Package ‘IdeoViz’

October 20, 2023

Type Package
Title Plots data (continuous/discrete) along chromosomal ideogram
Version 1.37.0
Date 2021-11-17
Author Shraddha Pai <shraddha.pai@utoronto.ca>, Jingliang Ren
Maintainer Shraddha Pai <shraddha.pai@utoronto.ca>
Depends Biobase, IRanges, GenomicRanges, RColorBrewer,
 rtracklayer, graphics, GenomeInfoDb
biocViews Visualization, Microarray
Description Plots data associated with arbitrary genomic intervals
 along chromosomal ideogram.
License GPL-2
RoxygenNote 6.1.1
git_url https://git.bioconductor.org/packages/IdeoViz
git_branch devel
git_last_commit 621dbee
git_last_commit_date 2023-04-25
Date/Publication 2023-10-20

R topics documented:

 IdeoViz-package .. 2
 avgByBin .. 3
 binned_fullGenome ... 5
 binned_multiSeries ... 5
 binned_singleSeries .. 6
 getBins .. 6
 getIdeo ... 7
 GSM733664_broadPeaks .. 8
 hg18_ideo .. 8
 plotChromValuePair ... 9
plots continuous or discrete data along chromosomal ideogram

Description
Plotting discrete or continuous datasets in the context of chromosomal location has several useful applications in genomic analysis. Examples of possible metrics include RNA expression levels, densities of epigenetic marks or genomic variation, while applications could range from the analysis of a single variable in a single context, to multiple measurements in several biological contexts (e.g. age/sex/tissue/disease context). Visualization of metrics against the chromosome could identify:

1. could identify distinctive spatial distribution that could further hypotheses about the functional role of the metric (e.g. telocentric or pericentromeric enrichment)
2. could highlight distribution differences between different groups of samples, suggesting different regulatory mechanisms; in extreme cases, visualization may identify large genomic foci of differences
3. could confirm that a quantitative difference measured between groups of interest is consistent throughout the genome (i.e. that there are no foci, and that the change is global).

This package provides a method to plot one or several datasets against the chromosomal ideogram. It provides some simple options (vertical/horizontal orientation, display in bars or line graphs). Data are expected to be binned; IdeoViz provides a function for user-specified bin widths. Ideograms for the genome of choice can also be automatically downloaded from UCSC using the getIdeo() function.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>IdeoViz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Title:</td>
<td>Plots data (continuous/discrete) along chromosomal ideogram</td>
</tr>
<tr>
<td>Version:</td>
<td>0.99.1</td>
</tr>
<tr>
<td>Date:</td>
<td>2013-06-26</td>
</tr>
<tr>
<td>Author:</td>
<td>Shraddha Pai Shraddha.Pai@camh.ca, Jingliang Ren</td>
</tr>
<tr>
<td>Maintainer:</td>
<td>Shraddha Pai Shraddha.Pai@camh.ca</td>
</tr>
<tr>
<td>Depends:</td>
<td>Biobase, IRanges, GenomicRanges, RColorBrewer, rtracklayer</td>
</tr>
<tr>
<td>biocViews:</td>
<td>Visualization,Microarray</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>
avgByBin

Author(s)
Shraddha Pai <Shraddha.Pai@camh.ca>, Jingliang Ren

Description
Aggregates data by genomic bins

Usage
avgByBin(xpr, featureData, target_GR, justReturnBins = FALSE,
getBinCountOnly = FALSE, FUN = mean, doSampleCor = FALSE,
verbose = FALSE)

Arguments
xpr (data.frame or matrix) Locus-wise values. Rows correspond to genomic intervals (probes, genes, etc.) while columns correspond to individual samples
featureData (data.frame or GRanges) Locus coordinates. Row order must match xpr. Column order should be: 1. chrom, 2. locus start, 3. locus end. All elements are assumed to be of identical width. Coordinates must be zero-based or one-based, but not half-open. Coordinate system must match that of target_GR.
target_GR (GRanges) Target intervals, with coordinate system matching that of featureData.
justReturnBins (logical) when TRUE, returns the coordinates of the bin to which each row belongs. Does not aggregate data in any way. This output can be used as input for more complex functions with data from each bin.
getBinCountOnly (logical) when TRUE, does not aggregate or expect xpr. Only returns number of overlapping subject ranges per bin. Speeds up computation.
FUN (function) function to aggregate data in bin
doSampleCor (logical) set to TRUE to compute mean pairwise sample correlation (Pearson correlation) for each bin; when TRUE, this function overrides FUN.
verbose (logical) print status messages

Details
Computed mean value of binned data. This function assumes that all elements in featureData have identical width. If provided with elements of disparate widths, the respective widths are not weighted averaging. This behaviour may change in future versions of IdeoViz. This function allows the user to bin data if this hasn’t already been done, and is a step involved in preparing the data for plotOnIdeo(). This function computes binned within-sample average of probes overlapping the same range. Where a range overlaps multiple bins, it gets counted in all.
Value

(GRanges) Binned data or binning statistics; information returned for non-empty bins only. The default for this function is to return binned data; alternately, if `justReturnBins=TRUE` or `getBinCountOnly=TRUE` the function will return statistics on bin counts. The latter may be useful to plot spatial density of the input metric.

