Package ‘IntEREst’

May 17, 2024

Title Intron-Exon Retention Estimator
Version 1.28.0
Date 2024-03-19
Author Ali Oghabian <Ali.Oghabian@Helsinki.Fi>, Dario Greco <dario.greco@helsinki.fi>, Mikko Frilander <Mikko.Frilander@helsinki.fi>
Maintainer Ali Oghabian <Ali.Oghabian@Helsinki.Fi>, Mikko Frilander <Mikko.Frilander@helsinki.fi>
Description This package performs Intron-Exon Retention analysis on RNA-seq data (.bam files).
Depends R (>= 3.5.0), GenomicRanges, Rsamtools, SummarizedExperiment, edgeR, S4Vectors, GenomicFiles
Imports seqLogo, Biostrings, GenomicFeatures, txdbmaker, IRanges, seqinr, graphics, grDevices, stats, utils, grid, methods, DBI, RMySQL, GenomicAlignments, BiocParallel, BiocGenerics, DEXSeq, DESeq2
Suggests clinfun, knitr, rmarkdown, BSgenome.Hsapiens.UCSC.hg19
VignetteBuilder knitr
LazyData true
biocViews Software, AlternativeSplicing, Coverage, DifferentialSplicing, Sequencing, RNASeq, Alignment, Normalization, DifferentialExpression, ImmunoOncology
License GPL-2
 NeedsCompilation no
git_url https://git.bioconductor.org/packages/IntEREst
git_branch RELEASE_3_19
git_last_commit 9b139fc
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-17
Contents

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntEREst-package</td>
<td>3</td>
</tr>
<tr>
<td>addAnnotation</td>
<td>3</td>
</tr>
<tr>
<td>annotateU12</td>
<td>4</td>
</tr>
<tr>
<td>applyOverlap</td>
<td>7</td>
</tr>
<tr>
<td>attributes</td>
<td>9</td>
</tr>
<tr>
<td>boxplot-method</td>
<td>10</td>
</tr>
<tr>
<td>buildSSTypePwms</td>
<td>11</td>
</tr>
<tr>
<td>counts-method</td>
<td>14</td>
</tr>
<tr>
<td>deseqInterest</td>
<td>16</td>
</tr>
<tr>
<td>DEXSeqIntEREst</td>
<td>17</td>
</tr>
<tr>
<td>exactTestInterest</td>
<td>18</td>
</tr>
<tr>
<td>getRepeatTable</td>
<td>21</td>
</tr>
<tr>
<td>glmInterest</td>
<td>22</td>
</tr>
<tr>
<td>interest</td>
<td>23</td>
</tr>
<tr>
<td>interest.sequential</td>
<td>26</td>
</tr>
<tr>
<td>InterestResult</td>
<td>30</td>
</tr>
<tr>
<td>interestResultIntEx</td>
<td>32</td>
</tr>
<tr>
<td>intexIndex</td>
<td>33</td>
</tr>
<tr>
<td>lfc</td>
<td>34</td>
</tr>
<tr>
<td>mdsChr22ExObj</td>
<td>36</td>
</tr>
<tr>
<td>mdsChr22IntSpObj</td>
<td>37</td>
</tr>
<tr>
<td>mdsChr22Obj</td>
<td>38</td>
</tr>
<tr>
<td>mergeInterestResult</td>
<td>39</td>
</tr>
<tr>
<td>plot-method</td>
<td>41</td>
</tr>
<tr>
<td>psi</td>
<td>43</td>
</tr>
<tr>
<td>pwmU12db</td>
<td>45</td>
</tr>
<tr>
<td>qlfInterest</td>
<td>46</td>
</tr>
<tr>
<td>readInterestResults</td>
<td>47</td>
</tr>
<tr>
<td>referencePrepare</td>
<td>49</td>
</tr>
<tr>
<td>subInterestResult</td>
<td>52</td>
</tr>
<tr>
<td>treatInterest</td>
<td>54</td>
</tr>
<tr>
<td>u12</td>
<td>55</td>
</tr>
<tr>
<td>u12Boxplot</td>
<td>57</td>
</tr>
<tr>
<td>u12BoxplotNb</td>
<td>58</td>
</tr>
<tr>
<td>u12DensityPlot</td>
<td>59</td>
</tr>
<tr>
<td>u12Index</td>
<td>62</td>
</tr>
<tr>
<td>u12NbIndex</td>
<td>63</td>
</tr>
<tr>
<td>unionRefTr</td>
<td>64</td>
</tr>
<tr>
<td>updateRowDataCol</td>
<td>65</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IntEREst-package</td>
<td>3</td>
</tr>
<tr>
<td>addAnnotation</td>
<td>3</td>
</tr>
<tr>
<td>annotateU12</td>
<td>4</td>
</tr>
<tr>
<td>applyOverlap</td>
<td>7</td>
</tr>
<tr>
<td>attributes</td>
<td>9</td>
</tr>
<tr>
<td>boxplot-method</td>
<td>10</td>
</tr>
<tr>
<td>buildSSTypePwms</td>
<td>11</td>
</tr>
<tr>
<td>counts-method</td>
<td>14</td>
</tr>
<tr>
<td>deseqInterest</td>
<td>16</td>
</tr>
<tr>
<td>DEXSeqIntEREst</td>
<td>17</td>
</tr>
<tr>
<td>exactTestInterest</td>
<td>18</td>
</tr>
<tr>
<td>getRepeatTable</td>
<td>21</td>
</tr>
<tr>
<td>glmInterest</td>
<td>22</td>
</tr>
<tr>
<td>interest</td>
<td>23</td>
</tr>
<tr>
<td>interest.sequential</td>
<td>26</td>
</tr>
<tr>
<td>InterestResult</td>
<td>30</td>
</tr>
<tr>
<td>interestResultIntEx</td>
<td>32</td>
</tr>
<tr>
<td>intexIndex</td>
<td>33</td>
</tr>
<tr>
<td>lfc</td>
<td>34</td>
</tr>
<tr>
<td>mdsChr22ExObj</td>
<td>36</td>
</tr>
<tr>
<td>mdsChr22IntSpObj</td>
<td>37</td>
</tr>
<tr>
<td>mdsChr22Obj</td>
<td>38</td>
</tr>
<tr>
<td>mergeInterestResult</td>
<td>39</td>
</tr>
<tr>
<td>plot-method</td>
<td>41</td>
</tr>
<tr>
<td>psi</td>
<td>43</td>
</tr>
<tr>
<td>pwmU12db</td>
<td>45</td>
</tr>
<tr>
<td>qlfInterest</td>
<td>46</td>
</tr>
<tr>
<td>readInterestResults</td>
<td>47</td>
</tr>
<tr>
<td>referencePrepare</td>
<td>49</td>
</tr>
<tr>
<td>subInterestResult</td>
<td>52</td>
</tr>
<tr>
<td>treatInterest</td>
<td>54</td>
</tr>
<tr>
<td>u12</td>
<td>55</td>
</tr>
<tr>
<td>u12Boxplot</td>
<td>57</td>
</tr>
<tr>
<td>u12BoxplotNb</td>
<td>58</td>
</tr>
<tr>
<td>u12DensityPlot</td>
<td>59</td>
</tr>
<tr>
<td>u12Index</td>
<td>62</td>
</tr>
<tr>
<td>u12NbIndex</td>
<td>63</td>
</tr>
<tr>
<td>unionRefTr</td>
<td>64</td>
</tr>
<tr>
<td>updateRowDataCol</td>
<td>65</td>
</tr>
</tbody>
</table>

Index | 67
IntEREst-package

Description

Intron/Exon retention estimator quantifies and normalizes Intron retention and Exon junction read levels by analyzing mapped reads (.bam) files.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>IntEREst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2015-11-18</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

To run the pipeline use functions interest() or interest.sequential(), i.e. wrapper functions that run all the necessary functions.

Author(s)

Ali Oghabian <Ali.Oghabian@Helsinki.Fi>, Dario Greco <dario.greco@helsinki.fi>, Mikko Frilander <Mikko.Frilander@helsinki.fi>

Maintainer: Ali Oghabian <Ali.Oghabian@Helsinki.Fi>, Mikko Frilander <Mikko.Frilander@helsinki.fi>

addAnnotation

Adding sample annotations to a SummarizedExperiment object

Description

Adds a new sample annotation to the SummarizedExperiment object. In other words it adds and column with sample annotations to the colData of the SummarizedExperiment object.

Usage

addAnnotation(x, sampleAnnotationType, sampleAnnotation)

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>Object of type SummarizedExperiment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>sampleAnnotationType</td>
<td>The name of the new column to be added to the colData table of SummarizedExperiment object.</td>
</tr>
<tr>
<td>sampleAnnotation</td>
<td>Vector with the same length as the row-size of the colData attribute of the SummarizedExperiment object, which includes the sample annotations.</td>
</tr>
</tbody>
</table>
Value

An InterestResult object.

Author(s)

Ali Oghabian

See Also

getAnnotation

Examples

Check the annotation table of mdsChr22Obj data
getAnnotation(mdsChr22Obj)

Add a new sample annotation
newMdsChr22Obj <- addAnnotation(x=mdsChr22Obj, sampleAnnotationType="sample_number", sampleAnnotation=1:16)

Retrieve annotations of the new object
getAnnotation(newMdsChr22Obj)

annotateU12 Annotate the U12 (and U2) type introns

Description

Receives coordinates, a reference genome and PWMs of splice site of U12 and U2 type introns, and returns a data.frame with 2 columns. The first column shows whether the corresponding sequences matches U12, U2 or both (U12/U2) consensus sequences (based on their score when fitting the PWMs). The second column shows whether the match is on positive strand or negative when fitting the PWMs to the sequences.

Usage

annotateU12(pwmU12U2=c(), pwmSsIndex=c(), referenceChr, referenceBegin, referenceEnd, referenceIntronExon, intronExon='intron', matchWindowRelativeUpstreamPos=c(), matchWindowRelativeDownstreamPos=c(), minMatchScore='80%', refGenome='', setNaAs='U2', annotateU12Subtype=TRUE, includeMatchScores=FALSE, ignoreHybrid=TRUE, filterReference)
Arguments

pwmU12U2
A list containing position weight matrices of (in order): Donor site, branch point, and acceptor site of U12-type introns, and donor site and acceptor site of U2-type introns. If not provided, the information related to pwmU12db data is used.

pwmSsIndex
A list (or vector) that contains the column number in each element of pwmU12U2 that represents the 5' or 3' Splice Site; The order should be equivalent to the pwmU12U2. If not provided the information from pwmU12db data is used, i.e.
\[
\text{pwmSsIndex}=\text{list(indexDonU12}=1, \text{indexBpU12}=1, \text{indexAccU12}=3, \text{indexDonU2}=1, \text{indexAccU2}=3)
\]

referenceChr
Chromosome names of the references (e.g. introns).

referenceBegin
A vector that corresponds to the begin coordinates of the reference (e.g. introns).

referenceEnd
A vector that corresponds to the end coordinates of the reference (e.g. introns). referenceEnd should be greater than or equal to referenceBegin.

referenceIntronExon
A vector with the same size as the referenceChr, referenceBegin and referenceEnd which contains 'intron' and 'exon' describing what (either intron or exon) each element of the 3 vectors represents.

intronExon
Should be assigned either 'intron' or 'exon' or c('intron', 'exon') based on whether match the PWM to the intronic, exonic, or intronic and exonic regions of the reference. By default it seeks matches in intronic regions (intronExon='intron').

matchWindowRelativeUpstreamPos
A vector the same size as the pwmU12U2 (and the same order of donor/acceptor sites’ information in pwmU12U2) which consists of the upstream distance from the donor/acceptor site from which each PWM should be tested (to see if they match). If not provided, the information from pwmU12db data is used i.e.
\[
\text{matchWindowRelativeUpstreamPos}=c(NA, -29, NA, NA, NA)
\]

matchWindowRelativeDownstreamPos
A vector the same size as the pwmU12U2 (and the same order of donor/acceptor sites’ information in pwmU12U2) which consists of the downstream distance from the donor/acceptor site to which each PWM should be tested (to see if they match). If not provided, the information from pwmU12db data is used i.e.
\[
\text{matchWindowRelativeDownstreamPos}=c(NA, -9, NA, NA, NA)
\]

minMatchScore
Min percentage match score, when scoring matching of a sequence to pwm. Different score thresholds could also be defined for the various sites (U12/U2 donors, the U12 branch point and U12/U2 acceptors); A vector with 5 elements can be assigned which each shows the match score to use for each PWM in pwmU12U2.

refGenome
The reference genome; Object of class BSgenome. Use available.genome() from the BSgenome package to see the available genomes. DNAStringSet objects (from Biostrings package) and fasta files are also accepted as input.

setNaAs
Defines that if reference (e.g. intron) did not match any of U12 or U2 type introns based on the scores obtained from PWM what should the function return. If an intron was not proven to be U12 or U2 based on PWM scores it can be considered as U2-type since the U12 type introns constitute for about 1% of
introns in human genome and they are much more conserved than the U2 type introns, hence the default is 'U2'; otherwise it is also possible to set it as NA or nan or 'U12/U2'.

annotateU12Subtype
Whether annotate the subtypes of the U12 type Introns. The value is TRUE by default.

includeMatchScores
If set as TRUE the final data frame result includes the PWM match scores (FALSE by default).

ignoreHybrid
Whether ignore the U12 hybrid subtypes, i.e. GT-AC and AT-AG (TRUE by default).

filterReference
Optional parameter that can be defined either as a GRanges or SummarizedExperiment object. If defined as the latter, the first 3 columns of the rowData must be: chr name, start and end of the coordinates. If the parameter is defined the introns/exon coordinates will be mapped against it and the intron type of all those that do not match will be set as NA.

Value
Data frame containing 3 columns representing (in order): intron type (U12, U2 or none), strand match indicating whether the PWM matches to the sequence (+ strand) or the reverse complement of the sequence (- strand) or none (NA), and the U12 subtype (GT-AG or AT-AC). If includeMatchScores is set as TRUE further columns that include the PWM match scores will also be included.

Author(s)
Ali Oghabian

See Also
buildSsTypePwms.

