Package ‘MetCirc’

January 6, 2019

Type Package
Title Navigating mass spectral similarity in high-resolution MS/MS metabolomics data
Version 1.12.1
Date 2018-10-22
Author Thomas Naake <thomasnaake@googlemail.com> and Emmanuel Gaquerel <emmanuel.gaquerel@cos.uni-heidelberg.de>
Maintainer Thomas Naake <thomasnaake@googlemail.com>
VignetteBuilder knitr
Depends R (>= 3.5), amap (>= 0.8), circlize (>= 0.3.9), graphics (>= 3.5), grDevices (>= 3.5), methods (>= 3.5), scales (>= 0.3.0), shiny (>= 1.0.0), stats (>= 3.5)
Suggests BiocGenerics, knitr (>= 1.11)
bioCViews ImmunoOncology, Metabolomics, MassSpectrometry, Visualization
Description MetCirc comprises a workflow to interactively explore high-resolution MS/MS metabolomics data: create an MSP object, a format for MS/MS library data, bin m/z values of precursors, calculate similarity between precursors based on the normalised dot product and visualise similarities in a circular layout. Within the interactive framework the user can annotate MS/MS features based on their similarity to (known) related MS/MS features.
License GPL-2
RoxygenNote 6.0.1
git_url https://git.bioconductor.org/packages/MetCirc
git_branch RELEASE_3_8
git_last_commit 942d673
git_last_commit_date 2019-01-04
Date/Publication 2019-01-05

R topics documented:

adduct .. 3
adduct<- ... 3
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>allocatePrecursor2mz</td>
<td>4</td>
</tr>
<tr>
<td>binnedMSP</td>
<td>5</td>
</tr>
<tr>
<td>binning</td>
<td>6</td>
</tr>
<tr>
<td>cart2Polar</td>
<td>7</td>
</tr>
<tr>
<td>circosLegend</td>
<td>8</td>
</tr>
<tr>
<td>classes</td>
<td>9</td>
</tr>
<tr>
<td>classes<-</td>
<td>9</td>
</tr>
<tr>
<td>combine</td>
<td>10</td>
</tr>
<tr>
<td>compartmentTissue</td>
<td>11</td>
</tr>
<tr>
<td>convert2MSP</td>
<td>11</td>
</tr>
<tr>
<td>convertExampleDF</td>
<td>13</td>
</tr>
<tr>
<td>convertMSP2MSP</td>
<td>13</td>
</tr>
<tr>
<td>createLink0Matrix</td>
<td>14</td>
</tr>
<tr>
<td>createLinkMatrix</td>
<td>15</td>
</tr>
<tr>
<td>createOrderedSimMat</td>
<td>16</td>
</tr>
<tr>
<td>createSimilarityMatrix</td>
<td>17</td>
</tr>
<tr>
<td>cutLinkMatrix</td>
<td>18</td>
</tr>
<tr>
<td>cutUniquePrecursor</td>
<td>18</td>
</tr>
<tr>
<td>getBegEndIndMSP</td>
<td>19</td>
</tr>
<tr>
<td>getLinkMatrixIndices</td>
<td>20</td>
</tr>
<tr>
<td>getPrecursorMZ</td>
<td>21</td>
</tr>
<tr>
<td>getRT</td>
<td>21</td>
</tr>
<tr>
<td>highlight</td>
<td>22</td>
</tr>
<tr>
<td>idMSMSstoMSP-data</td>
<td>23</td>
</tr>
<tr>
<td>information</td>
<td>24</td>
</tr>
<tr>
<td>information<-</td>
<td>25</td>
</tr>
<tr>
<td>length</td>
<td>25</td>
</tr>
<tr>
<td>minFragCart2Polar</td>
<td>26</td>
</tr>
<tr>
<td>MSP</td>
<td>27</td>
</tr>
<tr>
<td>msp2FunctionalLossesMSP</td>
<td>27</td>
</tr>
<tr>
<td>msp2msp</td>
<td>28</td>
</tr>
<tr>
<td>names</td>
<td>28</td>
</tr>
<tr>
<td>names<-</td>
<td>29</td>
</tr>
<tr>
<td>NDP</td>
<td>29</td>
</tr>
<tr>
<td>peaks</td>
<td>30</td>
</tr>
<tr>
<td>plotCircos</td>
<td>31</td>
</tr>
<tr>
<td>printInformationSelect</td>
<td>32</td>
</tr>
<tr>
<td>sd01_outputXCMS</td>
<td>34</td>
</tr>
<tr>
<td>sd02_deconvoluted</td>
<td>34</td>
</tr>
<tr>
<td>shinyCircos</td>
<td>35</td>
</tr>
<tr>
<td>show</td>
<td>36</td>
</tr>
<tr>
<td>similarityMat</td>
<td>36</td>
</tr>
<tr>
<td>thresholdLinkMatrix</td>
<td>37</td>
</tr>
<tr>
<td>tissue</td>
<td>37</td>
</tr>
<tr>
<td>truncateName</td>
<td>38</td>
</tr>
<tr>
<td>[</td>
<td>39</td>
</tr>
</tbody>
</table>
adduct returns adduct ion names of compounds in MSP-object.

Usage

adduct(x)

Arguments

x : object of class MSP

Format

An object of class NULL of length 0.

Value

character

Examples

data("sd@2received", package = "MetCirc")
finalMSP <- convert2MSP(sd@2received, split = "_",
 splitIndMZ = 2, splitIndRT = NULL)
adduct(finalMSP)

Description

adduct<- sets adduct ion names in MSP-object.