The flags and output types are presented in order of evaluation precedence:

1. If `getBinCountOnly=TRUE`, returns a list with a single entry: `bin_ID` (data.frame) bin information: chrom, start, end, width, strand, index, and count. "index" is the row number of `target_GR` to which this bin corresponds
2. If `justReturnBins=TRUE` and `getBinCountOnly=FALSE`, returns a list with three entries:
 (a) `bin_ID`: same as `bin_ID` in output 1 above
 (b) `xpr` (data.frame) B-by-n columns where B is total number of `[target_GR, featureData]` overlaps (see next entry, `binmap_idx`) and n is number of columns in `xpr`; column order matches `xpr`. Contains sample-wise data "flattened" so that each [target,subject] pair is presented. More formally, entry `[ij]` contains expression for overlap of row `i` from `binmap_idx` for sample `j` (where `1 <= i <= B, 1 <= j <= n`)
 (c) `binmap_idx` (matrix) two-column matrix: 1) target GR row, 2) row of featureData which overlaps with index in column 1. (matrix output of GenomicRanges::findOverlaps())
3. Default: If `justReturnBins=FALSE` and `getBinCountOnly=FALSE`, returns a GRanges object. Results are contained in the `elementMetadata` slot. For a dataset with n samples, the table would have `(n+1)` columns; the first column is `bin_count`, and indicates number of units contained in that bin. Columns `(2:(n+1))` contain binned values for each sample in column order corresponding to that of `xpr`. For `doSampleCor=TRUE`, result is in a metadata column with name "mean_pairwise"cor". Bins with a single datapoint per sample get a value of NA.

See Also

`getIdeo()`, `getBins()`

Examples

```r
ideo_hg19 <- getIdeo("hg19")
data(GSM733664_broadPeaks)
chrom_bins <- getBins(c("chr1","chr2","chrX"), ideo_hg19, stepSize=5*100*1000)
# default binning
mean_peak <- avgByBin(data.frame(value=GSM733664_broadPeaks[,7]), GSM733664_broadPeaks[,1:3], chrom_bins)
# custom function
median_peak <- avgByBin(data.frame(value=GSM733664_broadPeaks[,7]), GSM733664_broadPeaks[,1:3], chrom_bins, FUN=median)
# mean pairwise sample correlation
data(binned_multiSeries)
bins2 <- getBins(c("chr1"), ideo_hg19, stepSize=5e6)
samplecor <- avgByBin(mcols(binned_multiSeries)[,1:3], binned_multiSeries, bins2, doSampleCor=TRUE)
# just get bin count
```
binned_fullGenome

Data for example 3.

Description
Simulated data spanning all autosomes and X,Y chromosomes of the human genome (build hg18). Values consist of a single dataset of random uniform distribution between -1 and +1. The chromosomes are tiled in 1Mb bins and coordinates are one-based.

Usage
data(binned_fullGenome)

Source
Simulated data, generated by Shraddha Pai

Examples
data(binned_fullGenome)
head(binned_fullGenome)
seqlevels(binned_fullGenome)

binned_multiSeries Data for vignette example 1.

Description
A simulated dataset spanning chr1,chrX,chrY of the human genome (build hg18). Values consist of five series constructed to show mostly random behaviour with the exception of elevated signal in a few regions. The chromosomes are tiled in 1Mb bins and coordinates are one-based.

Usage
data(binned_multiSeries)

Source
Simulated data, generated by Shraddha Pai

Examples
data(binned_multiSeries)
head(binned_multiSeries)
binned_singleSeries Data for example 2.

Description

Simulated data spanning 3 human chromosomes and varying in a random uniform distribution between -1 and +1.

Usage

data(binned_singleSeries)

Source

Simulated data by Shraddha Pai

Examples

data(binned_singleSeries)
head(binned_singleSeries)

getBins

description

getBins

Usage

getBins(chroms, ideo, binLim = NULL, stepSize)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chroms</td>
<td>(character) chromosomes to generate bins for</td>
</tr>
<tr>
<td>ideo</td>
<td>(data.frame) ideogram table as generated by getIdeo(). See that function for details.</td>
</tr>
<tr>
<td>stepSize</td>
<td>(integer) bin size in bases</td>
</tr>
<tr>
<td>binLim</td>
<td>(numeric, length 2) [start, end] of genomic range to generate bins for. A value of NULL results in binning of entire chromosome</td>
</tr>
</tbody>
</table>
getIdeo

Details

Get uniformly-sized bins of specified width. This is a helper function used to generate binned data for plotOnIdeo(). It takes the chromosome-wide extents from ideo, which is essentially the cytoBandIdeo table from UCSC browser with the header as the first row. A use case is to generate bins using this function and supply the output to avgByBin() to bin the data.