Examples

```r
# Improting genome
BSgenome.Hsapiens.UCSC_hg19 <-
BSgenome.Hsapiens.UCSC_hg19::BSgenome.Hsapiens.UCSC.hg19
#Choosing subset of rows
ind<- 69:94
# Annotate U12 introns with strong U12 donor site, branch point
# and acceptor site from the u12 data in the package
annoU12<-
annotateU12(pwmU12U2=list(pwmU12db[[1]][,11:17],pwmU12db[[2]],
pwmU12db[[3]][,38:40],pwmU12db[[4]][,11:17],
pwmU12db[[5]][,38:40]),
pwmSsIndex=list(indexDonU12=1, indexBpU12=1, indexAccU12=3,
indexDonU2=1, indexAccU2=3),
```
applyOverlap

```
applyOverlap (query,
  subject,
  type="any",
  replaceValues=FALSE,
  intExCol="int_ex",
  intronExon="intron",
  subjectGeneNamesCol,
  repeatsTableToFilter=c(),
  scaleFragment=TRUE,
  scaleLength=TRUE,
  unmapValue=0,
  FUN=mean,
  ...
)
```

Description

Runs a function on columns of the counts (assay) of a 'SummarizedExperiment' object (resulted by
interest(), interest.sequential() or readInterestResults()) based on the overlap of its
exon/intron coordinates with those of another 'SummarizedExperiment' object. The number of the
rows and the dimensions of the counts of the result are equal to those of the subject. The function
is applied on the query based on it's overlap to the subject.

Usage

```
applyOverlap(
  query,
  subject,
  type="any",
  replaceValues=FALSE,
  intExCol="int_ex",
  intronExon="intron",
  subjectGeneNamesCol,
  repeatsTableToFilter=c(),
  scaleFragment=TRUE,
  scaleLength=TRUE,
  unmapValue=0,
  FUN=mean,
  ...
)
```
Arguments

- **query, subject**: SummarizedExperiment objects resulted by `interest()`, `interest.sequential()` or `readInterest Results()` functions.
- **type**: The type of overlap. By default it considers any overlap. See `findOverlaps-methods` for more info.
- **replaceValues**: Whether return a `SummarizedExperiment` object with new counts (resulted by running function) replaced.
- **intExCol**: Column name (or number) in the rowData of the objects that represents whether each row of the assay is "intron" or "exon".
- **intronExon**: Should be assigned either 'intron' or 'exon' or c('intron','exon') based on whether match the PWM to the intronic, exonic, or intronic and exonic regions of the reference. By default it seeks matches in intronic regions (intronExon='intron').
- **subjectGeneNamesCol**: The column in the row data of the subject that includes the gene names.
- **repeatsTableToFilter**: A data.frame table that includes chr,begin and end columns. If defined, all reads mapped to the described regions will be ignored.
- **scaleFragment**: Logical value, indicating whether the retention levels must be scaled by (ge-newide) fragment levels.
- **scaleLength**: Logical value, indicating whether the retention levels must be scaled by length of the introns/exons.
- **unmapValue**: The value to assign to unmapped rows (i.e. introns/exons).
- **FUN**: The function to apply.
- **...**: Other parameter settings from `aggregate()` function.

Value

The returned value is a data frame if `replaceValues` is FALSE and it is SummarizedExperiment if `replaceValues` is TRUE.

Author(s)

Ali Oghabian

See Also

- `readInterestResults`
- `interest`
- `interest.sequential`

Examples

```r
mdsChr22Obj

tmp <- applyOverlap(
  query=mdsChr22Obj,
  subject=mdsChr22Obj,
```
attributes

extracting values of useful attributes of SummarizedExperiment objects

Description

Several functions are provided that can extract various attributes from an object of class `SummarizedExperiment` generated by IntEREst functions, e.g. `interest()`, `interest`, and `readInterestResults`. It is possible to extract sample annotations using `getAnnotation` function. One can also extract the scaled retention levels of the introns/exons using `scaledRetention()` function. Notes that `colData` and `rowData` methods of `SummarizedExperiment` class can also be used to extract row and column data.

Usage

```r
getAnnotation(x)
scaledRetention(x)
```

Arguments

- **x**: Object of type `SummarizedExperiment`.

Value

Various data types (data.frame/vector) dependent on the function used. See the "Description" for more information.

Author(s)

Ali Oghabian

See Also

`SummarizedExperiment-class addAnnotation counts-method plot-method`
Examples

Retrieve the sample annotations from mdsChr22Obj
getAnnotation(mdsChr22Obj)
Retrieving the scaled retention levels from mdsChr22Obj
head(scaledRetention(mdsChr22Obj))

for row and column data SummarizedExperiment methods can be used
head(rowData(mdsChr22Obj))
colData(mdsChr22Obj)

boxplot-method

Description

boxplot method for SummarizedExperiment objects.

Usage

S4 method for signature 'SummarizedExperiment'
boxplot(x, sampleAnnoCol=NA,
intexTypeCol="int_type", intexType=c(), col="white", boxplotNames=c(),
lasNames=3, outline=FALSE, addGrid=FALSE, ...)

Arguments

x Object of type SummarizedExperiment generated by either interest(),
 interest.sequential() or readInterestResults().
sampleAnnoCol Which column of colData in x to consider for plotting.
intexTypeCol Column name (or number) that represents what type of intron/exon each row of
 x assays represents.
intexType A vector of characters describing types of introns/exons to be plotted. They
 must be elements in the intexTypeCol column of the rowData of x. rowData of
 x is a dataframe that includes various annotations of the introns/exons.
col Vector showing box colours. It is either of size 1 or the same size as the number
 of groups to be plotted.
boxplotNames Names to write under boxes. If not defined, as names, it pastes the row (in-
 tron/exon) annotation names to the sample group annotations separated by a
 space " ".
lasNames Orientation of the box names.
outline If outline is TRUE the outlier points are drawn otherwise if FALSE (default)
 they are not.
addGrid Whether add a grid under the boxplots (FALSE by default).
... Other arguments to pass to the boxplot() and axis function.
buildSsTypePwms

Value

Returns NULL.

Author(s)

Ali Oghabian

See Also

Class: SummarizedExperiment-class Method: counts-method plot-method

Examples

Plotting U12- vs U2-type introns
par(mar=c(8,4,2,1))
boxplot(x=mdsChr22Obj, sampleAnnoCol="type", intexTypeCol="intron_type",
intexType=c("U2", "U12"),
col=rep(c("yellow", "orange"),3),
boxplotNames=c(), lasNames=3, outline=FALSE,
addGrid=TRUE)

buildSsTypePwms

Building Position Weight Matrices for Splice Sites of U12 and U2 type
introns.

Description

Builds position Weigh Matrices for the donor and acceptor sites of the U12 and U2 type introns,
and the branchpoint of the U12 type introns. if pdfFileSeqLogos is defined a pdf is also produced
that contains the sequence logos of the results. The result is a list that contains PWMs of the splice
sites of U12 and U2 dependent introns.

Usage

buildSsTypePwms(cexSeqLogo=1, pdfWidth=35, pdfHeight=10, tmpDir="./",
u12dbSpecies="Homo_sapiens",
pwmSource="U12DB",
u12DonorBegin, u12BranchpointBegin, u12AcceptorBegin,
u2DonorBegin, u2AcceptorBegin, u2DonorEnd,
u2BranchpointEnd, u2AcceptorEnd, u2DonorEnd,
u2AcceptorEnd, pasteSites=FALSE,
splicerackSsLinks=list(
U12_AT_AC_donor=
"http://katahdin.mssm.edu/splice/out/9606_logo_file.25",
U12_AT_AC_branchpoint=
"http://katahdin.mssm.edu/splice/out/9606_logo_file.26",
U12_AT_AC_acceptor=)
buildSsTypePwms

"http://katahdin.mssm.edu/splice/out/9606_logo_file.29",
U12_GT_AG_donor="http://katahdin.mssm.edu/splice/out/9606_logo_file.22",
U12_GT_AG_branchpoint="http://katahdin.mssm.edu/splice/out/9606_logo_file.27",
U12_GT_AG_acceptor="http://katahdin.mssm.edu/splice/out/9606_logo_file.21",
U2_GC_AG_donor="http://katahdin.mssm.edu/splice/out/9606_logo_file.24",
U2_GC_AG_acceptor="http://katahdin.mssm.edu/splice/out/9606_logo_file.30",
U2_GT_AG_donor="http://katahdin.mssm.edu/splice/out/9606_logo_file.23",
U2_GT_AG_acceptor="http://katahdin.mssm.edu/splice/out/9606_logo_file.28",
u12dbLink="https://genome.crg.cat/pub/software/u12/u12db_v1_0.sql.gz",
u12dbName="u12db", u12dbDropDb=TRUE, pdfFileSeqLogos="", removeTempFiles=TRUE, ...)

Arguments

cexSeqLogo Font size of sequence logo plots; used only if pdfFileSeqLogos is defined.
pdfWidth, pdfHeight
The width and height of the graphics region of the pdf in inches. The default values are 35 and 10.
tmpDir
Path to directory used for storing temporary files.
u12dbSpecies
What species data to use when getting the data from the U12DB database (pwmSource="U12DB").
pwmSource
The source used to buildSplice Sites of U12 and U2 type introns the PWM for U12 and U2 dependent introns. Default is U12DB; but also accepts SpliceRack.
u12DonorBegin, u12DonorEnd
Integer values. They correspond to the begin and end point of the donor sequences of U12-type introns to consider (optional).
u12BranchpointBegin, u12BranchpointEnd
Integer values. Begin and end points of the branch point sequences of U12-type introns (optional).
u12AcceptorBegin, u12AcceptorEnd
Integer values. Begin and end points of the acceptor sequences of U12-type introns (optional).
u2DonorBegin, u2DonorEnd
Integer values. Begin and end points of the donor sequences of U2-type introns (optional).
u2AcceptorBegin, u2AcceptorEnd
Integer values. Begin and end points of the acceptor sequences of U2-type introns (optional).
pasteSites
Logical. If TRUE the donor, branch point and acceptor seqs are pasted before a PWM is built; then the PWMs of each (donor, acceptor and bp) are assigned. If FALSE (default) the PWMs for each is built separately.
splicerackSsLinks
A list (or vector) that contains the SpliceRack URL links to the text files that contain Position Weigh Matrices of the splice sites of U12 and U2 introns. This parameter is used only when pwmSource="SpliceRack". You can get the links to PWM files from this URL (choose logo files with "File" links): http://katahdin.mssm.edu/splice/splice_matrix.cgi?database=spliceNew. The links should be defined in the following order: U12_AT_AC_donor, U12_AT_AC_branchpoint, U12_AT_AC_acceptor, U12_GT_AG_donor, U12_GT_AG_branchpoint, U12_GT_AG_acceptor, U2_GC_AG_donor, U2_GC_AG_acceptor, U2_GT_AG_donor, and U2_GT_AG_acceptor.

u12dbLink
A character string containing the URL for downloading the zipped MySQL dump file of the U12DB. Used when pwmSource="U12DB".

u12dbName
Name of the database copy of the U12DB that is build locally. Used when pwmSource="U12DB".

u12dbDropDb
Drop (or remove) the local copy of the U12DB database at the end of the run. Used when pwmSource="U12DB".

pdfFileSeqLogos
Path to PDF file containing the sequence logos of the results. By default it does not produce a file.

removeTempFiles
Whether remove temporary files at the end of the run; accepts TRUE or FALSE values (default is TRUE).

Value

pwmDonorU12
Matrix (with 4 rows representing A, C, G, T and n columns representing the genomic coordinates) representing the Position Weight Matrix of donor site of U12-type introns.

pwmBpU12
Position Weight Matrix of branchpoint of U12-type introns.

pwmAccU12
Position Weight Matrix of acceptor site of U12-type introns.

pwmDonU2
Position Weight Matrix of donor site of U2-type introns.

pwmAccU2
Position Weight Matrix of acceptor site of U2-type introns.

Author(s)

Ali Oghabian

See Also

annotateU12.

Examples

Time demanding function
Not run:
#Build temp directory
counts-method

Counts - method

Description

Returns the (row) number of reads that are mapped to introns/exons in various samples.

Usage

S4 method for signature 'SummarizedExperiment'
counts(object)

Arguments

object Object of type SummarizedExperiment.

Value

Returns a numeric matrix.
Examples

Show contents of a InterestResults object included in IntEREst
head(counts(mdsChr220bj))

Make a test InterestResults object
geneId<- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)),
 sep=" ")
readCnt1<- sample(1:100, 20)
readCnt2<- sample(1:100, 20)
readCnt3<- sample(1:100, 20)
readCnt4<- sample(1:100, 20)
fpkm1<- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2<- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3<- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4<- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

Creating object using test data
interestDat<- data.frame(
 int_ex=rep(c(rep("exon","intron"),2),"exon"),4),
 int_ex_num= rep(c(1,1,2,2,3),4),
 gene_id= geneId,
sam1_readCnt=readCnt1,
sam2_readCnt=readCnt2,
sam3_readCnt=readCnt3,
sam4_readCnt=readCnt4,
sam1_fpkm=fpkm1,
sam2_fpkm=fpkm2,
sam3_fpkm=fpkm3,
sam4_fpkm=fpkm4
)
readFreqColIndex<- grep("_readCnt$",colnames(interestDat))
scaledRetentionColIndex<- grep("_fpkm$",colnames(interestDat))
scaledRetTmp<- as.matrix(interestDat[,scaledRetentionColIndex])
colnames(scaledRetTmp)<-gsub("_fpkm$","",colnames(scaledRetTmp))
frqTmp<- as.matrix(interestDat[,readFreqColIndex])
colnames(frqTmp)<-gsub("_readCnt$","",colnames(frqTmp))

InterestResultObj<- InterestResult(
 resultFiles=paste("file",1:4, sep=" "),
 rowData= interestDat[, -c(readFreqColIndex,
```r
# Show
deseqInterest(counts(InterestResultObj))
```

deseqInterest
DESeq2 analysis for IntEREst object

Description
Differential intron retention test adapted from the DESeq2 package.