Arguments

x : object of class MSP, see ?convert2MSP for further information

value : character vector with new adduct ion names

Format

An object of class NULL of length 0.
allocatePrecursor2mz

Value

MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = "_",
 splitIndMZ = 2, splitIndRT = NULL)
adduct(finalMSP) <- rep("Unknown")

allocatePrecursor2mz allocatePrecursor2mz: Join two data sources

Description

Allocates precursor ions to candidate m / z values based on minimal distance of m / z and deviance of rt based on an objective function

Usage

allocatePrecursor2mz(sd01, sd02, kNN = 10, mzCheck = 1, rtCheck = 30,
mzVsRTbalance = 10000, splitPattern = "_", splitInd = 2)

Arguments

sd01 is the output of the XCMS and CAMERA processing and statistical analysis and XCMS and CAMERA scripts (see Li et al. 2015 and vignette for further information)
sd02 data.frame with idMS/MS deconvoluted spectra with fragment ions (m/z, retention time, relative intensity in %) and the corresponding peak correlation group of the precursor ion. sd02 has to have at least four columns: a column 'mz', 'rt', 'intensity' and 'id'
kNN numerical, number of k-nearest neighbours based on deviation from m/z (i.e. the k entries with the smallest deviation)
mzCheck numerical, maximum tolerated distance for m/z (strong criterion here)
rtCheck numerical, maximum tolerated distance for retention time
mzVsRTbalance numerical, multiplicator for mz value before calculating the (euclidean) distance between two peaks, high value means that there is a strong weight on the deviation mz value
splitPattern character, character vector to use for splitting, see ?strsplit for further information
splitInd numeric, extract precursor mz at position splitInd

Details

This function combines different data sources. convertExampleDF is a data.frame which comprises information on a specific metabolite per row stating the average retention time, average m/z, the name of the metabolite, the adduct ion name, the spectrum reference file name and additional information (here: TRIO/LVS). allocatePrecursor2mz uses data.frames of the kind of sd01_outputXCMS and sd02_deconvoluted to create a data.frame of the kind of convertExampleDF.
Allocation of precursor ions to candidate m/z values is based on minimal distance of m/z and deviation of retention time based on an objective function. We can specify threshold values for m/z and retention time to be used in `allocatePrecursor2mz`, as well as the number of neighbours based on deviation from m/z values. Also, we can specify the weight to base the selection on the m/z compared to the retention time (`mzVsRTbalance`). This might be useful because m/z values might differ less than the retention time in `sd01_outputXCMS` and `sd02_deconvoluted`. Please note, that it might be problematic to compare `sd01_outputXCMS` and `sd02_deconvoluted` and allocate precursor ions therefrom, especially when data were acquired under different conditions.

Value

`allocatePrecursor2mz` returns a data.frame containing average retention time, average m/z, metabolite name, adduct ion name, spectrum reference.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

References

Examples

```r
data("sd01_outputXCMS", package = "MetCirc")
data("sd02_deconvoluted", package = "MetCirc")
data("convertExampleDF", package = "MetCirc")
allocatePrecursor2mz(sd01 = sd01_outputXCMS, sd02 = sd02_deconvoluted,
                     kNN = 10, mzCheck = 1, rtCheck = 30, mzVsRTbalance = 10000, splitPattern = " _ ", splitInd = 2)
```

Description

The object `binnedMSP` is a matrix, where rows are metabolites detected in the tissues sepal (SPL), limb (LIM), anther (ANT) and style (STY). The columns contain binned m/z values. Entries contain the intensity (in percent) of a certain metabolite at a certain m/z value. `binnedMSP` is derived from the object `tissue` and `compartmentTissue`.

Usage

`binnedMSP`

Format

matrix

Value

matrix
binning

Description

Bin m/z values

Usage

```r
binning(msp, tol = 0.01, group = NULL, method = c("median", "mean"), verbose = FALSE)
```

Arguments

- **msp**: MSP-object, see ?convert2MSP for further information
- **tol**: numerical, boundary value until which neighboured peaks will be joined together
- **group**: character vector, to which group does the entry belong to
- **method**: character vector, method has to be median or mean
- **verbose**: logical vector, if set to TRUE information will be printed if groups were not detected

Details

The functions binning bins fragments together by obtaining bins via calculating either mean or medians of fragments which were put in intervals according to the tol parameter.
Value
binning returns a matrix where rownames are precursor ions (m/z / retention time) and colnames are newly calculated m/z values which were binned. Entries are intensity values in

Author(s)
Thomas Naake, <thomasnaake@gmail.com>

Examples
data("idMSMstoMSP", package = "MetCirc")
binning(msp = finalMSP, tol = 0.01, group = NULL, method = "median", verbose = FALSE)

cart2Polar

Calculate polar coordinates from cartesian coordinates

description
cart2Polar calculates polar coordinates from cartesian coordinates

Usage
cart2Polar(x, y)

Arguments
x cartesian x coordinate
y cartesian y coordinate

details
cart2Polar is employed to translate cartesian coordinates into polar coordinates especially in interactive shiny applications when using hovering and clicking features.

Value
cart2Polar returns a list of colar coordinates r and theta

Author(s)
Thomas Naake, <thomasnaake@gmail.com>

Examples
x <- 1; y <- 1
cart2Polar(x, y)
Description

circosLegend plots a legend for circos plot using group names.

Usage

circosLegend(groupname, highlight = TRUE, colour = NULL, cex = 1)

Arguments

groupname character vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element
highlight logical, should colours be adjusted to highlight settings?
colour NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used
cex numeric, parameter that controls size of the legend in the plot

Details

Internal use in shinyCircos or outside of shinyCircos to reproduce figures.

