN, namesGenes, thres, additionalFilename = NULL)
```

Arguments

- `dataGRN` output GRN function
- `namesGenes` list TSG and OCG to define axes
- `thres` threshold of edges to be included
- `additionalFilename` additionalFilename

Value

no results Hive plot is executed

Examples

```r
data(knownDriverGenes)
data(dataGRN)
plotNetworkHive(dataGRN = dataGRN, namesGenes = knownDriverGenes, thres = 0.55)
```
plotURA

plotURA: Upstream regulatory analysis heatmap plot

Description

This function visualizes the URA in a heatmap

Usage

plotURA(dataURA, additionalFilename = "URAplot")

Arguments

dataURA output URA function
additionalFilename figure name

Value

heatmap

Examples

data(dataURA)
dataDual <- PRA(dataURA = dataURA, BPname = c("apoptosis","proliferation of cells"), thres.role = 0)
TSGs_genes <- names(dataDual$TSG)
OCGs_genes <- names(dataDual$OCG)
plotURA(dataURA = dataURA[c(TSGs_genes, OCGs_genes),], additionalFilename = ".example")

PRA

Pattern Recognition Analysis (PRA)

Description

This function carries out the pattern recognition analysis

Usage

PRA(dataURA, BPname, thres.role = 0)

Arguments

dataURA output URA function
BPname BPname
thres.role thres.role
Value

returns list of TSGs and OCGs when biological processes are provided, otherwise a randomForest based classifier that can be used on new data

Examples

data(dataURA)
dataDual <- PRA(dataURA = dataURA, BPname = c("apoptosis","proliferation of cells"), thres.role = 0)

tabGrowBlock

A 101x3 matrix

Details

- tabGrowBlock matrix that defines if a process is growing or blocking cancer development, for each 101 biological processing

Value

a 101x3 matrix
URA Upstream Regulator Analysis

Description

This function carries out the upstream regulator analysis.

Usage

URA(dataGRN, DEGsmatrix, BPname, nCores = 1)

Arguments

dataGRN output GNR function
DEGsmatrix output DPA function
BPname biological processes
nCores number of cores to use

Value

an adjacent matrix

Examples

dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
DEGsmatrix = dataDEGs,
DiffGenes = TRUE,
normCounts = dataFilt)
dataURA <- URA(dataGRN = dataGRN,
DEGsmatrix = dataDEGs,
BPname = c("apoptosis",
"proliferation of cells"))
Index

* datasets
 dataFilt, 3
 dataGRN, 4
 dataURA, 4
 DEGsmatrix, 5
 DiseaseList, 5
 EAGenes, 7
 GDCprojects, 8
 geneInfo, 8
 GEO_TCGAtab, 9
 knownDriverGenes, 12
 listMoonlight, 13
 tabGrowBlock, 20

 dataFilt, 3
 dataGRN, 4
 dataURA, 4
 DEGsmatrix, 5
 DiseaseList, 5
 DPA, 6

 EAGenes, 7

 FEA, 7

 GDCprojects, 8
 geneInfo, 8
 GEO_TCGAtab, 9
 getDataGEO, 9
 getDataTCGA, 10
 GRN, 11
 GSEA, 12

 knownDriverGenes, 12

 listMoonlight, 13
 LPA, 13

 moonlight, 14
 MoonlightR, 15

plotCircos, 16
plotFEA, 17
plotNetworkHive, 18
plotURA, 19
PRA, 19

 tabGrowBlock, 20

URA, 21