Usage

```r
deseqInterest(x, design, pAdjustMethod = "BH",
              sizeFactor=(), contrast, bpparam, ...)
```

Arguments

- `x`
 Object of type `SummarizedExperiment`.

- `design`
 Formula specifying the design of the experiment. It must specify an interaction term between variables from column names of `sampleData(x)`.

- `pAdjustMethod`
 What adjustment method to be used on the p-values. See `p.adjust` for more information.

- `sizeFactor`
 Numeric vector with the same size as the column size of the count matrix in `x`, if defined it will be used for scaling of the count matrix.

- `contrast`
 Argument specifying the comparison to extract from `x`. See `results` function in the DESeq2 package for more information.

- `bpparam`
 An optional `BiocParallelParam` instance defining the parallel back-end to be used. If not defined the function will run sequentially (on a single computing core).

- `...`
 Other parameter settings for the `results` function in the DESeq2 package.

Value

A `DESeqResults` object.
Author(s)
Ali Oghabian

See Also

`exactTestInterest qlfInterest treatInterest DEXSeqIntEREst`

Examples

```r
mdsChr22IntObj <- mdsChr22Obj[rowData(mdsChr22Obj)$int_ex == "intron",]
deseqRes <- deseqInterest(x = mdsChr22IntObj,
                          design = "test_ctrl", contrast = list("test_ctrl_test_vs_ctrl"))

# Number of U12/U2 type significantly differential retained introns in chr22
table(rowData(mdsChr22Obj)[which(deseqRes$padj < .01), "intron_type"])
```

DEXSeqIntEREst

DEXSeq test for IntEREst object

Description
Genewise differential exon usage or intron retention test adapted from the DEXSeq package.

Usage

```r
DEXSeqIntEREst (x, design, reducedModel = ~ sample + intex, fitExpToVar,
                 intExCol, geneIdCol, bpparam, silent = TRUE, ...)
```

Arguments

- **x**: Object of type `SummarizedExperiment`.
- **design**: Formula specifying the design of the experiment. It must specify an interaction term between a variable from columns of `sampleData(x)` with one of the 'exon', 'intron' or 'intex' (i.e. intron and exon) variables; based on which of these variables are used (exon, intron, or 'intex') the x will be filtered relatively to include exons, introns, or introns and exons. See `DEXSeqDataSet` for more information.
- **reducedModel**: The null model formula. By default it is `~ sample + intex`.
- **fitExpToVar**: A variable name contained in the column data (i.e. column names of `colData(x)`). See `DEXSeq` for more information.
- **intExCol**: Column name (or number) that represents whether each row is "intron" or "exon" in `rowData` of `x`.
- **geneIdCol**: Column name (or number of column) in `rowData` of `x`, i.e. `SummarizedExperiment` object, that represents the gene ID of the introns and exons in `x`.
- **bpparam**: An optional BiocParallelParam instance defining the parallel back-end to be used.
silent

Whether run the DEXSeq function silently (if TRUE) or allow it to print messages at each step (if FALSE).

... Other parameter settings for the \texttt{DEXSeqDataSet} function in the DEXSeq package.

\section*{Details}

The design and \texttt{reduceModel} accept formula that specify the design of the experiment. The formula must describe an interaction between variables from columns of \texttt{sampleData(x)} with one of the 'exon', 'intron' or 'intex' (i.e. intron and exon) variables; Based on which of these variables are used (exon, intron, or 'intex') the input object (x) will be filtered relatively to include exons, introns, or introns and exons. Hence the number of the rows of the returned value is equal to the number of the rows of the filtered object, i.e. the number of the exons, introns or both based on the design formula.

\section*{Value}

A \texttt{DEXSeqResults} object.

\section*{Author(s)}

Ali Oghabian

\section*{See Also}

\texttt{exactTestInterest}

\section*{Examples}

```r
dexseqExRes<-DEXSeqIntEREstr (x=mdsChr22ExObj,
design= ~ sample + exon + test_ctrl:exon,
reducedModel = ~ sample + exon, fitExpToVar="test_ctrl",
intExCol="int_ex", geneIdCol="transcripts_id", silent=TRUE)
head(dexseqExRes)
```

\begin{tabular}{ll}
\hline
\texttt{exactTestInterest} & \textit{Exact test} \\
\hline
\end{tabular}

\section*{Description}

Compute genewise exact test between two groups of read counts, using the \texttt{edgeR} package.

\section*{Usage}

\begin{verbatim}
exactTestInterest(x, sampleAnnoCol=c(), sampleAnnotation=c(),
geneIdCol, silent=TRUE, group=c(), rejection.region="doubletail",
big.count=900, prior.count=0.125, disp="common", ...)
\end{verbatim}
Arguments

- **x**: Object of type `SummarizedExperiment`.
- **sampleAnnoCol**: Which column of `colData` of `x` to consider for the analysis.
- **sampleAnnotation**: A vector of size 2 which contains values from `colData` of `SummarizedExperiment` object; e.g. if `getAnnotation(x)[, sampleAnnoCol] = c("test", "test", "ctrl", "ctrl", ...)`, and the goal is to compare "test" and "ctrl" samples, `sampleAnnotation` should either be `c("test", "ctrl")` or `c("ctrl", "test")`.
- **geneIdCol**: Column name (or number of column) in `rowData` of `x`, i.e. `SummarizedExperiment` object, that represents the gene ID of the introns and exons in `x`.
- **silent**: Whether run the function silently, i.e. without printing the top differential expression tags.
- **group**: Vector to manually define the sample groups (or annotations). It is ignored if `sampleAnnoCol` is defined.
- **rejection.region**: The `rejection.region` parameter in `exactTest` from `edgeR` package.
- **big.count**: The `big.count` parameter in `exactTest` from `edgeR` package.
- **prior.count**: The `prior.count` parameter in `exactTest` from `edgeR` package.
- **disp**: The type of estimating the dispersion in the data. Available options are: "tag-wise", "trended", "common" and "genewise". It is also possible to assign a number for manually setting the `disp`.
- **...**: Other parameter settings for the `estimateDisp` function (e.g. the design parameter) in the `edgeR` package.

Value

- **table**: Data frame containing columns for the log2 fold-change (logFC), the average of log2 counts-per-million (logCPM), and the two-sided p-value (PValue).
- **comparison**: The name of the two compared groups.
- **dispersionType**: The name of the type of dispersion used.
- **dispersion**: The estimated dispersion values.

Author(s)

Ali Oghabian

See Also

- `lfc`, `glmInterest`, `qlfInterest`, `treatInterest`, `DEXSeqIntEREst`
Examples

geneId <- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)), sep="_")
readCnt1 <- sample(1:100, 20)
readCnt2 <- sample(1:100, 20)
readCnt3 <- sample(1:100, 20)
readCnt4 <- sample(1:100, 20)
fpkm1 <- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2 <- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3 <- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4 <- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

Creating object using test data
interestDat <- data.frame(
 int_ex = rep(c(rep(c("exon","intron"),2),"exon"),4),
 int_ex_num = rep(c(1,1,2,2,3),4),
 gene_id = geneId,
 sam1_readCnt = readCnt1,
 sam2_readCnt = readCnt2,
 sam3_readCnt = readCnt3,
 sam4_readCnt = readCnt4,
 sam1_fpkm = fpkm1,
 sam2_fpkm = fpkm2,
 sam3_fpkm = fpkm3,
 sam4_fpkm = fpkm4
)
readFreqColIndex <- grep("_readCnt$", colnames(interestDat))
scaledRetentionColIndex <- grep("_fpkm$", colnames(interestDat))
scalRetTmp <- as.matrix(interestDat[, scaledRetentionColIndex])
colnames(scalRetTmp) <- gsub("_fpkm$", "", colnames(scalRetTmp))

frqTmp <- as.matrix(interestDat[, readFreqColIndex])
colnames(frqTmp) <- gsub("_readCnt$", "", colnames(frqTmp))

InterestResultObj <- InterestResult(
 resultFiles = paste("file", 1:4, sep="_")
 rowData = interestDat[, c(readFreqColIndex, scaledRetentionColIndex)],
 counts = frqTmp,
 scaledRetention = scalRetTmp,
 scaleLength = TRUE,
 scaleFragment = FALSE,
 sampleAnnotation = data.frame(
 sampleName = paste("sam", 1:4, sep=""),
 gender = c("M","M","F","F"),
 row.names = paste("sam", 1:4, sep=""))
)

res <- exactTestInterest(InterestResultObj, sampleAnnoCol = "gender"
getRepeatTable

```
sampleAnnotation=c("F","M"), geneIdCol= "gene_id",
silent=TRUE, disp="common")
```

getRepeatTable

Get table of regions with repetitive DNA sequences

Description

This function returns a data.frame that includes regions with repetitive DNA sequences. These sequences can bias the mapping of the reads to the genome excluding them will remove the bias.

Usage

```
getRepeatTable( dbUser="genome",
dbHost="genome-mysql.cse.ucsc.edu",ucscGenome="hg19",
ucscTable="rmsk", minLength=0, repFamilyFil="Alu",
repFamilyCol="repFamily", repChrCol="genoName",
repBegCol="genoStart", repEndCol="genoEnd",
repStrandCol="strand", repNameCol="repName",
repClassCol="repClass")
```

Arguments

- **dbUser**
 - Database user name; set as "genome" by default.

- **dbHost**
 - Database host address; set as "genome-mysql.cse.ucsc.edu" by default.

- **ucscGenome**
 - The UCSC genome.

- **ucscTable**
 - The UCSC table name. The table with repetitive sequences by default it is set as "rmsk".

- **minLength**
 - the minimum length criteria to consider the repetitive sequences. the default setting is 0.

- **repFamilyFil**
 - A vector including the repeats family to consider. By default the "Alu" elements are considered.

- **repFamilyCol**
 - The name of the column of the input table (ucscTable) that represents the repeats family.

- **repChrCol**
 - The column (either name or the number of the column) of the input table that represents the Chromosome names.

- **repBegCol**
 - The column of the table that represents the start coordinates.

- **repEndCol**
 - The column of the table that represents the end coordinates.

- **repStrandCol**
 - The column of the table that represents the strand.

- **repNameCol**
 - The column of the table representing the repeats' names.

- **repClassCol**
 - The column of the table representing the repeats' classes.
glmInterest

Value

Data frame with columns representing coordinates and annotations of repetitive DNA elements.

Author(s)

Ali Oghabian

Examples

```r
## Not run:
# Download table for Alu elements in the human genome
suppressWarnings(repTable<- getRepeatTable(repFamilyFil="Alu", ucscGenome="hg19"))
## End(Not run)
```

glmInterest

generalized linear model likelihood ratio tests

Description

Compute generalized linear model likelihood ratio tests using edgeR package. For more information see `glmfit` and `glmLRT()` functions in edgeR package.

Usage

```r
glmInterest(x, design=c(), silent=TRUE, disp="common", coef=c(), contrast=NULL, ...)
```

Arguments

- `x` Object of type `SummarizedExperiment`.
- `design` Design matrix.
- `silent` Whether run the function silently, i.e. without printing the top differential expression tags. Default is TRUE.
- `disp` The method of estimating the dispersion in the data. Available options are: "common", "trended", "tagwiseInitCommon" and "tagwiseInitTrended". It is also possible to assign a number.
- `coef` Integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. See `glmLRT()` in edgeR for more information.
- `contrast` Numeric vector or matrix specifying contrasts of the linear model coefficients to be tested equal to zero. See `glmLRT()` in edgeR for more information.
- `...` Other parameter settings for the `glmLRT()` function in the edgeR package.
Interest

Value

All values produced by glmLRT in edgeR package plus following:

- dispersionType: The name of the type of dispersion used.
- dispersion: The estimated dispersion values.

Author(s)

Ali Oghabian

See Also

- exactTestInterest
- qlfInterest
- treatInterest

Examples

```r
# Test retention differentiation across the 3 types of samples
group <- getAnnotation(mdsChr22Obj)[, "type"]
glmRes <- glmInterest(x = mdsChr22Obj,
design = model.matrix(~group), silent = TRUE,
disp = "tagwiseInitTrended", coef = 2:3, contrast = NULL)
```

Description

A read summarization function that counts all the reads mapping to the introns/exons based on the users detailed parameter settings. The process can be run in parallel on multiple computing cores to improve its performance.