Value

The function will open a new plot and display colours together with labels.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
## load binnedMSP
data("binnedMSP", package = "MetCirc")
## use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
groupname <- rownames(similarityMat)
## plot legend
circosLegend(groupname, highlight = TRUE, colour = NULL, cex = 1)
```
Description

`classes` returns class names of compounds in MSP-object.

Usage

`classes(x)`

Arguments

- `x` object of class MSP

Format

An object of class `NULL` of length 0.

Value

character

Functions

- `classes`: returns class names of metabolites in MSP-object

Examples

```r
data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
                        splitIndMZ = 2, splitIndRT = NULL)
classes(finalMSP)
```

Description

`classes<-` sets information in MSP-object.

Arguments

- `x` object of class MSP, see `convert2MSP` for further information
- `value` character vector with new classes

Format

An object of class `NULL` of length 0.
Value
MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
classes(finalMSP) <- rep("Unknown")

combine combine method for MSP-class

Description
combine combines two objects of class MSP.

Usage
combine(object1, object2)

S4 method for signature 'MSP,MSP'
combine(object1, object2)

Arguments

object1 object of class MSP
object2 object of class MSP

Value
MSP-object

Methods (by class)

- object1 = MSP, object2 = MSP: combines two object of class MSP

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP1 <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
finalMSP2 <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
combine(finalMSP1, finalMSP2)
Example data for MetCirc: compartmentTissue

Description

The data.frame compartmentTissue is used in the subsection 'Preparing the tissue data set for analysis' in the vignette of MetCirc. In compartmentTissue, information on the organ-localisation of each MS/MS spectrum is stored.

Usage

tissue

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

internal

convert2MSP

Convert deconvoluted matrix into MSP-object

Description

Convert deconvoluted matrix into MSP-object

Usage

convert2MSP(mm, splitPattern = "_", splitIndMZ = 1, splitIndRT = NULL, rt = FALSE, names = FALSE, information = FALSE, classes = FALSE, adduct = FALSE)

Arguments

- **mm**: matrix, mm has to have three columns with colnames "mz", "intensity" and "id" (order is not important). The column comprises information about the precursor ion which will be assessed by splitPattern and splitInd. Optionally, mm can have colnames "rt", "names", "information", "classes" and "adduct".
- **splitPattern**: character, splitPattern is the pattern which separates elements and precursor m/z
The function `convert2MSP` creates a data entry for each precursor ion. Each entry in the return object has the following information: Num Peaks and a list of fragments together with their intensities; it will further contain information on m/z values of the precursor ion, the retention time, metabolite names, classes, adduct ion name and further information. `convert2MSP` will access the columns "rt", "names", "information", "classes" and "adduct", respectively, if arguments are set to TRUE. The column "id" has to contain a unique identifier for each MS/MS feature. It is obligatory that each element in the column "id" contains the precursor m/z value, but may contain further elements (e.g. peak correlation value or retention time of the precursor ion). Information about the m/z value will be assessed by `splitPattern` and `splitInd`. E.g. items in the column "id" can be in the form of "1_163.23", which has to be accessed by setting `splitPattern = "_"` and `splitInd = 2` to access the m/z value of the precursor ion (here: 162.23). If `rt` is set to TRUE and `splitIndRT` is NULL, `convert2MSP` will access the column "rt" to get the retention time values corresponding to each fragment and calculate the mean value, if `rt` is set to TRUE and `splitIndRT` numeric, `convert2MSP` will retrieve the retention time value from column "id".

Value

`convert2MSP` returns an object of class `MSP`

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("sd02_deconvoluted", package = "MetCirc")
convert2MSP(mm = sd02_deconvoluted, splitPattern = "_", splitIndMZ = 2,
            splitIndRT = NULL, rt = FALSE, names = FALSE, information = FALSE,
            classes = FALSE, adduct = FALSE)
```
Example data for MetCirc: convertExampleDF

Description

convertExampleDF is a data.frame which comprises information on a specific metabolite per row stating the average retention time, average m/z, the name of the metabolite, the adduct ion name and the spectrum reference file name. The function allocatePrecursor2mz uses data.frames of the kind of sd01_outputXCMS and sd02_deconvoluted to create a data.frame of the kind of convertExampleDF. Allocation of precursor ions to candidate m/z values is based on minimal distance of m/z and deviance of retention time based on an objective function. See ?allocatePrecursor2mz for further information.

Usage

convertExampleDF

Format

data.frame

Value

data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

internal

Convert MSP data frame into object of MSP-class

Description

Convert msp data frame into object of MSP-class

Usage

convertMSP2MSP(msp)

Arguments

msp data.frame, see Details for further information.
createLink0Matrix

Details

msp is a data frame of a .MSP file, a typical data file for MS/MS libraries. The data frame has two columns and contains in the first column the entries "NAME:," "PRECURSORMZ:" (or "EX-ACTMASS:"), "Num Peaks:" and information on fragments and peak areas/intensities. It may additionally contain row entries: convertMSP2MSP will try to find the row entries "RETENTION- TIME:," "ADDITIONNAME:" (or "PRECURSORTYPE:"), "CLASS:" and "INFORMATION:" and extract the respective information in the second column.

Value

convertMSP2MSP returns an object of class MSP.

Author(s)

Thomas Naake,<thomasnaake@googlemail.com>

Examples

data("convertMSP2MSP", package = "MetCirc")
convertMSP2MSP(msp = msp2msp)

createLink0Matrix

Create a link matrix

Description

Create a link matrix which links every feature in similarity matrix with another.

Usage

createLink0Matrix(similarityMatrix)

Arguments

similarityMatrix
matrix, a similarity matrix that contains the NDP similarity measure between all precursors in the data set

Details

createLink0Matrix creates a matrix from a similarity matrix which includes all connections between features in the similarity matrix, but exclude links which have a similarity of exactly 0.