Usage

```r
interest(bamFileYieldSize = 1000000, bamFile, isPaired, isPairedDuplicate = FALSE, isSingleReadDuplicate = NA, reference, referenceGeneNames, referenceIntronExon, repeatsTableToFilter = c(), junctionReadsOnly = FALSE, outFile, logFile = "", returnObj = FALSE, method = c("ExEx", "IntRet", "IntSpan", "ExSkip"), strandSpecific, bpparam, appendLogFile = FALSE, sampleName = "", scaleLength = c(TRUE, FALSE), scaleFragment = c(TRUE, TRUE), limitRanges = GRanges(), excludeFusionReads = FALSE, loadLimitRangesReads = FALSE, ...)
```
Arguments

bamFileYieldSize
Maximum number of pair reads in the temporary files created as the result of dividing the input .bam file.

bamFile
Path of the input bam file.

isPaired
Whether the bam file is the result of a paired end sequencing read mapping (TRUE) or not (FALSE).

isPairedDuplicate
Whether extract only (if set TRUE), filter (FALSE) or include (if set NA) PCR duplicates for paired mapped reads. It uses the FLAG field in the bam file to filter the duplicate read. If the mapping software does not support detection and flaging the duplicate reads dedup tool of BamUtil or MarkDuplicates of Picard tools could be used.

isSingleReadDuplicate
Whether extract only (if set TRUE), filter (FALSE) or include (if set NA) PCR duplicates for single mapped reads.

reference
Dataframe to be used as reference; It should at least contain three same-size vectors with the tag names chr, begin, and end which describe the exons and introns genome coordinates. It also accepts a GRanges object. To build a new reference check the referencePrepare function.

referenceGeneNames
A vector with the same size as the row-size of the reference which includes the gene names of the reference.

referenceIntronExon
A vector with the same size as the row-size of the reference with values "intron" and "exon" describing which (intron or exon) each row of the reference represents.

repeatsTableToFilter
A data.frame table with similar structure to the reference. It includes chr, begin, and end columns. If defined, all reads mapped to the described regions would be ignored and the Intron/exon lengths would be corrected to exclude the to exclude the regions with repetitive DNA sequences. See getRepeatTable.

junctionReadsOnly
The parameter is considered if the method is set as IntRet or ExEx (NOT IntSpan). It declares whether only consider the Intron-Exon or Exon-Exon junction reads and ignore the reads that fully map to exons or introns. By de- fault this argument is set as FALSE.

outFile
The name or path of the result file.

logFile
The log file path; if defined log information are written to the log file.

returnObj
If set TRUE in addition to making result text files, the results would also be re- turned as an object of class SummarizedExperiment.

method
A vector describing the summarization methods to use; i.e. whether count reads mapping to the introns (IntRet), reads mapping to the exons (ExEx), reads spanning the introns (IntSpan), or reads that skip the exons (ExSkip). In IntSpan mode the introns in the reference are taken into account only; whilst in IntRet
the introns and their spanning exons, and in ExEx and ExSkip mode only the exons in the reference are taken into account.

strandSpecific

The description for strand specificity of the RNAseq data. The values are either "unstranded", "stranded", or "reverse". If the reads are not strand specific or directional use "unstranded". If the first read in paired-read sequencing or the reads single-read sequencing is in the same direction as the the transcript strand use "stranded". If the first read in paired-read sequencing or the reads in single-read sequencing is in the opposite direction to the transcript strand use "reverse".

bpparam

An optional BiocParallelParam instance defining the parallel back-end to be used.

appendLogFile

Whether log information should be appended to the logFile. It is set FALSE by default.

generateLogFile

The name of the sample being analyzed. It will be included in the returned object if returnObj is TRUE.

scaleLength

A vector constructed of TRUE/FALSE values, same size as the method argument. It indicates whether the retention levels of the intron/exons should be scaled to their lengths.

scaleFragment

A vector constructed of TRUE/FALSE values, same size as the method argument. It indicates whether the retention levels of the intron/exons should be scaled to the sum of retention levels (i.e. mapped fragments) over the genes.

limitRanges

A GRanges object. If defined it loads sequencing reads that fall in the defined coordinates. It is similar to which parameter in ScanBamParam.

excludeFusionReads

Only valid if limitRanges is defined. It filters the defined by limitRanges. It also filters the read pairs if each read pair maps reads pairs where one of the reads either do not fall into one of the regions to a different region defined in limitRanges. It is useful to ignore analyzing the chimeric reads and fusion reads, i.e. reads that map to fusion genes. To filter properly, limitRanges must include coordinates of all genes.

loadLimitRangesReads

Boolean (TRUE/FALSE) variable. If set as TRUE only the reads in the limitRanges are loaded from bam file (and bamFileYieldSize parameter will be ignored).

Value

If returnObj is set TRUE in addition to making result text files, dependant on whether a single or two method is defined, the results would be returned as a single object of class SummarizedExperiment or as a list of size 2 which includes 2 objects of class SummarizedExperiment one for IntRet and the other for ExEx.
Author(s)
Ali Oghabian

See Also
interest.sequential.

Examples

```r
# Creating temp directory to store the results
outDir <- file.path(tempdir(), "interestFolder")
dir.create(outDir)
outDir <- normalizePath(outDir)

# Loading suitable bam file
bamF <- system.file("extdata", "small_test_SRR1691637_ZRSR2Mut_RHBDD3.bam", package="IntEREst", mustWork=TRUE)

# Choosing reference for the gene RHBDD3
ref <- u12[u12[, "gene_name"] == "RHBDD3",]

# Loading suitable bam file
bamF <- file.path("extdata", "small_test_SRR1691637_ZRSR2Mut_RHBDD3.bam")

# Choosing reference for the gene RHBDD3
ref <- u12[u12[, "gene_name"] == "RHBDD3",]

test <- interest(
bamFileYieldSize = 10000,
bamFile = bamF,
isPaired = TRUE,
isPairedDuplicate = FALSE,
isSingleReadDuplicate = NA,
reference = ref,
referenceGeneNames = ref[, "ens_gene_id"],
referenceIntronExon = ref[, "int_ex"],
repeatsTableToFilter = c(),
outFile = paste(outDir,
"interestRes.tsv", sep="/"),
logFile = paste(outDir,
"log.txt", sep="/"),
method = c("IntRet", "IntSpan"),
strandSpecific = "unstranded",
junctionReadsOnly = FALSE,
returnObj = TRUE,
scaleLength = c(TRUE, FALSE),
scaleFragment = c(TRUE, TRUE))

test
```

interest.sequential

Wrapup function: Sequential running
Description

A read summarization function that counts all the reads mapping to the introns/exons based on
the users detailed parameter settings. The process runs on a single computing core.

Usage

interest.sequential(bamFileYieldSize=1000000, bamFile, isPaired,
isPairedDuplicate=FALSE, isSingleReadDuplicate=NA,
reference, referenceGeneNames,
referenceIntronExon, repeatsTableToFilter=c(),
junctionReadsOnly=FALSE, outFile, logFile="",
returnObj= FALSE, method=c("ExEx", "IntRet", "IntSpan", "ExSkip"),
strandSpecific, appendLogFile=FALSE, sampleName="",
scaleLength= c(TRUE,FALSE), scaleFragment= c(TRUE,TRUE),
limitRanges=GRanges(),
excludeFusionReads=FALSE,
loadLimitRangesReads=FALSE, ...)

Arguments

bamFileYieldSize
 Maximum number of paired Reads in the temporary files created as the result
 of dividing the input .bam file.

bamFile
 Path of the input bam file.

isPaired
 Whether the bam file is the result of a paired end sequencing read mapping
 (TRUE) or not (FALSE).

isPairedDuplicate
 Whether extract only (if set TRUE), filter (FALSE) or include (if set NA) PCR
duplicates for paired mapped reads. It uses the FLAG field in the bam file
 to filter the duplicate read. If the mapping software does not support detection
 and flaging the duplicate reads dedup tool of BamUtil or MarkDuplicates of
 Picard tools could be used.

isSingleReadDuplicate
 Whether extract only (if set TRUE), filter (FALSE) or include (if set NA) PCR
duplicates for single mapped reads.

reference
 Dataframe to be used as reference; It should at least contain three same-size
 vectors with the tag names chr, begin, and end which describe the genome
 coordinates of the introns and exons. It also accepts a GRanges object as input.
 To build a new reference check the referencePrepare function.

referenceGeneNames
 A vector with the same size as the row-size of the reference which include the
gene names.

referenceIntronExon
 A vector with the same size as the row-size of the reference with values "in-
 tron" and "exon" describing which (intron or exon) each row of the reference
 represents.
repeatsTableToFilter
A data frame with similar structure as the reference, i.e. includes chr, begin, and end columns. If defined, all reads mapped to the described regions would be ignored and the Intron/exon lengths would be corrected to exclude the regions with repetitive DNA sequences. See getRepeatTable.

junctionReadsOnly
The parameter is considered if the method is set as IntRet or ExEx (NOT IntSpan). It declares whether only consider the Intron-Exon or Exon-Exon junction reads and ignore the reads that fully map to exons or introns. By default this argument is set as FALSE.

outFile
The name or path of the result file.

logFile
The log file path; if defined log information are written to the log file.

returnObj
If set TRUE in addition to producing result text files, the results would also be returned as an object of class SummarizedExperiment.

method
A vector describing the summarization methods to use; i.e. whether count reads mapping to the introns (IntRet), reads mapping to the exons (ExEx), reads spanning the introns (IntSpan), or reads that skip the exons (ExSkip). In IntSpan mode the introns in the reference are taken into account only; whilst in IntRet the introns and their spanning exons, and in ExEx and ExSkip mode only the exons in the reference are taken into account.

strandSpecific
The description for strand specificity of the RNAseq data. The values are either "unstranded", "stranded", or "reverse". If the reads are not strand specific or directional use "unstranded". If the first read in paired-read sequencing or the reads single-read sequencing is in the same direction as the the transcript strand use "stranded". If the first read in paired-read sequencing or the reads in single-read sequencing is in the opposite direction to the transcript strand use "reverse".

appendLogFile
Whether log information should be appended to the logFile. It is FALSE by default.

sampleName
The name of the sample being analyzed. It will be included in the returned object if returnObj is TRUE.

scaleLength
A vector constructed of TRUE/FALSE values, same size as the method argument. It indicates whether the retention levels of the intron/exons should be scaled to their lengths.

scaleFragment
A vector constructed of TRUE/FALSE values, same size as the method argument. It indicates whether the retention levels of the intron/exons should be scaled to the sum of retention levels (i.e. mapped fragments) over the genes.

limitRanges
A GRanges object. If defined it only loads sequencing read if they fall in the defined coordinates. It is similar to which parameter in ScanBamParam.

excludeFusionReads
Only valid if limitRanges is defined. It filters the defined by limitRanges. It also filters the read pairs if each read pair maps reads pairs where one of the reads either do not fall into one of the regions to a different region defined in limitRanges. It is useful to ignore analyzing the chimeric reads and fusion reads, i.e. reads that map to fusion genes. To filter properly, limitRanges must include coordinates of all genes.
loadLimitRangesReads
Boolean (TRUE/FALSE) variable. If set as TRUE only the reads in the limitRanges are loaded from bam file (and bamFileYieldSize parameter will be ignored).

...
Other parameter settings specific to **BamFile-class** function in the Rsamtools package. Parameters qnamePrefixEnd and qnameSuffixStart are in particular useful to modify qnames in the BAM files.

Value

If `returnObj` is set TRUE in addition to making result text files, dependant on whether a single or two method is defined, the results would be returned as a single object of class `SummarizedExperiment` or as a list of size 2 which includes 2 objects of class `SummarizedExperiment` one for IntRet and the other for ExEx.

Author(s)

Ali Oghabian

See Also

`interest`.

Examples

```r
# Creating temp directory to store the results
outDir <- file.path(tempdir(), "interestFolder")
dir.create(outDir)
outDir <- normalizePath(outDir)

# Loading suitable bam file
bamF <- system.file("extdata", "small_test_SRR1691637_ZRSR2Mut_RHBDD3.bam", package="IntEREst", mustWork=TRUE)

# Choosing reference for the gene RHBDD3
ref <- u12[u12[,"gene_name"] == "RHBDD3",]

test <- interest.sequential(
bamFileYieldSize=10000,
bamFile=bamF,
isPaired=TRUE,
isPairedDuplicate=FALSE,
isSingleReadDuplicate=NA,
reference=ref,
referenceGeneNames=ref[,"ens_gene_id"],
referenceIntronExon=ref[,"int_ex"],
repeatsTableToFilter=c(),
outFile=paste(outDir, "interestRes.tsv", sep="/"),
logFile=paste(outDir,
"interestLog.tsv", sep="/"),
```
Building SummarizedExperiment object from results in IntEREst.

Description

Calls the constructors and creates a SummarizedExperiment object. For more information on the resulted object and the class see SummarizedExperiment-class.

Usage

InterestResult(resultFiles=c(), counts, scaledRetention, scaleLength, scaleFragment, sampleAnnotation, rowData)

Arguments

resultFiles Vector of link to the result files of interest.
counts Numeric Matrix that includes the read counts.
scaledRetention Matrix that includes the scaled retention values.
scaleLength Logical value, indicating whether the intron/exon retention levels are scaled to the length of the introns/exons.
scaleFragment Logical value, indicating whether the intron/exon retention levels are scaled to the fragments mapped to the genes.
sampleAnnotation Data frame with the row-size equal to the size of resultFiles and sampleAnnotation. Each column of the matrix represents annotations for the samples. Column name represents annotation name.
rowData Data frame with Intron/Exon annotations and read count and scaled retention values for each sample.

Value

Returns an object of class SummarizedExperiment.

Author(s)

Ali Oghabian
See Also

`SummarizedExperiment-class` attributes `addAnnotation` `counts-method` `plot-method`

Examples

geneId <- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)), sep="_")
readCnt1 <- sample(1:100, 20)
readCnt2 <- sample(1:100, 20)
readCnt3 <- sample(1:100, 20)
readCnt4 <- sample(1:100, 20)
fpkm1 <- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2 <- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3 <- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4 <- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

Creating object using test data
interestDat <- data.frame(
 int_ex=rep(c(rep(c("exon","intron"),2),"exon"),4),
 int_ex_num= rep(c(1,1,2,2,3),4),
 gene_id= geneId,
 sam1_readCnt=readCnt1,
 sam2_readCnt=readCnt2,
 sam3_readCnt=readCnt3,
 sam4_readCnt=readCnt4,
 sam1_fpkm=fpkm1,
 sam2_fpkm=fpkm2,
 sam3_fpkm=fpkm3,
 sam4_fpkm=fpkm4
)
readFreqColIndex <- grep("_readCnt\$", colnames(interestDat))
scaledRetentionColIndex <- grep("_fpkm\$", colnames(interestDat))
scalRetTmp <- as.matrix(interestDat[,scaledRetentionColIndex])
colnames(scalRetTmp) <- gsub("_fpkm\$","", colnames(scalRetTmp))
frqTmp <- as.matrix(interestDat[,readFreqColIndex])
colnames(frqTmp) <- gsub("_readCnt\$","", colnames(frqTmp))

InterestResultObj <- InterestResult(
 resultFiles=paste("file",1:4, sep="_"),
 rowData= interestDat[,-c(readFreqColIndex, scaledRetentionColIndex)],
 counts= frqTmp,
 scaledRetention= scalRetTmp,
 scaleLength=TRUE,
 scaleFragment=FALSE,
 sampleAnnotation=data.frame(
 sampleName=paste("sam",1:4, sep=""),
 gender=c("M","M","F","F"), row.names=paste("sam", 1:4, sep=""))
interestResultIntEx

Building results object that contains Intron-retention and exon-exon junction information

Description
Building SummarizedExperiment-class object from an intron retention and an exon-exon junction results in IntEREst. The average of the junction levels are added to the SummerizedExperiment object of the intron retentions.

Usage
interestResultIntEx (intObj, exObj, intExCol=c(), mean.na.rm=TRUE, postExName="ex_junc")

Arguments
intObj A SummarizedExperiment including intron retention information.
exObj A SummarizedExperiment including exon-exon junction information.
intExCol Column name (or number) in the rowData of the intron object that represents whether each row of x assays is "intron" or "exon".
mean.na.rm Whether exclude missing values when measuring the mean.
postExName The postfix to use for the column names of the exons junction values in the

Value
Returns an object of class SummarizedExperiment.

Author(s)
Ali Oghabian

See Also
SummarizedExperiment-class attributes addAnnotation counts-method plot-method
Examples

```r
# intExObj <- InterestResult(
#   resultFiles= paste(paste("testFile",1:3, sep=" "),"bam", sep=".")
#   counts= matrix(1:15, ncol=3, nrow=5, byrow=TRUE,
#   dimnames= list(c(), paste("s", 1:3, sep=" ")))
#   scaledRetention= matrix(1:15, ncol=3, nrow=5, byrow=TRUE,
#   dimnames= list(c(), paste("s", 1:3, sep=" ")))
#   scaleLength= FALSE,
#   scaleFragment= FALSE,
#   sampleAnnotation= data.frame(
#     files=paste(paste("testFile",1:3, sep=" "),"bam", sep=".")
#     names=paste("s", 1:3, sep=" ")
#     row.names=paste("s", 1:3, sep=" "))
#   rowData=data.frame(id= paste("i", 1:5, sep=" "),
#     chr= rep("chr1", 5),
#     begin=seq(100, by=100, length.out=5 ),
#     end=seq(110, by=100, length.out=5 ),
#     strand=rep("+",5))
# )

# testExObj <- InterestResult(
#   resultFiles= paste(paste("testFile",1:3, sep=" "),"bam", sep=".")
#   counts= matrix(1:30, ncol=3, nrow=10, byrow=TRUE,
#   dimnames= list(c(), paste("s", 1:3, sep=" ")))
#   scaledRetention= matrix(1:30, ncol=3, nrow=10, byrow=TRUE,
#   dimnames= list(c(), paste("s", 1:3, sep=" ")))
#   scaleLength= FALSE,
#   scaleFragment= FALSE,
#   sampleAnnotation= data.frame(
#     files=paste(paste("testFile",1:3, sep=" "),"bam", sep=".")
#     names=paste("s", 1:3, sep=" ")
#     row.names=paste("s", 1:3, sep=" "))
#   rowData=data.frame(id= paste("e", 1:10, sep=" "),
#     chr= rep("chr1", 10),
#     begin= c(seq(90, by=100, length.out=5),
#     seq(101, by=100, length.out=5)),
#     end= c(seq(99, by=100, length.out=5),
#     seq(110, by=100, length.out=5)),
#     strand=rep("+",10))
# )

# (testIntExObj<- interestResultIntEx(intObj=testIntObj, exObj=testExObj,
# mean.na.rm=TRUE, postExName="ex_junc") )
```

intexIndex

Extract index of intron or exon rows
Description

Extract row numbers where introns (or exons dependant on user's request) are located in an object of type SummarizedExperiment.

Usage

intexIndex(x, intExCol="int_ex", what="intron")

Arguments

x Object of type SummarizedExperiment.
intExCol Column name (or number) that represents whether each row is "intron" or "exon" in rowData of x.
what A character string that defines whether the index for the introns or exons should be returned. Accepts either "exon" or "intron" (default) as values.

Value

A numeric vector which includes the index of the introns/exons.

Author(s)

Ali Oghabian

See Also

u12NbIndex

Examples

Show the few first index of rows that represent the introns
head(intexIndex(mdsChr22Obj, what="intron"))
Arguments

- **x**: Object of type `SummarizedExperiment`.
- **fcType**: Available as "scaledRetention" or "edgeR" (as default) corresponding to either log fold change of scaled retention values or degeR normalized log fold change values.
- **sampleAnnoCol**: Which column of `colData` of `x` to consider for the analysis.
- **sampleAnnotation**: A vector of size 2 which contains values from `colData` of `SummarizedExperiment` object: e.g. if `getAnnotation(x)[, sampleAnnoCol] = c("test", "test", "ctrl", "ctrl", ...)`, and the goal is to compare "test" and "ctrl" samples, `sampleAnnotation` should either be `c("test", "ctrl")` or `c("ctrl", "test")`.
- **silent**: Whether run `exactTestInterest` silently, without warnings.
- **group**: Vector to manually define the sample groups (or annotations). It is ignored if `sampleAnnoCol` is defined.
- **rejection.region**: The rejection.region parameter in `exactTest`, considered only if `fcType` is "edgeR".
- **pseudoCnt**: Pseudo count for log transformation (default=1).
- **log2**: Logical value either TRUE (default) or FALSE indicating whether the fold-changes should be log 2 transformed.
- **...**: Other parameter settings from the `exactTestInterest` function.

Value

- Vector including fold change values.

Author(s)

Ali Oghabian

See Also

- `exactTestInterest`, `u12DensityPlotIntron`

Examples

```r
lfcFpkm<- lfc(mdsChr22Obj, fcType="scaledRetention",
            sampleAnnoCol="test_ctrl",
            sampleAnnotation=c("ctrl", "test"),
            silent=TRUE, group=c(), pseudoFpkm=1, log2=TRUE)

lfcEdgeRFpkm<- lfc(mdsChr22Obj, fcType="edgeR",
                sampleAnnoCol="test_ctrl",
                sampleAnnotation=c("ctrl", "test"),
                silent=TRUE, group=c(), pseudoFpkm=1, log2=TRUE)
```
mdsChr22ExObj

Object of SummarizedExperiment type for exon-exon junction of MDS data

Description

The Results of interest() analysis in exon-exon junction mode, for the genes that feature U12-type introns and are located on Chr22 in MDS data.

Usage

data(mdsChr22ExObj)

Format

An Object of class SummarizedExperiment that contains intron retention results generated by interest() function on MDS data consisting of bone-marrow samples of 8 MDS patients with ZRSR2 mutations, 4 patients without the mutation and 4 healthy individuals.

@colData A "DataFrame" (from "S4Vectors" package) that its rownames can be set as the sample identification names and the other columns are various annotations for the samples. Its column names are characters that describe the annotations.

@assays List of size 2 that includes two numeric matrices: counts that includes raw read counts of the sequencing reads mapped to introns and exons, and (2) scaledRetention, i.e. the normalized read counts.

@NAMES A NULL value.

@elementMetadata A "DataFrame" (from "S4Vectors" package) that include intron and exon annotations.

@metadata A list of size 2 that includes parameter settings for the interest() and interest.sequential() runs.

Value

Object of class SummarizedExperiment.

Source

Madan, V., et.al., Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Communication 2015 Jan 14;6:6042. doi: 10.1038/ncomms7042.
Object of `SummarizedExperiment` type for intron spanning reads of MDS data

Description

The results of `interest()` analysis in intron-spanning mode, for the genes that feature U12-type introns and are located on Chr22 in MDS data.

Usage

```r
data(mdsChr22ExObj)
```

Format

An object of class `SummarizedExperiment` that contains intron retention results generated by `interest()` function on MDS data consisting of bone-marrow samples of 8 MDS patients with ZRSR2 mutations, 4 patients without the mutation and 4 healthy individuals.

- `@colData` A "DataFrame" (from "S4Vectors" package) that its rownames can be set as the sample identification names and the other columns are various annotations for the samples. Its column names are characters that describe the annotations.

- `@assays` List of size 2 that includes two numeric matrices: `counts` that includes raw read counts of the sequencing reads mapped to introns and exons, and (2) `scaledRetention`, i.e. the normalized read counts.

- `@NAMES` A NULL value.

- `@elementMetadata` A "DataFrame" (from "S4Vectors" package) that include intron and exon annotations.

- `@metadata` A list of size 2 that includes parameter settings for the `interest()` and `interest.sequential()` runs.

Value

Object of class `SummarizedExperiment`.

Source

Madan, V., et.al., Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Communication 2015 Jan 14;6:6042. doi: 10.1038/ncomms7042.
mdsChr22Obj

Object of SummarizedExperiment type for intron retention MDS data

Description

The Results of interest() analysis in Intron-retention mode, for the genes that feature U12-type introns and are located on Chr22 in MDS data.

Usage

data(mdsChr22Obj)

Format

An Object of class SummarizedExperiment that contains intron retention results generated by interest() function on MDS data consisting of bone-marrow samples of 8 MDS patients with ZRSR2 mutations, 4 patients without the mutation and 4 healthy individuals.

@colData A "DataFrame" (from "S4Vectors" package) that its rownames can be set as the sample identification names and the other columns are various annotations for the samples. Its column names are characters that describe the annotations.

@assays List of size 2 that includes two numeric matrices: counts that includes raw read counts of the sequencing reads mapped to introns and exons, and (2) scaledRetention, i.e. the normalized read counts.

@NAMES A NULL value.

@elementMetadata A "DataFrame" (from "S4Vectors" package) that include intron and exon annotations.

@metadata A list of size 2 that includes parameter settings for the interest() and interest.sequential() runs.

Value

Object of class SummarizedExperiment.

Source

Madan, V., et.al., Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Communication 2015 Jan 14;6:6042. doi: 10.1038/ncomms7042.
mergeInterestResult
merge two SummarizedExperiment objects into one

Description

Build a new object by merging data of two SummarizedExperiment objects.

Usage

mergeInterestResult(x, y)

Arguments

- `x` Object of type SummarizedExperiment.
- `y` Object of type SummarizedExperiment.

Value

An object of class SummarizedExperiment.

Author(s)

Ali Oghabian

See Also

interest, InterestResult.

Examples

geneId<- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)), sep="_")
readCnt1<- sample(1:100, 20)
readCnt2<- sample(1:100, 20)
readCnt3<- sample(1:100, 20)
readCnt4<- sample(1:100, 20)
fpkm1<- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2<- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3<- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4<- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

Creating object using test data
interestDat<- data.frame(
 int_ex=rep(c(rep("exon","intron"),2),"exon"),4),
 int_ex_num= rep(c(1,1,2,2,3),4),
 gene_id= geneId,
 sam1_readCnt=readCnt1,
 sam2_readCnt=readCnt2,
mergeInterestResult

```r
sam3_readCnt=readCnt3,
sam4_readCnt=readCnt4,
sam1_fpkm=fpkm1,
sam2_fpkm=fpkm2,
sam3_fpkm=fpkm3,
sam4_fpkm=fpkm4
)
readFreqColIndex<- grep("_readCnt$",colnames(interestDat))
scaledRetentionColIndex<- grep("_fpkm$",colnames(interestDat))
scalRetTmp<- as.matrix(interestDat[,scaledRetentionColIndex])
colnames(scalRetTmp)<-gsub("_fpkm$","",colnames(scalRetTmp))
frqTmp<- as.matrix(interestDat[,readFreqColIndex])
colnames(frqTmp)<-gsub("_readCnt$","",colnames(frqTmp))

#Object including data for Males
interestResObjM<- InterestResult(
  resultFiles=paste("file",1:2, sep="_"),
  rowData=interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)],
  counts= frqTmp[,1:2],
  scaledRetention= scalRetTmp[,1:2],
  scaleLength=TRUE,
  scaleFragment=FALSE,
  sampleAnnotation=data.frame(
    sampleName=paste("sam",1:2, sep=""),
    gender=c("M","M"),
    health=c("healthy","unhealthy"),
    row.names=paste("sam", 1:2, sep="")
  )
)

#Object including data for Females
interestResObjF<- InterestResult(
  resultFiles=paste("file",3:4, sep="_"),
  rowData=interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)],
  counts= frqTmp[,3:4],
  scaledRetention= scalRetTmp[,3:4],
  scaleLength=TRUE,
  scaleFragment=FALSE,
  sampleAnnotation=data.frame(
    sampleName=paste("sam",3:4, sep=""),
    gender=c("F","F"),
    health=c("healthy","unhealthy"),
    row.names=paste("sam", 3:4, sep="")
  )
)

#Build new object
newObj<- mergeInterestResult(interestResObjM, interestResObjF)
```
plot-method

```r
#View newObj
print(newObj)
```

Description

plot method for `SummarizedExperiment` objects.

Usage

```r
## S4 method for signature 'SummarizedExperiment,ANY'
plot(x, summary="none", subsetRows=NULL, what="scaled", intronExon="intron", 
logScaleBase=NULL, logPseudoCnt=1, plotLoess=TRUE, 
loessCol="red", loessLwd=1, loessLty=1, cexText=1, 
marPlot=c(2,2,2,2), mgpPlot=c(1, 1, 0), cexAxis=1, 
writeCor=TRUE, corCex=1, corMethod="pearson", corCol="grey63", 
upperCorXY=c("topleft", NULL), lowerCorXY=c("topleft", NULL), 
na.rm=TRUE,cex=1, sampleAnnoCol=c(), lowerPlot=FALSE, 
upperPlot=TRUE, ...) 
```

Arguments

- **x**: Object of type `SummarizedExperiment` generated by either `interest()`, `interest.sequential()` or `readInterestResults()`.
- **summary**: Whether to plot the mean or median of the values over the sample with the same annotations, or plot the values for each individual sample separately. The available options are "mean", "median", or "none".
- **subsetRows**: Vector either constructed of TRUE/FALSE values or constructed of numeric values that could be used to choose rows of `x` i.e. the `SummarizedExperiment` object.
- **what**: Whether plot "scaled" (default) or read counts ("counts").
- **intronExon**: Whether plot intron retention, i.e. "intron" (default) or exon-junction "exon".
- **logScaleBase**: Base of the log transform of the values, if defined. By default the value is `NULL` meaning that the values would not be log transformed.
- **logPseudoCnt**: Pseudocount for the log transformation (default=1).
- **plotLoess**: Whether fit and plot LOESS curve line (default="red").
- **loessCol**: loess line colour (default="red").
- **loessLwd**: loess line width (default=1).
- **loessLty**: loess line type (default=1).
- **cexText**: Size of the text for sample names or annotations (default=1).
marPlot: Plot margins (default=c(2,2,2,2)). See ?par for more information.
mgpPlot: Plotting mgp parameter (default=c(1, 1, 0)). See ?par for more information.
cexAxis: Size of the text for the axis (default=1).
writeCor: Write correlation values (default=TRUE).
corCex: Text size of correlation values (default=1).
corMethod: Method used for correlation calculation. For more information see cor from stats package of R.
corCol: Color of the text of correlation (default="grey").
upperCorXY: The coordinates of the correlation text in the upper panel plots (default= c("topleft", NULL)).
lowerCorXY: The coordinates of the correlation text in the lower panel plots (default= c("topleft", NULL)).
na.rm: whether remove the rows with missing values (default=TRUE).
cex: size of the plot text and symbols (default=1).
sampleAnnoCol: Which column of colData of object SummarizedExperiment to consider for plotting.
lowerPlot: Whether plot the lower panel (default=FALSE).
upperPlot: Whether plot the upper panel (default=TRUE).
...: Other arguments to pass to the plot() function.