Value

createLink0Matrix returns a matrix that gives per each row information on linked features

Author(s)

Thomas Naake,<thomasnaake@googlemail.com>
createLinkMatrix

Examples

```r
data("binnedMSP", package = "MetCirc")
## truncate binnedMSP
binnedMSP <- binnedMSP[1:28,]
namesPrec <- rownames(binnedMSP)
similarityMat <- createSimilarityMatrix(binnedMSP)
link0Mat <- createLink0Matrix(similarityMatrix = similarityMat)
```

createLinkMatrix

Create a matrix which contains features to link (indices)

Description

Create a matrix which contains features to link (indices)

Usage

```r
createLinkMatrix(similarityMatrix, threshold_low, threshold_high)
```

Arguments

- `similarityMatrix`
 matrix, a similarity matrix that contains the NDP similarity measure between all precursors in the data set
- `threshold_low` numeric, threshold value for NDP values, below this value linked features will not be included
- `threshold_high` numeric, threshold value for NDP values, above this value linked features will not be included

Details

`threshold_low` and `threshold_high` are numerical values and truncate similar/identical precursor ions; similarity is currently based on the normalised dot product.

Value

`createLinkMatrix` returns a matrix that gives per each row information on linked features

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("binnedMSP", package = "MetCirc")
## use only a selection
binnedMSP <- binnedMSP[c(c(1:20, 29:48, 113:132, 240:259)),]
similarityMat <- createSimilarityMatrix(binnedMSP)
createLinkMatrix(similarityMatrix = similarityMat,
                threshold_low = 0.5, threshold_high=1)
```
createOrderedSimMat
Update colnames and rownames of a similarity matrix according to order m/z, retention time and clustering

Description

Internal function for shiny application. May also be used outside of shiny to reconstruct figures.

Usage

```r
createOrderedSimMat(similarityMatrix, order = c("retentionTime", "mz", "clustering"))
```

Arguments

- `similarityMatrix`
 matrix, `similarityMatrix` contains pair-wise similarity coefficients which give information about the similarity between precursors

- `order`
 character, one of "retentionTime", "mz" or "clustering"

Details

`createOrderedSimMat` takes a similarity matrix and a character vector as arguments. It will then reorder rows and columns of the `similarityMatrix` object such that it orders rows and columns of `similarityMatrix` according to `m/z`, retention time or clustering in each group. `createOrderedSimMat` is employed in the shinyCircos function to create `similarityMatrix` objects which will allow to switch between different types of ordering in between groups (sectors) in the circos plot. It may be used as well externally, to reproduce plots outside of the reactive environment (see vignette for a workflow).

Value

`createOrderedSimMat` returns a similarity matrix with ordered rownames according to the character vector given to `order`.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("binnedMSP", package = "MetCirc")
data("similarityMat", package = "MetCirc")
## order according to retention time
createOrderedSimMat(similarityMatrix = similarityMat, order = "retentionTime")
```
createSimilarityMatrix

Create similarity matrix

Description

Creates the similarity matrix by calculating the normalised dot product (NDP) between precursors

Usage

createSimilarityMatrix(mm, m = 0.5, n = 2)

Arguments

- **mm** matrix, colnames are all fragments which occur in the dataset, rownames are m/z / rt values, entries of mm are intensity values corresponding to their m/z values
- **m** numeric, see ?NDP for further details
- **n** numeric, see ?NDP for further details

Details

createSimilarityMatrix calls a function to calculate the NDP between all precursors in the data set. For further information on how the NDP is calculated see ?NDP and Li et al. (2015): Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. PNAS, E4147–E4155. Currently m = 0.5 and n = 2 are set as default.

Value

createSimilarityMatrix returns a similarity matrix that contains the NDP similarity measure between all precursors in the data set

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("binnedMSP", package = "MetCirc")
truncate binnedMSP
binnedMSP <- binnedMSP[1:28,]
createSimilarityMatrix(binnedMSP, m = 0.5, n = 2)
cutLinkMatrix

Create a cut link matrix

Description
Create a cut link matrix

Usage
cutLinkMatrix(LinkMatrix, type = c("all", "inter", "intra"))

Arguments
- LinkMatrix: matrix, that gives per each row information on linked features
- type: character, one of "all", "inter" or "intra"

Details
This function is used to cut features from LinkMatrix. If type = "all", LinkMatrix will not be changed; if type = "inter" the cut LinkMatrix will only contain entries of links which are between groups and not inside groups; contrary to that, if type = "intra" the cut LinkMatrix will only contain entries of links which are inside groups and not between groups.

Value
cutLinkMatrix returns a matrix that gives per each row information on linked features

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples
data("binnedMSP", package = "MetCirc")
use only a selection
binnedMSP <- binnedMSP[c(c(1:20, 29:48, 113:132, 240:259)),]
similarityMat <- createSimilarityMatrix(binnedMSP)
linkMat <- createLinkMatrix(similarityMatrix = similarityMat, threshold_low = 0.75, threshold_high = 1)
cutLinkMatrix(LinkMatrix = linkMat, type = "all")

cutUniquePrecursor

Get unique precursor ions

Description
Get unique precursor ions

Usage
cutUniquePrecursor(precursor, splitPattern = splitPattern, splitInd = splitInd, returnCharacter = TRUE)
getBegEndIndMSP

Arguments

precursor character where features are separated by splitPattern
splitPattern character, character vector to use for splitting, see ?strsplit for further information
splitInd numeric, extract precursor mz at position splitInd
returnCharacter logical, if TRUE return character, if FALSE return numeric

Details

Function for internal usage.

Value

The function cutUniquePrecursor returns character or numeric as specified by parameters.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

precursor <- "A_269.0455469_-1"
splitPattern <- "_"
splitInd <- 2
cutUniquePrecursor(precursor, splitPattern = splitPattern, splitInd = splitInd, returnCharacter = TRUE)

gbegEndIndMSP Get beginning and end indices of each entry in a data.frame in peaks(MSP)-objects

Description

Get beginning and end indices of each entry in a data.frame in a peaks(MSP)-object

Usage

gbegEndIndMSP(msp)

Arguments

msp data.frame in peaks(MSP)-object, see ?convert2MSP for further information

Details

Internal use to retrieve start and end row indices for fragments of MS/MS features.

Value

gbegEndIndMSP returns a list of length 2 where the first entry contains the start indices and the second the end indices
getLinkMatrixIndices

Description

Gets indices in LinkMatrix of feature

Usage

getLinkMatrixIndices(groupnameselected, linkMatrix)

Arguments

groupnameselected
 character vector with groupname of selected feature, vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element

linkMatrix
 matrix, in each row there is information about features to be connected

Details

Internal use for function highlight.

Value

getLinkMatrixIndices returns indices concerning linkMatrix to which groupnameselected connects

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

Not run: getLinkMatrixIndices(groupnameselected, linkMatrix)
getPrecursorMZ

getPrecursorMZ returns precursor m/z values of an MSP-object

Description

getcircPrecursorMZ returns a numeric vector with precursor m/z values

Usage

getcircPrecursorMZ(x)

Arguments

 x object of class MSP

Format

An object of class NULL of length 0.

Value

numeric

Functions

 • getPrecursorMZ: returns precursor m/z values of an MSP object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
getcircPrecursorMZ(finalMSP)

getRT

getRT returns precursor RT values of an MSP-object

Description

getRT returns a numeric vector with all retention time values

Usage

getcircRT(x)

Arguments

 x object of class MSP

Format

An object of class NULL of length 0.
Value
numeric

Functions

- getRT: returns precursor RT values of an MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
 splitIndMZ = 2, splitIndRT = NULL)
getRT(finalMSP)

highlight

Add links and highlight sectors

Description

A function to add links and highlight sectors to an initialised and plotted circlize plot with one track.

Usage

highlight(groupname, ind, LinkMatrix, colour = NULL, transparency = 0.4, links = TRUE)

Arguments

groupname character vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element
ind numeric, indices which will be highlighted
LinkMatrix matrix, in each row there is information about features to be connected
colour NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used
transparency numeric, defines the transparency of the colours
links logical, should links of unselected features be plotted

Details

Internal use for shinyCircos or outside of shinyCircos to reproduce the figure.

Value

The function will update an existing plot by highlighting a specified sector and connected links.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
Examples

load binnedMSP
data("binnedMSP", package = "MetCirc")
use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
order similarityMat according to retentionTime and update rownames
simM <- createOrderedSimMat(similarityMat, order = "retentionTime")
create link matrix
linkMat <- createLinkMatrix(similarityMatrix = simM,
 threshold_low = 0.95, threshold_high = 1)
cut link matrix (here: only display links between groups)
linkMat_cut <- cutLinkMatrix(linkMat, type = "inter")
set circlize parameters
circos.par(gap.degree = 0, cell.padding = c(0.0, 0, 0.0, 0),
 track.margin = c(0.0, 0))
groupname <- rownames(simM)
here: set selectedFeatures arbitrarily
indSelected <- c(2,23,42,62)
selectedFeatures <- groupname[indSelected]
actual plotting
plotCircos(groupname, linkMat_cut, initialize = TRUE,
 featureNames = TRUE, cexFeatureNames = 0.2, groupSector = TRUE,
 groupName = FALSE, links = FALSE, highlight = TRUE)
highlight
highlight(groupname = groupname, ind = indSelected, LinkMatrix =
 linkMat_cut, colour = NULL, transparency = 0.4, links = TRUE)

Example data for MetCirc: finalMSP

Description

finalMSP is of instance MSP, a container for MS/MS data. finalMSP is derived from the object tissue and compartmentTissue.

Usage

finalMSP

Format

object of class MSP

Value

object of class MSP

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
Source

data("idMSMStissueproject", package = "MetCirc") ## create vectors with precursor names present in tissue
tissueSPL <- compartmentTissue[compartmentTissue[,"SPL"] == TRUE, 1]
tissueLIM <- compartmentTissue[compartmentTissue[,"LIM"] == TRUE, 1]
tissueANT <- compartmentTissue[compartmentTissue[,"ANT"] == TRUE, 1]
tissueSTY <- compartmentTissue[compartmentTissue[,"STY"] == TRUE, 1]

truncate tissue
tissueSPL <- tissue[tissue[,4] == TRUE, 1]
tissueLIM <- tissue[tissue[,4] == TRUE, 1]
tissueANT <- tissue[tissue[,4] == TRUE, 1]
tissueSTY <- tissue[tissue[,4] == TRUE, 1]

create msp and combine msp objects of different tissues
finalMSP <- convert2MSP(tissueSPL, rt = TRUE)
finalMSP <- combine(finalMSP, convert2MSP(tissueLIM), rt = TRUE)
finalMSP <- combine(finalMSP, convert2MSP(tissueANT), rt = TRUE)
finalMSP <- combine(finalMSP, convert2MSP(tissueSTY), rt = TRUE)

write finalMSP to idMSMStoMSP.RData
save(finalMSP, file = "idMSMStoMSP.RData", compress = "xz")

information

information returns information of metabolites in MSP-object.

Description

information returns information in MSP-object.

Usage

information(x)

Arguments

x

object of class MSP, see ?convert2MSP for further information

Format

An object of class `NULL` of length 0.

Value

ccharcter

Functions

- information: returns information of metabolites in MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = "_",
 splitIndMZ = 2, splitIndRT = NULL)
information(finalMSP)
Description

information<- sets information in MSP-object

Arguments

x object of class MSP, see convert2MSP for further information
value character vector with new information

Format

An object of class NULL of length 0.

Value

MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
 splitIndMZ = 2, splitIndRT = NULL)
information(finalMSP) <- rep("Unknown")

length

length method for MSP-class

Description

Gives the number of entries in the MSP object.