Value
Returns NULL.

Author(s)
Ali Oghabian

See Also
Class: SummarizedExperiment-class Method: counts-method boxplot-method

Examples

geneId<- paste("gene", c(rep(1,5), rep(2,5), rep(3,5), rep(4,5)), sep="_")
readCnt1<- sample(1:100, 20)
readCnt2<- sample(1:100, 20)
readCnt3<- sample(1:100, 20)
readCnt4<- sample(1:100, 20)
fpkm1<- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2<- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3<- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4<- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]
Creating object using test data
interestDat<- data.frame(
 int_ex=rep(c(rep(c("exon","intron"),2),"exon"),4),
 int_ex_num= rep(c(1,1,2,2,3),4),
 gene_id= geneId,
 sam1_readCnt=readCnt1,
 sam2_readCnt=readCnt2,
 sam3_readCnt=readCnt3,
 sam4_readCnt=readCnt4,
 sam1_fpkm=fpkm1,
 sam2_fpkm=fpkm2,
 sam3_fpkm=fpkm3,
 sam4_fpkm=fpkm4
)

readFreqColIndex<- grep("_readCnt$",colnames(interestDat))
scaledRetentionColIndex<- grep("_fpkm$",colnames(interestDat))

scalRetTmp<- as.matrix(interestDat[,scaledRetentionColIndex])
colnames(scalRetTmp)<- gsub("_fpkm$","", colnames(scalRetTmp))

frqTmp<- as.matrix(interestDat[,readFreqColIndex])
colnames(frqTmp)<- gsub("_readCnt$","", colnames(frqTmp))

InterestResultObj<- InterestResult(
 resultFiles=paste("file",1:4, sep="_")
 rowData= interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)]
 counts= frqTmp,
 scaledRetention= scalRetTmp,
 scaleLength=TRUE,
 scaleFragment=FALSE,
 sampleAnnotation=data.frame(
 sampleName=paste("sam",1:4, sep="")
 gender=c("M","M","F","F"), row.names=paste("sam", 1:4, sep=""
)
)

InterestResultObj2<- addAnnotation(x=InterestResultObj,
sampleAnnotationType="health",
 sampleAnnotation=c("healthy","unhealthy","healthy","unhealthy")
)

#Plotting
plot(InterestResultObj)
plot(InterestResultObj, sampleAnnoCol="gender", summary="mean")
plot(InterestResultObj2, sampleAnnoCol=3, summary="mean")
plot(InterestResultObj2, summary="none")

psi
Psi values estimation
Description
Calculating the relative inclusion level of intron or Psi values base on two count matrices from a single or two separate objects. The values for each intron is in the range of [0,1], where 0 means complete splicing or no retention of the intron and 1 represent complete 100

Usage

```r
psi (x, y, intCol, exCol, pseudoCnt=0)
```

Arguments

- `x`: Object of type `SummarizedExperiment`.
- `y`: Optional; i.e. an object of type `SummarizedExperiment`.
- `intCol`: Column numbers or column names in counts matrix of `x` which include the number of reads mapped to the introns.
- `exCol`: Column numbers or column names in counts matrix of `x` (or if defined `y`) which include the number of reads spanning the introns (or mapping exons flanking the introns).
- `pseudoCnt`: Pseudo counts to sum to the denominator of the devision to avoid devision to zero.

Value
`data.frame` with column size equal to the size of `intCol` parameter, and row size equal to the number of rows in `x`. It contains the psi values (i.e. values between 0 and 1 showing the fraction of spliced in transcripts).

Author(s)
Ali Oghabian

See Also

`interestResultIntEx`

Examples

```r
mdsChr22IntObj<- mdsChr22Obj[which(rowData(mdsChr22Obj)$int_ex=="intron"), ]
#Build object including intron-retention and exon-junction results
mdsChr22RefIntExObj<- interestResultIntEx(intObj=mdsChr22Obj, 
exObj=mdsChr22ExObj, mean.na.rm=TRUE, postExName="ex_junc", 
intExCol="int_ex" )
# Calculate Psi
psiRes<- psi(mdsChr22RefIntExObj, 
intCol=which(colData(mdsChr22RefIntExObj)$intronExon=="intron"),
exCol=which(colData(mdsChr22RefIntExObj)$intronExon=="exon"))
# show Psi results
head(psiRes)
```
PWM of U12 and U2-type introns splice sites

Description

PWM of U12 and U2-type introns splice sites and it is based on the U12DB database.

Usage

data("pwmU12db")

Format

A list that contains Position Weight Matrices (PWM) of donor site, branch point and acceptor site of U12-type introns and the PWMs of donor site and acceptor site of U2-type introns. It is based on the U12DB database.

- `pwmDonU12`: A position weigh matrix for the donor site of the U12-type introns, with 4 rows and 46 columns. The rows of the matrix represent "A", "C", "G", and "T" nucleotides and the columns represent the positions in the genome. Each position in the matrix include a weight (i.e. number between 0 and 1) which indicates how common the corresponding base (represented by the row of the matrix) is observed in the corresponding position (represented by the column of the matrix).

- `pwmBpU12`: A position weigh matrix for the branch point of the U12-type introns, with 4 rows and 9 columns.

- `pwmAccU12`: A position weigh matrix for the acceptor site of the U12-type introns, with 4 rows and 46 columns.

- `pwmDonU2`: A position weigh matrix for the donor site of the U2-type introns, with 4 rows and 25 columns.

- `pwmAccU2`: A position weigh matrix for the acceptor site of the U12-type introns, with 4 rows and 46 columns.

Value

List of 5 numeric matrices representing the PWMs of donor site of U12-type introns, branch point site of U12-type introns, acceptor site of U12-type introns, donor site of U2-type introns, and acceptor site of U2-type introns.

Source

qlfInterest

Description

Compute quasi-likelihood F-test using edgeR package. For more information see glmQLFit and glmQLFTest functions in edgeR package.

Usage

```r
qlfInterest(x, design=c(), silent=TRUE, disp="common",
coef=c(), contrast=NULL,
poisson.bound=TRUE, ...)```

**Arguments**

- `x`: Object of type SummarizedExperiment.
- `design`: Design matrix.
- `silent`: Whether run silently, i.e. without printing the top differential expression tags. The default is TRUE.
- `disp`: The method of estimating the dispersion in the data. Available options are: "common", "trended", "tagwiseInitCommon" and "tagwiseInitTrended". It is also possible to assign a number.
- `coef`: Integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. See glmQLFTest for more information.
- `contrast`: Numeric vector or matrix specifying contrasts of the linear model coefficients to be tested equal to zero. See glmQLFTest for more information.
- `poisson.bound`: Logical value, if TRUE (i.e. default) the pvalue would be higher than when obtained from likelihood ratio test while Negative Binomial dispersion is zero.
- `...`: Other parameter settings for the glmQLFTest function in the edgeR package.

**Value**

All values produced by glmQLFTest plus the following:

- `dispersionType`: The name of the type of dispersion used.
- `dispersion`: The estimated dispersion values.

**Author(s)**

Ali Oghabian

**See Also**

exactTestInterest, glmInterest, treatInterest
Examples

# Test retention differentiation across the 3 types of samples

group <- getAnnotation(mdsChr22Obj)[,"type"]
qlfRes<- qlfInterest(x=mdsChr22Obj,
design=model.matrix(~group), silent=TRUE,
disp="tagwiseInitTrended", coef=2:3, contrast=NULL)

qlfRes

------

readInterestResults  Read interest/interest.sequential results text files

Description

Reads one or multiple text file results generated by the interest or interest.sequential functions and builds an object of SummarizedExperiment-class class.

Usage

readInterestResults(resultFiles, sampleNames,
sampleAnnotation, commonColumns, freqCol, scaledRetentionCol,
scaleLength, scaleFragment, reScale=FALSE, geneIdCol,
repeatsTableToFilter=c())

Arguments

resultFiles  Vector of character strings which includes the path to the tab-separated files resulted by the interest function.

sampleNames  Vector of character strings which includes the name of the samples. It should be the same size as the resultFiles parameter.

sampleAnnotation  Data frame with the same row number as the size of resultFiles and sampleNames parameter. The column names represent the annotation names and values in each column represent the annotations of the samples.

commonColumns  Columns in the result file which include intron/exon annotations and are common across all files defined in resultFiles.

freqCol  Column in the result file which include the read counts for introns/exons.

scaledRetentionCol  Column in the result file which include the scaled retention values for introns/exons.

scaleLength  Logical value, indicating whether the intron/exon retention levels are scaled to the length of the introns/exons. If reScale is TRUE the scaled retention levels would be rescaled when reading the data.

scaleFragment  Logical value, indicating whether the intron/exon retention levels are scaled to the fragments mapped to the genes. If reScale is TRUE the scaled retention levels would be rescaled when reading the data.
readInterestResults

reScale Logical value, indicating whether the scaled retention levels would be recalculated when reading the data. By default it does not calculate and trusts the user to set the scaleLength and scaleFragment parameters correctly, i.e. as it was set in the interest() or interest.sequential() analysis.

geneIdCol The number or name of the column in resultFiles which represents the gene/transcript names. It would be used for summing up the number of mapped fragments to the genes when scaling the retention levels. It is only used if reScale and scaleFragment arguments are set TRUE.

repeatsTableToFilter A data.frame table with similar structure to the reference. It includes chr, begin, and end columns. If defined, all reads mapped to the described regions would be ignored and the Intron/exon lengths would be corrected to exclude the to exclude the regions with repetitive DNA sequences. See getRepeatTable. It is only used if reScale and scaleLength arguments are set TRUE.

Value

An object of class SummarizedExperiment-class.

Author(s)

Ali Oghabian

See Also

interest, InterestResult.

Examples

geneId<- paste("gene", c(rep(1,7), rep(2,7), rep(3,7), rep(4,7)), sep="_")
readCnt1<- sample(1:100, 28)
readCnt2<- sample(1:100, 28)
readCnt3<- sample(1:100, 28)
readCnt4<- sample(1:100, 28)
fpkm1<- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2<- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3<- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4<- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

#create tmp director
tmpDir=file.path(tempdir(),"InterestResult")
dir.create(tmpDir)

# Build text files similar to files resulted by interest
dfTmp=data.frame(
  int_ex=rep(c(rep(c("exon","intron"),3),"exon"),4),
  int_ex_num= rep(c(1,1,2,2,3,3,4,4),4),
  int_type=rep(c(NA,"U2",NA,"U12",NA,"U2",NA),4),
  strand=rep("\",28),
  )
**referencePrepare**

**Creates reference file**

**Description**

Creates reference file for IntEREst functions, e.g. `interest()`. The function uses functions of `biomaRt` library.

**Usage**

```r
referencePrepare(outFileTranscriptsAnnotation="", annotateGeneIds=TRUE,
 u12IntronsChr=c(), u12IntronsBeg=c(), u12IntronsEnd=c(),
 u12IntronsRef, collapseExons=TRUE, sourceBuild="UCSC",
 ...)```

```r
gene_id= geneId,
sam1_readCnt=readCnt1,
sam2_readCnt=readCnt2,
sam3_readCnt=readCnt3,
sam4_readCnt=readCnt4,
sam1_fpkm=fpkm1,
sam2_fpkm=fpkm2,
sam3_fpkm=fpkm3,
sam4_fpkm=fpkm4
)
```

```r
writeDf<-function(df, file){
  write.table(df, file, col.names=TRUE,
              row.names=FALSE, quote=FALSE, sep="	")
}
```

```r
writeDf(dfTmp[, c(1:5,6,10)], paste(tmpDir, "df1.tsv", sep="/"))
writeDf(dfTmp[, c(1:5,7,11)], paste(tmpDir, "df2.tsv", sep="/"))
writeDf(dfTmp[, c(1:5,8,12)], paste(tmpDir, "df3.tsv", sep="/"))
writeDf(dfTmp[, c(1:5,9,13)], paste(tmpDir, "df4.tsv", sep="/"))
```

```r
# Build object from generated text file results
testObj<-readInterestResults(
  resultFiles=paste(tmpDir,
                   c("df1.tsv", "df2.tsv", "df3.tsv", "df4.tsv"), sep="/"),
  sampleNames=c("sam1","sam2","sam3","sam4"),
  sampleAnnotation= data.frame( gender=c("M","M","F","F"),
                                 health=c("healthy","unhealthy","healthy","unhealthy")),
  commonColumns=1:5, freqCol=6, scaledRetentionCol=7,
  scaleLength=FALSE, scaleFragment=TRUE, reScale=FALSE)
```

```r
#View object
testObj
```
References:

Prepare

ucscGenome="hg19", ucscTableName="knownGene",
ucscUrl="http://genome-euro.ucsc.edu/cgi-bin/",
biomart="ENSEMBL_MART_ENSEMBL",
biomartDataset="hsapiens_gene_ensembl",
biomartTranscriptIds=NULL, biomartExtraFilters=NULL,
biomartIdPrefix="ensembl_", biomartHost="www.ensembl.org",
biomartPort=80, circSeqs="", miRBaseBuild=NA, taxonomyId=NA,
filePath="", fileFormat=c("auto", "gff3", "gtf"), fileDatSrc=NA,
fileOrganism=NA, fileChrInf=NULL,
fileDbXrefTag=c(), addCollapsedTranscripts=TRUE,
ignore.strand=FALSE)