Usage

S4 method for signature 'MSP'
length(x)

Arguments

x object of class MSP

Value

numeric

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
 splitIndMZ = 2, splitIndRT = NULL)
length(finalMSP)
minFragCart2Polar

Calculate the nearest feature in polar coordinates given cartesian coordinates

Description

Calculates the nearest feature in polar coordinates given cartesian coordinates

Usage

```
minFragCart2Polar(x, y, degreeOfFeatures)
```

Arguments

- `x`
cartesian x coordinate
- `y`
cartesian y coordinate
- `degreeOfFeatures`
list of positions of features

Details

`minFragCart2Polar` is employed to find the feature with the smallest distance from given cartesian coordinates.

Value

`minFragCart2Polar` returns the index of the feature that has the smallest distance to the given coordinates. As `minFragCart2Polar` is used in shinyCircos for the track 1 only polar r coordinates between 0.8 and 1 will be used to find the feature with smallest distance.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
## load binnedMSP
data("binnedMSP", package = "MetCirc")
## use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
simM <- createSimilarityMatrix(binnedMSP)
groupname <- rownames(simM)
plotCircos(groupname, NULL, initialize = TRUE, featureNames = FALSE,
  groupName = FALSE, groupSector = FALSE, links = FALSE, highlight = FALSE)
x <- 1
y <- 0
degreeFeatures <- lapply(groupname, function(x) mean(circlize::get.sector.data(x)[c("start.degree", "end.degree")]))
minFragCart2Polar(x, y, degreeOfFeatures = degreeFeatures)
```
MSP

MSP-class

Description

Definition of MSP-class in MetCirc. Entries are MS/MS features including their spectra. Allows easy computation of number of entries by entering length(msp), where msp is of class MSP. The MSP-class incorporates accessors for auxiliary information of MS/MS features (names, classes, information, adduct ion name).

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

msp2FunctionalLossesMSP

Convert MSP to MSP with functional losses

Description

msp2FunctionalLossesMSP converts a MSP-object (with fragments) into a MSP-object with neutral losses

Usage

msp2FunctionalLossesMSP(msp)

Arguments

- **msp**
 MSP-object

Details

The function msp2FunctionalLosses can be used when calculating the similarity based on neutral losses instead of fragments.

Value

msp2FunctionalLossesMSP returns a MSP-object (with neutral losses)

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",
 splitIndMZ = 2, splitIndRT = NULL)
finalMSPNL <- msp2FunctionalLossesMSP(msp = finalMSP)
Example data for MetCirc: msp2msp

Description

convertMSP2MSP contains the object msp2msp that is a data frame in .MSP format, a typical format for MS/MS library building. Each entry consists of the metabolite name (NAME), the precursor mz (PRECURSORMZ), the retention time (RETENTIONTIME), number of peaks (Num Peaks), together with fragments and their intensity values. In the example used in the function convertMSP2MSP the matrix msp2msp is used to construct an object of class MSP.

Usage

msp2msp

Format
data.frame

Value
data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

Description

names returns names in MSP-object.

Usage

S4 method for signature 'MSP'

names(x)

Arguments

x object of class MSP, see ?convert2MSP for further information
names<- names<- sets names in MSP-object

Description

names<- sets names in MSP-object

Usage

S4 replacement method for signature 'MSP,character'
names(x) <- value

Arguments

x object of class MSP, see ?convert2MSP for further information
value character vector with new names

Value

MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " ",

splitIndMZ = 2, splitIndRT = NULL)
names(finalMSP) <- rep("Unknown")

NDP Calculate the normalised dot product

Description

Calculate the normalised dot product (NDP)

Usage

NDP(matrow1, matrow2, m = 0.5, n = 2, mass)
Arguments

matrow1 character or numeric vector, the entries correspond to the mass vector and contain corresponding intensities to the masses, it is the first feature to compare

matrow2 character or numeric vector, the entries correspond to the mass vector and contain corresponding intensities to the masses, it is the second feature to compare

m numeric, exponent to calculate peak intensity-based weights

n numeric, exponent to calculate peak intensity-based weights

mass character or numeric vector, vector with all masses which occur in the data set

Details

The NDP is calculated according to the following formula:

\[
NDP = \frac{\sum(W_{S1,i} \cdot W_{S2,i})^2}{\sum(W_{S1,i}^2) \cdot \sum(W_{S2,i}^2)},
\]

, with \(W = [peakintensity]^{m} \cdot [m/z]^n \). For further information see Li et al. (2015): Navigating natural variation in herbivory-induced secondary metabolism in coyote tobacco populations using MS/MS structural analysis. PNAS, E4147–E4155. NDP returns a numeric value ranging between 0 and 1, where 0 indicates no similarity between the two MS/MS features, while 1 indicates that the MS/MS features are identical. For the calculation of the NDP only the elements of S1 and S2 that are not equal to 0 will be used.

Value

NDP returns a numeric similarity coefficient between 0 and 1

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("binnedMSP", package = "MetCirc")
NDP(matrow1 = binnedMSP[1,], matrow2 = binnedMSP[2,], m = 0.5, n = 2, mass = colnames(binnedMSP))

Description

peaks returns the data.frame entry with peak information of an MSP object.

Usage

peaks(object)

S4 method for signature 'MSP'

peaks(object)
plotCircos

Arguments

- `object` object of class MSP

Value

data.frame

Methods (by class)

- MSP: returns the data.frame of an MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
splitIndMZ = 2, splitIndRT = NULL)
peaks(finalMSP)

plotCircos

Circular plot to visualise similarity

Description

Circular plot to visualise similarity

Usage

```r
plotCircos(groupname, linkMat, initialize = c(TRUE, FALSE),
featureNames = c(TRUE, FALSE), cexFeatureNames = 0.3,
groupSector = c(TRUE, FALSE), groupName = c(TRUE, FALSE),
links = c(TRUE, FALSE), highlight = c(TRUE, FALSE), colour = NULL,
transparency = 0.2)
```

Arguments

- `groupName` character vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element
- `linkMat` data.frame containing linked features in each row, has five columns (group1, name1, group2, name2, NDP)
- `initialize` logical, should plot be initialized?
- `featureNames` logical, should feature names be displayed?
- `cexFeatureNames` numeric, size of feature names
- `groupSector` logical, should groups be displayed with background colours?
- `groupName` logical, should group names (e.g. compartment names or individual names) be displayed?
- `links` logical, should links be plotted?
- `highlight` logical, highlight is set to TRUE
- `colour` NULL or character, colour defines the colours which are used for plotting, if NULL default colours are used
- `transparency` numeric, defines the transparency of the colours
printInformationSelect

Details

Internal use for shinyCircos or used outside of shinyCircos to reproduce figure

Value

The function will initialize a circlize plot and/or will plot features of a circlize plot.

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
## load binnedMSP
data("binnedMSP", package = "MetCirc")
## use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
## order similarityMat according to retentionTime
simM <- createOrderedSimMat(similarityMat, order = "retentionTime")
## create link matrix
linkMat <- createLinkMatrix(similarityMatrix = simM,
                            threshold_low=0.8, threshold_high=1)
## cut link matrix (here: only display links between groups)
linkMat_cut <- cutLinkMatrix(linkMat, type = "inter")
## set circlize parameters
circos.par(gap.degree = 0, cell.padding = c(0.0, 0.0, 0.0, 0),
           track.margin = c(0.0, 0))
groupname <- rownames(simM)
## actual plotting
plotCircos(groupname, linkMat_cut, initialize = TRUE,
           featureNames = TRUE, cexFeatureNames = 0.3, groupSector = TRUE,
           groupName = FALSE, links = FALSE, highlight = FALSE, colour = NULL,
           transparency = 0.2)
```

Description

Displays information on connected features of selected features.

Usage

```r
printInformationSelect(groupname, msp = NULL, ind, lMatInd, linkMatrixThreshold, similarityMatrix, roundDigits = 2)
```
printInformationSelect

Arguments

- **groupname** character vector with groupname of selected feature, vector containing "group" and "name" to display, that is a unique identifier of the features, "group" and "name" have to be separated by "_" where "group" is the first and "name" is the last element
- **msp** MSP, an S4 object of class MSP for information about the selected feature
- **ind** numeric
- **lMatInd** numeric indices of selected features
- **linkMatrixThreshold** matrix that contains information of linked features for given thresholds
- **similarityMatrix** matrix that is used to get information on the degree of similarity, `similarityMat` is an ordered version of a similarity matrix, see `?createOrderedSimMat`
- **roundDigits** numeric, how many digits should be displayed?

Details

`printInformationSelect` is for internal use.

Value

character that is in HTML format

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

data("idMMSStoMSP", package = "MetCirc")
data("binnedMSP", package = "MetCirc")
use only a selection
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
groupname <- rownames(similarityMat)
order similarityMat according to mz
simMat <- createOrderedSimMat(similarityMat, order = "mz")
groupnameMZ <- rownames(simMat)
linkMat_thr <- createLinkMatrix(simMat, 0.8, 1)
ind <- 2
indMZ <- which(groupname[ind] == truncateName(groupnameMZ, NULL, group = TRUE))
lMatInds <- getLinkMatrixIndices(groupnameMZ[indMZ], linkMat_thr)
MetCirc:::printInformationSelect(groupname = groupname,
msp = NULL, ind = ind, lMatInd = lMatInds,
linkMatrixThreshold = linkMat_thr,
similarityMatrix = similarityMat, roundDigits = 2)
Example data for MetCirc: sd01_outputXCMS

Description
sd01_outputXCMS is the output file from the package XCMS using the data from Li et al. (2015). See Li et al. (2015) for further details.

Usage
sd01_outputXCMS

Format
data.frame

Value
data.frame

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Source
Li et al. (2015)

Example data for MetCirc: sd02_deconvoluted

Description
sd02_deconvoluted contains MS/MS data from Li et al. (2015). It is a data.frame which hosts m/z values, retention time, intensity and the respective precursor m/z values. sd02_deconvoluted originates from Li et al. (2015). See Li et al. (2015) for further information.

Usage
sd02_deconvoluted

Format
data.frame

Value
data.frame
shinyCircos

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

Li et al. (2015)

shinyCircos
Interactive visualisation of similarity and navigation of MS/MS features

Description

Visualise the similarity of MS/MS features in a reactive context. See Details the vignette for further descriptions on how to use shinyCircos.

Usage

```r
shinyCircos(similarityMatrix, msp = NULL, ...)
```

Arguments

- `similarityMatrix`: matrix, `similarityMatrix` contains pair-wise similarity coefficients which give information about the similarity between MS/MS features
- `msp`: MSP, an S4 object of class MSP, the MSP-object will be used to display information about the selected feature
- `...`: further arguments passed to `shinyCircos`, e.g. `cexFeatureNames` to pass to `plotCircos` to set font size in `plotCircos` of feature names

Details

The function is based on the `shiny` and `circlize` package. The user can choose interactively thresholds, type of links (between or within groups), display information about MS/MS features, permanently select MS/MS features and export selected precursors. When running `shinyCircos` with the object of class MSP, annotation data of selected MS/MS features will be displayed.

Value

`shinyCircos` returns a character vector with the (permanently) selected precursors or an object with the entries `msp` and `selectedFeatures` if a MSP-object was passed to `shinyCircos`

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>
Examples

data("idMSMStoMSP", package = "MetCirc")
truncate files
finalMSP <- finalMSP[c(1:20, 29:48, 113:132, 240:259)]
data("binnedMSP", package = "MetCirc")
binnedMSP <- binnedMSP[c(1:20, 29:48, 113:132, 240:259),]
similarityMat <- createSimilarityMatrix(binnedMSP)
Not run: shinyCircos(similarityMatrix = similarityMat, msp = finalMSP)

Description

show prints information on the MSP-object (number of entries).