Arguments

outFileTranscriptsAnnotation
 If defined outputs transcripts annotations.
annotateGeneIds
 Whether annotate and add the gene ids information.
collapseExons
 Whether collapse (i.e. reduce) the exonic regions. TRUE by default.
sourceBuild
 The source to use to build the reference data, "UCSC", "biomaRt", and "file"
 (for GFF3 or GTF files) are supported.
ucscGenome
 The genome to use. "hg19" is the default. See genome parameter of makeTxDbFromUCSC
 function of txdbmaker library for more information.
ucscTableName
 The UCSC table name to use. See tablename parameter of makeTxDbFromUCSC
 function of txdbmaker library for more information.
ucscUrl
 The UCSC URL address. See url parameter of makeTxDbFromUCSC function of
 txdbmaker library for more information.
u12IntronsChr
 A vector of character strings that includes chromosomal locations of the U12
 type introns. If defined together with u12IntronsBeg and u12IntronsBeg
 would be used to annotate the U12-type introns.
u12IntronsBeg
 A vector of numbers that defines the begin (or start) coordinates of the u12-type
 introns.
u12IntronsEnd
 A vector of numbers that defines the end coordinates of the u12-type introns.
u12IntronsRef
 A GRanges object that includes the coordinates of the U12 type introns. If
 defined, it would be used to annotate the U12-type introns.
biomart
 BioMart database name. See biomart parameter of makeTxDbFromBiomart
 function of txdbmaker library for more information.
biomartDataset
 BioMart dataset name; default is "hsapiens_gene_ensembl". See dataset parameter
 of makeTxDbFromBiomart function of txdbmaker library for more
 information.
biomartTranscriptIds
 optional parameter to only retrieve transcript annotation results for a defined
 set of transcript ids. See transcript_ids parameter of makeTxDbFromBiomart
 function of txdbmaker library for more information.
biomartExtraFilters
A list of names; i.e. additional filters to use in the BioMart query. See filters parameter of makeTxDbFromBiomart function of txdbmaker library for more information.

biomartIdPrefix
A list of names; i.e. additional filters to use in the BioMart query. See id_prefix parameter of makeTxDbFromBiomart function of txdbmaker library for more information.

biomartHost
Host to connect to; the default is "www.ensembl.org". For older versions of the GRCH you can provide the archive websites, e.g. for GRCH37 you can use "grch37.ensembl.org".

biomartPort
The port to use in the HTTP communication with the host. Default is 80.

circSeqs
A character vector that includes chromosomes that should be marked as circular. See circ_seqs parameter of makeTxDbFromBiomart and makeTxDbFromUCSC functions of txdbmaker library for more information.

miRBaseBuild
Set appropriate build Information from mirbase.db to use for microRNAs (default=NA). See miRBaseBuild parameter of makeTxDbFromBiomart and makeTxDbFromUCSC functions of txdbmaker library for more information.

taxonomyId
This parameter can be used to provide taxonomy Ids. It is set to NA by default. You can check the taxonomy Ids with the available.species() function in GenomeInfoDb package. For more information see taxonomyId parameter of makeTxDbFromBiomart and makeTxDbFromUCSC functions of txdbmaker library.

filePath
Character string i.e. the path to file. Used if sourceBuild is "file".

fileFormat
The format of the input file. "auto", "gff3" and "gtf" is supported.

fileDatSrc
Character string describing the source of the data file. Used if sourceBuild is "file".

fileOrganism
The genus and species name of the organism. Used if sourceBuild is "file".

fileChrInf
Dataframe that includes information about the chromosome. The first column represents the chromosome name and the second column is the length of the chromosome. Used if sourceBuild is "file".

fileDbXrefTag
A vector of character strings which if defined it would be used as feature names. Used if sourceBuild is "file".

addCollapsedTranscripts
Whether add a column that includes the collapsed transcripts information. Used if collapseExons is TRUE.

ignore.strand
Whether consider the strands in the reference. If set TRUE the strands would be ignored.

Value
Data frame that includes the coordinates and annotations of the introns and exons of the transcripts, i.e. the reference.

Author(s)
Ali Oghabian
Examples

Build test gff3 data
tmpGen<- u12[u12[,"ens_trans_id"]=='ENST00000413811',]
tmpEx<-tmpGen[tmpGen[,"int_ex"]=='exon',]
exonDat<- cbind(tmpEx[,3], ".", tmpEx[,4], ".", tmpEx[,5], ".", paste("ID=exon", tmpEx[,11], "; Parent=ENST00000413811", sep="")
trDat<- c(tmpEx[1,3], ".", "mRNA", as.numeric(min(tmpEx[,4])), as.numeric(max(tmpEx[,5])), ".", tmpEx[1,6], ".", "ID=ENST00000413811")

outDir<- file.path(tempdir(),"tmpFolder")
dir.create(outDir)
outDir<- normalizePath(outDir)
gff3File=paste(outDir, "gffFile.gff", sep="/")

cat("##gff-version 3\n",file=gff3File, append=FALSE)
cat(paste(paste(trDat, collapse="\t"),"\n", sep=""),
file=gff3File, append=TRUE)
write.table(exonDat, gff3File,
row.names=FALSE, col.names=FALSE,
sep='\t', quote=FALSE, append=TRUE)

Selecting U12 introns info from 'u12' data
u12Int<-u12[u12$int_ex=='intron'&u12$int_type=='U12',]

Test the function
refseqRef<- referencePrepare (sourceBuild="file",
filePath=gff3File, u12IntronsChr=u12Int[,"chr"],
u12IntronsBeg=u12Int[,"begin"],
u12IntronsEnd=u12Int[,"end"], collapseExons=TRUE,
fileFormat="gff3", annotateGeneIds=FALSE)

subInterestResult Extract subset of object

Description

Build a new object using subset of data in an SummarizedExperiment object.

Usage

subInterestResult(x, selectRow, selectCol, sampleAnnoCol, sampleAnnotation=c())
Arguments

x Object of type SummarizedExperiment.
selectRow Numeric or TRUE/FALSE Vector indicating what rows to extract.
selectCol A vector with Numeric values, character strings (sample names) or TRUE/FALSE Vector indicating what columns to extract.
sampleAnnoCol Which column of colData of object x to consider for subset data extraction.
sampleAnnotation Vector including the annotations to consider for subset data extraction. They should be present in the sampleAnnoCol column of the colData of x.

Value

An object of class SummarizedExperiment.

Author(s)

Ali Oghabian

See Also

interest, InterestResult.

Examples

geneId<- paste("gene", c(rep(1,7), rep(2,7), rep(3,7), rep(4,7)), sep="_")
readCnt1<- sample(1:100, 28)
readCnt2<- sample(1:100, 28)
readCnt3<- sample(1:100, 28)
readCnt4<- sample(1:100, 28)
fpkm1<- readCnt1/(tapply(readCnt1, geneId, sum))[geneId]
fpkm2<- readCnt2/(tapply(readCnt2, geneId, sum))[geneId]
fpkm3<- readCnt3/(tapply(readCnt3, geneId, sum))[geneId]
fpkm4<- readCnt4/(tapply(readCnt4, geneId, sum))[geneId]

Creating object using test data
testDat<-data.frame(
 int_ex=rep(c(rep(c("exon","intron"),3),"exon"),4),
 int_ex_num= rep(c(1,1,1,2,2,3,3,4),4),
 int_type=rep(c(NA,"U2",NA,"U12",NA,"U2",NA),4),
 strand=rep("*",28),
 gene_id= geneId,
 sam1_readCnt=readCnt1,
 sam2_readCnt=readCnt2,
 sam3_readCnt=readCnt3,
 sam4_readCnt=readCnt4,
 sam1_fpkm=fpkm1,
 sam2_fpkm=fpkm2,
 sam3_fpkm=fpkm3,
 sam4_fpkm=fpkm4)
readFreqColIndex <- grep("_readCnt$", colnames(interestDat))
scaledRetentionColIndex <- grep("_fpkms?", colnames(interestDat))
samNames <- paste("sam", 1:4, sep="")
frqTmp <- as.matrix(interestDat[, readFreqColIndex])
sclTmp <- as.matrix(interestDat[, scaledRetentionColIndex])
colnames(frqTmp) <- samNames
colnames(sclTmp) <- samNames
interestResObj <- InterestResult(
 resultFiles = paste("file", 1:4, sep="_"),
 rowData = interestDat[, -c(readFreqColIndex, scaledRetentionColIndex)],
 counts = frqTmp,
 scaledRetention = sclTmp,
 scaleLength = TRUE,
 scaleFragment = FALSE,
 sampleAnnotation = data.frame(
 sampleName = paste("sam", 1:4, sep=""),
 gender = c("M", "M", "F", "F"),
 health = c("healthy", "unhealthy", "healthy", "unhealthy"),
 row.names = samNames
)
)
Build new object
newObj <- subInterestResult(interestResObj, selectRow = 1:20)
View newObj
print(newObj)

treatInterest

Differential retention test relative to a threshold

Description

Compute a gene-wise statistical test relative to a fold-change threshold using edgeR package. For more information see `glmTreat` function in edgeR package.

Usage

```r
 treatInterest(x, design = c(), silent = TRUE, disp = "common",
              coef = c(), contrast = NULL, lfc = 0, ...) 
```

Arguments

- `x` Object of class `SummarizedExperiment`
- `design` Design matrix
silent

Whether run silently, i.e. without printing the top differential expression tags. Default is TRUE.

disp

The method of estimating the dispersion in the data. Available options are: "common", "trended", "tagwiseInitCommon" and "tagwiseInitTrended". It is also possible to assign a number.

coeff

Integer or character vector indicating which coefficients of the linear model are to be tested equal to zero. See glmTreat for more information.

contrast

Numeric vector or matrix specifying contrasts of the linear model coefficients to be tested equal to zero. See glmTreat for more information.

lfc

Numeric scalar i.e. the log fold change threshold.

...

Other parameter settings for the glmFit function in the edgeR package.

Value

All values produced by glmTreat plus the following:

dispersionType

The name of the type of dispersion used.

dispersion

The estimated dispersion values.

Author(s)

Ali Oghabian

See Also

exactTestInterest, qlfInterest, glmInterest

Examples

group <- getAnnotation(mdsChr22Obj)[,"type"]

Test retention differentiation across the 3 types of samples
The log fold change threshold is 0

treatRes <- treatInterest(x=mdsChr22Obj,
design=model.matrix(~group), silent=TRUE,
disp="tagwiseInitTrended", coef=2:3, contrast=NULL, lfc=0)
treatRes

u12

U12 data

Description

Intron/exon annotations of genes featuring U12 introns. It is based on HG19/GRCh37 (converted from hg17/NCBI35). Moreover the u12 genes are based on the U12DB database.
Usage

data("u12")

Format

A data frame with 22713 observations on the following 17 variables.

id a numeric vector
int_ex_id a character vector
chr a character vector
begin a numeric vector
end a numeric vector
strand a numeric vector
int_ex a character vector
trans_type a character vector
ens_gene_id a character vector
ens_trans_id a character vector
int_ex_num a numeric vector
gene_name a character vector
trans_name a character vector
overlap_no a numeric vector
int_type a character vector
int_subtype a character vector

Value

Data frame that includes the coordinates and annotations of the introns and exons of the transcripts, i.e. the reference.

Source

Description

A boxplot method for U12 and U2-type introns of SummarizedExperiment objects.

Usage

u12Boxplot(x, sampleAnnoCol=NA, intExCol="int_ex", intTypeCol="int_type", intronExon, col="white", boxplotNames=c(), lasNames=3, outline=FALSE, addGrid=FALSE, ...)

Arguments

x Object of type SummarizedExperiment.
sampleAnnoCol Which column of colData in x to consider for plotting.
intExCol Column name (or number) that represents whether each row of assays is "intron" or "exon".
intTypeCol Column name (or number) that represents what type of intron each row of assays represents.
intronExon Whether plot intron retention (set intronExon="intron") or exon-exon junction (set intronExon="exon") levels.
col Vector showing box colours. It is either of size 1 or the same size as the number of groups to be plotted.
boxplotNames Names to write under boxes. If not defined, as names, it pastes U12/U2 (intron annotation) to the sample group annotations separated by a space " ".
lasNames Orientation of the box names.
outline If outline is TRUE the outlier points are drawn otherwise if FALSE (default) they are not.
addGrid Whether add a grid under the boxplots (FALSE by default).
... Other arguments to pass to the boxplot() function.

Value

A SummarizedExperiment object.

Author(s)

Ali Oghabian

See Also

u12BoxplotNb
Examples

```r
u12Boxplot(mdsChr22Obj, sampleAnnoCol="type",
    intExCol="int_ex", intTypeCol="intron_type", intronExon="intron",
    col=rep(c("orange", "yellow"),3), lasNames=3,
    outline=FALSE, ylab="FPKM", cex.axis=0.8)
```

Description

boxplot U12 introns and (Up/Down)stream U2 introns in SummarizedExperiment objects.