Usage

S4 method for signature 'MSP'
show(object)

Arguments

object object of class MSP

Value

character

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ", splitIndMZ = 2, splitIndRT = NULL)
show(finalMSP)

similarityMat Example data for MetCirc: similarityMat

Description

similarityMat is a matrix containing the pair-wise similarity scores derived from the idMSMStissueproject data set. See the vignette for a workflow to reproduce the object similarityMat.

Usage

similarityMat

Format

matrix
Threshold a link matrix

Description

Threshold a link matrix

Usage

thresholdLinkMatrix(linkMatrix, threshold_low, threshold_high)

Arguments

- `linkMatrix`: matrix, a link matrix that gives per each row information on linked features
- `threshold_low`: numeric, threshold value for NDP values, below this value linked features will not be returned
- `threshold_high`: numeric, threshold value for NDP values, above this value linked features will not be returned

Details

threshold_low and threshold_high are numerical values and truncates similar/identical precursor ions; similarity is momentarily based on the normalised dot product.

Value

thresholdLinkMatrix returns a matrix that gives per each row information on linked features which are linked above a certain threshold

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Examples

```r
data("binnedMSP", package = "MetCirc")
similarityMat <- createSimilarityMatrix(binnedMSP)
save(similarityMat, file = "similarityMat.RData", compress = "xz")

thresholdLinkMatrix <- function(linkMatrix, threshold_low, threshold_high) {
  # your code here
}
```

```r
# use only a selection
similarityMat <- createSimilarityMatrix(binnedMSP)
linkMatrix <- createLink0Matrix(similarityMatrix = similarityMat)
thresholdLinkMatrix(linkMatrix = linkMatrix, threshold_low = 0.5, threshold_high=1)
```
Example data for MetCirc: tissue

The **tissue** data frame is used in the subsection 'Preparing the tissue data set for analysis' in the vignette of MetCirc. MS/MS data are merged across floral organs in this data frame.

Usage

```r
tissue
```

Format

- **tissue**: data.frame

Value

- **tissue**: data.frame

Author(s)

Thomas Naake, <thomasnaake@googlemail.com>

Source

- **internal**

Truncate names

Description

A function to truncate names

Usage

```r
truncateName(groupname, roundDigits = 2, group = FALSE)
```

Arguments

- **groupname**: character vector with group and unique idenfier (name)
- **roundDigits**: numeric, how many digits should be displayed?
- **group**: logical, should groups be returned?

Details

`groupname` is a vector of character strings consisting of a group, retention time and m/z value, separated by \"_\". It is cumbersome to display such long strings. `truncateName` truncates these strings by rounding retention time and m/z values by digits given by `roundDigits`. `truncateName` is an internal function.
Value
truncateName returns groupname with truncated names without group

Author(s)
Thomas Naake, <thomasnaake@googlemail.com>

Examples

groupname <- "a_100.12345/10.12345"
truncateName(groupname, roundDigits = 2, group = FALSE)

Extract parts of a MSP-object

Description
| operator acting on an MSP-object to extract parts.

Usage

S4 method for signature 'MSP,numeric'
x[i]

Arguments

x object of class MSP
i numeric

Value
MSP-object

Examples

data("sd02_deconvoluted", package = "MetCirc")
finalMSP <- convert2MSP(sd02_deconvoluted, split = " _ ",
 splitIndMZ = 2, splitIndRT = NULL)
finalMSP[1]
Index

*Topic datasets
 adduct, 3
 adduct<-, 3
 classes, 9
 classes<-, 9
 getPrecursorMZ, 21
 getRT, 21
 information, 24
 information<-, 25
 [, 39
 [,MSP,numeric-method ([,), 39
 adduct, 3
 adduct,MSP-method (adduct), 3
 adduct<-, 3
 adduct<-,MSP,character-method (adduct<-, 3
 allocatePrecursor2mz, 4
 binnedMSP, 5
 binning, 6
 cart2Polar, 7
 circosLegend, 8
 classes, 9
 classes,MSP-method (classes), 9
 classes<-, 9
 classes<-,MSP,character-method (classes<-, 9
 combine, 10
 combine,MSP,MSP-method (combine), 10
 combine,MSP-method (combine), 10
 compartmentTissue, 11
 convert2MSP, 11
 convertExampleDF, 13
 convertMSP2MSP, 13
 createLink0Matrix, 14
 createLinkMatrix, 15
 createOrderedSimMat, 16
 createSimilarityMatrix, 17
 cutLinkMatrix, 18
 cutUniquePrecursor, 18
 finalMSP (idMSMStoMSP-data), 23
 getBeginEndIndMSP, 19
 getLinkMatrixIndices, 20
 getPrecursorMZ, 21
 getPrecursorMZ,MSP-method (getPrecursorMZ), 21
 getRT, 21
 getRT,MSP-method (getRT), 21
 highlight, 22
 idMSMStoMSP-data, 23
 information, 24
 information,MSP-method (information), 24
 information<-, 25
 information<-,MSP,character-method (information<-, 25
 length, 25
 length,MSP-method (length), 25
 minFragCart2Polar, 26
 MSP, 27
 MSP-class (MSP), 27
 msp2FunctionallLossesMSP, 27
 msp2msp, 28
 names, 28
 names,MSP-method (names), 28
 names<-, 29
 names<-,MSP,character-method (names<-, 29
 NDP, 29
 peaks, 30
 peaks,MSP-method (peaks), 30
 plotCircos, 31
 printInformationSelect, 32
 sd01_outputXCMS, 34
 sd02_deconvoluted, 34
 shinyCircos, 35
 show, 36
 show,MSP-method (show), 36
 similarityMat, 36
INDEX

thresholdLinkMatrix, 37
tissue, 38
truncateName, 38