Usage

```r
u12BoxplotNb(x, sampleAnnoCol=2, intExCol="int_ex",
    intTypeCol="int_type", intronExon, strandCol="strand", geneIdCol,
    col=c(), names=c(), lasNames=1, outline=FALSE, plotLegend=TRUE,
    cexLegend=1, xLegend="topright", yLegend=NULL, bgLegend="transparent",
    legend=c(), addGrid=FALSE, ...)
```

Arguments

- **x** Object of type SummarizedExperiment.
- **sampleAnnoCol** Which column of colData of x to consider for plotting.
- **intExCol** Column name (or number) that represents whether each row of x assays is "intron" or "exon".
- **intTypeCol** Column name (or number) that represents what type of intron each row of x assays represents.
- **intronExon** Whether plot intron retention (set intronExon="intron") or exon-exon junction (set intronExon="exon") levels.
- **strandCol** Column name (or number) that represents the strand of each row of assays in x. The values in the column are either "+", "," or "*".
- **geneIdCol** Column name (or number) that represents the gene ID of each row of assays in x.
- **col** Vector containing box colours. It is either of size 1 or the same size as the number of boxes resulted based on the grouping of the samples defined by sampleAnnoCol.
- **names** Names to write under group of boxes.
- **lasNames** Orientation of the box names.
Description

Density plot of fold change of the retention levels of U12- vs U2- type intron, or exon-exon junction levels of the flanking exons. For the density plot of the foldchange of intron retention levels the `u12DensityPlotIntron()` function or `u12DensityPlot()` function with `intronExon = "intron"` can be used. For density plot of the foldchange of exon-exon junction levels use `u12DensityPlot()` function with `intronExon = "exon"`.
Usage

\texttt{u12DensityPlot(x,}
\texttt{ type=c("U12", "U2Up", "U2Dn", "U2UpDn", "U2Rand"),}
\texttt{ fcType="edgeR", sampleAnnotation=c(), sampleAnnoCol=c(),}
\texttt{ group=c(), intExCol="int_ex", intTypeCol="int_type", intronExon,}
\texttt{ strandCol="strand", geneIdCol="collapsed_transcripts",}
\texttt{ naUnstrand=FALSE, col=1, lty=1, lwd=1, plotLegend=TRUE,}
\texttt{ cexLegend=1, xLegend="topright", yLegend=NULL, legend=c(),}
\texttt{ randomSeed=NULL, xlab="", ...)}

\texttt{u12DensityPlotIntron(x,}
\texttt{ type= c("U12", "U2Up", "U2Dn", "U2UpDn", "U2Rand"),}
\texttt{ fcType= "edgeR", sampleAnnotation=c(), sampleAnnoCol=c(),}
\texttt{ group=c(), intExCol="int_ex", intTypeCol="int_type",}
\texttt{ strandCol= "strand", geneIdCol= "collapsed_transcripts",}
\texttt{ naUnstrand=FALSE, col=1, lty=1, lwd=1, plotLegend=TRUE,}
\texttt{ cexLegend=1, xLegend="topright", yLegend=NULL, legend=c(),}
\texttt{ randomSeed=NULL, xlab="", ...)}

Arguments

\textit{x} \hspace{1cm} Object of type \texttt{SummarizedExperiment}.

\textit{type} \hspace{1cm} A vector that includes the type of introns to plot. Available options are U12 introns "U12", U2 introns at downstream of U12 introns "U2Dn", U2 introns at upstream of U12 introns "U2Up", U2 introns at upstream or downstream of U12 introns suitable for when the coordinates in object \texttt{x} are unstranded (their strand is ")\texttt{"}) "U2UpDn", random U2 introns from object \texttt{x} "U2Rand". Settings "U2Up", "U2Dn" and "U2UpDn" are useful only if the reference is linearly ordered. References with exons only resulted by \texttt{referencePrepare} and \texttt{unionRefTr} are NOT necessarily linearly ordered.

\textit{fcType} \hspace{1cm} Available as "fpkm" or "edgeR" (as default) corresponding to either log fold change of fpkm values or degeR normalized log fold change values.

\textit{sampleAnnoCol} \hspace{1cm} Which column of \texttt{colData} of \texttt{x} to consider for plotting.

\textit{sampleAnnotation} \hspace{1cm} A vector of size 2 which contains values from \texttt{colData} of \texttt{SummarizedExperiment} object; e.g. if \texttt{getAnnotation(x)[,sampleAnnoCol]=c("test", "test", "ctrl","ctrl", ...)}, and the goal is to compare "test" and "ctrl" samples, \texttt{sampleAnnotation} should either be \texttt{c("test", "ctrl")} or \texttt{c("ctrl", "test")}.

\textit{group} \hspace{1cm} Vector to manually define the sample groups (or annotations). It is ignored if \texttt{sampleAnnoCol} is defined.

\textit{intExCol} \hspace{1cm} Column name (or number) that represents whether each row of \texttt{x} assays is "intron" or "exon".

\textit{intTypeCol} \hspace{1cm} Column name (or number) that represents what type of intron each row of \texttt{x} assays represents.

\textit{intronExon} \hspace{1cm} Whether plot intron retention (set \texttt{intronExon="intron"}) or exon-exon junction (set \texttt{intronExon="exon"}) levels.
strandCol Column name (or number) that represents the strand of each row of assays in x. The values in the column are either "+", "-" or "*".

geneIdCol Column name (or number) that represents the gene ID of each row of assays in x.

naUnstrand Replace unstranded results, i.e. introns or exon with "*" strand, with NA (to be excluded).

col A vector with the size of 1 or the same size as the type parameter which includes the colour/colours of the plotted density lines (default=1).

lty A vector with the size of 1 or the same size as the type parameter which includes the type of the plotted density lines (default=1).

lwd A vector with the size of 1 or the same size as the type parameter which includes the width of the plotted density lines (default=1).

plotLegend Whether show legend (TRUE by default).

cexLegend Size of the text in legend.

xLegend, yLegend Position of legend in the plot. For more info see x and y parameters in legend.

legend The replacement texts to be used in legend.

randomSeed Seed value for random number generator.

xlab The lable of the X axis of the plot; by default it is "".

... Other parameter settings from the plot function.

Value

Returns NULL.

Author(s)

Ali Oghabian

See Also

exactTestInterest, lfc

Examples

ü12DensityPlotIntron(mdsChr22Obj,
 type= c("U12", "U2Up", "U2Dn", "U2UpDn", "U2Rand"),
 fcType= "edgeR", sampleAnnoCol="test_ctrl",
 sampleAnnotation=c("ctrl","test"), intExCol="int_ex",
 intTypeCol="intron_type", strandCol= "strand",
 geneIdCol= "collapsed_transcripts_id", naUnstrand=FALSE, col=c(2,3,4,5,6),
 lty=c(1,2,3,4,5), lwd=1, plotLegend=TRUE, cexLegend=0.7,
 xLegend="topright", yLegend=NULL, legend=c(), randomSeed=10,
 ylim=c(0,0.6), xlab=expression("log[2]* fold change FPKM"))
u12Index

Extract index of U12 introns rows

Description

Extract row numbers of U12 introns in an object of class `SummarizedExperiment`.

Usage

```r
u12Index(x, intExCol="int_ex", intTypeCol="int_type", intronExon="intron")
```

Arguments

- `x` Object of type `SummarizedExperiment`.
- `intExCol` Column name (or number) that represents whether each row of `x` assays is "intron" or "exon".
- `intTypeCol` Column name (or number) that represents what type of intron each row of `x` assays represents.
- `intronExon` Whether extract U12 type introns (set `intronExon="intron"`) or exon-exon junction (set `intronExon="exon"`) flanking U12 introns.

Value

A numeric vector which includes the index of U12 introns.

Author(s)

Ali Oghabian

See Also

- `u12NbIndex`

Examples

```r
head(u12Index(mdsChr22Obj, intTypeCol="intron_type"))
```
u12NbIndex

Extract index of U2 introns (up/down)stream of U12 introns rows

Description

Extract row numbers of U2-type introns (up/down)stream of U12-type introns (in the `@interestDf` attribute of an object of class `SummarizedExperiment`).

Usage

```r
u12NbIndex(x, intExCol="int_ex", intTypeCol="int_type", strandCol="strand", geneIdCol="collapsed_transcripts", naUnstrand=FALSE)
```

Arguments

- `x` Object of type `SummarizedExperiment`.
- `intExCol` Column name (or number) that represents whether each row of `x` assays is "intron" or "exon".
- `intTypeCol` Column name (or number) that represents what type of intron each row of `x` assays represents.
- `strandCol` Column name (or number) that represents the strand of each row of assays in `x`. The values in the column are either "+", "," or "*".
- `geneIdCol` Column name (or number) that represents the gene ID of each row of assays in `x`.
- `naUnstrand` Replace unstranded results, i.e. introns or exon with "*" strand, with NA. If set as FALSE (default) "*" strand would be same as "+" strand.

Value

- `upIntron` A numeric vector which includes the index of U2-type intron upstream the U12-type introns.
- `downIntron` A numeric vector which includes the index of U2-type intron downstream the U12-type introns.
- `upExon` A numeric vector which includes the index of exon upstream the U12-type introns.
- `downExon` A numeric vector which includes the index of exon downstream the U12-type introns.

Author(s)

Ali Oghabian

See Also

`u12Index`
unionRefTr

Description

Performs union on the overlapping introns/exons so that the final merged transcripts would feature from each exon or intron, one copy.

Usage

unionRefTr(referenceChr, referenceBegin, referenceEnd, referenceTr, referenceIntronExon, intronExon="exon", silent=FALSE)

Arguments

referenceChr Chromosome names of the references (e.g. introns).
referenceBegin A vector that corresponds to the begin coordinates of the reference.
referenceEnd A vector that corresponds to the end coordinates of the reference.
referenceTr A character vector that includes transcription IDs.
referenceIntronExon A vector with the same size as the referenceChr, referenceBegin and referenceEnd which contains 'intron' and 'exon' describing what (either intron or exon) each element of the 3 vectors represents.
intronExon Should be assigned either 'intron' or 'exon' or c('intron','exon') based on whether match the PWM to the intronic, exonic, or intronic and exonic regions of the reference. By default it seeks matches in intronic regions (intronExon='intron').
silent Whether run silently.

Value

Data frame containing merged transcripts structure. The merged transcripts feature from each intron or exon, one copy ONLY.
updateRowDataCol

Author(s)
Ali Oghabian

See Also
annotateU12.

Examples

unU12Ex<-unionRefTr(referenceChr=u12[1:94,"chr"],
referenceTr=u12[1:94,"trans_name"],
referenceIntronExon=u12[1:94,"int_ex"], intronExon="exon", silent=TRUE)

unU12Int<-unionRefTr(referenceChr=u12[1:94,"chr"],
referenceTr=u12[1:94,"trans_name"],
referenceIntronExon=u12[1:94,"int_ex"], intronExon="intron", silent=TRUE)

unU12IntEx<-unionRefTr(referenceChr=u12[1:94,"chr"],
referenceTr=u12[1:94,"trans_name"],
referenceIntronExon=u12[1:94,"int_ex"], intronExon=c("intron","exon"),
silent=TRUE)

updateRowDataCol Updating contents of rowData of SummarizedExperiment objects

Description
Updates the values in a single column of the rowData of SummarizedExperiment objects.

Usage
updateRowDataCol(x, updateCol, value)

Arguments
x Object of type SummarizedExperiment.
updateCol Name or the number of the column in the rowData of x to be updated with the new values. if the updateCol does not match to any column names it will be added as a new column.
value The new Replacing values.

Value
Returns an object of type SummarizedExperiment.
Author(s)
Ali Oghabian

See Also
annotateU12

Examples

```r
test <- mdsChr22Obj
# See the the frequency of each intron type annotation
table(rowData(test)$intron_type)

# Change U2 to u2
newIntType <- as.character(rowData(test)$intron_type)
newIntType[newIntType == "U2" & !is.na(newIntType == "U2")]<- "u2"
# Updating values
test <- updateRowDataCol(test, updateCol="intron_type",
value=newIntType)
# See the frequency of the updated intron type annotations
table(rowData(test)$intron_type)

# Adding a new column
test <- updateRowDataCol(test, updateCol="new_column",
value=rep(NA, nrow(rowData(test)))
head(rowData(test))
```
Index

* datasets
 mdsChr22ExObj, 36
 mdsChr22IntSpObj, 37
 mdsChr22Obj, 38
 pwmUI2db, 45
 u12, 55
* expression
 IntEREst-package, 3
* intron
 IntEREst-package, 3
* package
 IntEREst-package, 3
* retention
 IntEREst-package, 3
* rna-seq
 IntEREst-package, 3
* sequencing
 IntEREst-package, 3
* splicing
 IntEREst-package, 3

addAnnotation, 3, 9, 31, 32
annotateU12, 4, 13, 65, 66
applyOverlap, 7
attributes, 9, 31, 32

boxplot, SummarizedExperiment-method (boxplot-method), 10
boxplot-method, 10
buildSsTypePwms, 6, 11
cor, 42
counts, SummarizedExperiment-method (counts-method), 14
counts-method, 14
counts.InterestResults (counts-method), 14
deseqInterest, 16
DEXSeq, 17

DEXSeqDataSet, 17, 18
DEXSeqIntEREst, 17, 17, 19
estimateDisp, 19
exactTest, 19, 35
exactTestInterest, 17, 18, 18, 23, 35, 46, 55, 61
findOverlaps-methods, 8
getAnnotation, 4
getAnnotation (attributes), 9
getRepeatTable, 21, 24, 28, 48
glmfit, 22
glmInterest, 19, 22, 46, 55
glmQLFTest, 46
glmTreat, 54, 55

IntEREst (IntEREst-package), 3
interest, 8, 23, 29, 39, 47, 48, 53
IntEREst-package, 3
interest.sequential, 8, 26, 26, 47
InterestResult, 30, 39, 48, 53
interestResultIntEx, 32, 44
intexBoxplot (boxplot-method), 10
intexIndex, 33

legend, 59, 61
lfc, 19, 34, 61

makeTxDbFromBiomart, 50, 51
makeTxDbFromUCSC, 50, 51
mdsChr22ExObj, 36
mdsChr22IntSpObj, 37
mdsChr22Obj, 38
mergeInterestResult, 39

p.adjust, 16
plot, 61
plot, SummarizedExperiment, ANY-method (plot-method), 41

67
plot-method, 41
plot.InterestResult (plot-method), 41
psi, 43
pwmU12db, 45
qlfInterest, 17, 19, 23, 46, 55
readInterestResults, 8, 47
referencePrepare, 24, 27, 49
results, 16
scaledRetention (attributes), 9
ScanBamParam, 25, 28
subInterestResult, 52
treatInterest, 17, 19, 23, 46, 54
u12, 55
u12Boxplot, 57, 59
u12BoxplotNb, 57, 58
u12DensityPlot, 59
u12DensityPlotIntron, 35
u12DensityPlotIntron (u12DensityPlot), 59
u12Index, 62, 63
u12NbIndex, 34, 62, 63
unionRefTr, 64
updateRowDataCol, 65