Value

(GRanges) bin ranges in 1-base coordinates

See Also

getIdeo(), avgByBin()

Examples

ideo_hg19 <- getIdeo("hg19")
chrom_bins <- getBins(c("chr1","chr2","chrX"), ideo_hg19, stepSize=5*100*1000)

Description

Download ideogram table from UCSC

Usage

getIdeo(ideoSource)

Arguments

ideoSource (character) Genome build for data (e.g. mm10).

Details

Download table containing chromosomal extent and band locations from the UCSC genome browser. Uses rtracklayer to retrieve the cytoBandIdeo. table from the UCSC genome browser. The cytoBandIdeo table contains chromosomal ideogram information and is used to graph the chromosomal bands in plotOnIdeo(). This table is provided as input to plotOnIdeo(). In the case where the user bins the data, the output of this function can also be used as input to generate bin coordinates for binning the data (see avgByBin()).

Value

(data.frame) ideogram table
See Also

avgByBin(), getBins()

Examples

gGetIdo("mm9")

gsm733664_broadPeaks Data for vignette example 4.

Description

Broadpeaks file mapping H3K9me3 marks in human lymphoblastoid cells (peaks from chr1, chr2, and chrX).

Usage

data(GSM733664_broadPeaks)

Details

GEO accession GSM733664, subset containing chr1, chr2, and chrX peaks.

References

Examples

data(GSM733664_broadPeaks)
head(GSM733664_broadPeaks)

hg18_ideo Ideogram table for hg18

Description

Ideogram table for all chromosomes in human genome build hg18. Used for vignette examples.

Usage

data(hg18_ideo)
plotChromValuePair

Source

UCSC genome browser.

Examples

data(hg18_ideo)
head(hg18_ideo)

plotChromValuePair
Base function which plots the ideogram and superimposed data for a single chromosome. plotOnIdeo() calls this function and stacks the resulting output.

Description

Base function which plots the ideogram and superimposed data for a single chromosome. plotOnIdeo() calls this function and stacks the resulting output.

Usage

plotChromValuePair(chrom, cytoTable, bpLim, vertical, values_GR, val_range, col, value_cols = "values", default_margins, addScale, ablines_y, smoothVals, span=0.03, verbose = FALSE, ...)

Arguments

...
arguments to axis(), line(), and rect()

chrom(character)
chromosome(s) to create ideograms for

cytoTable(data.frame)
loaded ideogram table. (see ideoTable argument to plotOnIdeo())

bpLim(numeric)
(aka xlim); display only a section of the chromosome and the corresponding values

vertical(logical)
if TRUE, chromosomes will be plotted vertically

values_GR(list or GenomicRanges)
If plotType is "lines" or "rect", the function expects this to be a GRanges() object with data series in metadata columns. If plotType is "seg_tracks" this is a list of GRanges(), each entry of which represents a track.

default_margins(numeric)
(aka ylim); y-axis scale for data series

val_range(numeric)
colour for series

value_cols(character)
column name for series to plot

defaultMargins(numeric)
page inner margins (in inches)
addScale(logical)
 if FALSE, bp positions will be hidden
ablines_y(numeric)
 when specified, will draw reference lines on the y-axis
smoothVals(logical)
 when T applies loess() to each series
span(numeric) loess::span()
verbose(logical)
 print messages

Details

Plots one unit of chromosome ideogram with dataseries superimposed. Usually, the user can avoid this function and directly call plotOnIdeo(). However, this function may be used in cases where further plot customization is required.

See Also

plotOnIdeo()

Examples

data(hg18_ideo)
data(binned_multiSeries)
layout(matrix(1:2, byrow=TRUE, ncol=1), heights=c(2.5,1))
plotChromValuePair("chr1", hg18_ideo,
 values_GR=binned_multiSeries,
 value_cols=colnames(mcols(binned_multiSeries)), plotType='lines',
 col=1:5, val_range=c(0,10), bpLim=NULL, vertical=FALSE, addScale=TRUE,
 ablines_y=NULL, smoothVals=FALSE, default_margins=c(0.5,.5,.1,.1))
Arguments

- **chrom** (character) chromosome(s) to create ideograms for
- **ideoTable** (data.frame) ideogram table. See getIdeo()
- **values_GR** (GenomicRanges) data to be plotted must be in metadata columns
- **value_cols** (character) which series to plot. Should be column names of the mcols() slot of values_GR
- **plotType** (character) Plot type for each series. Values can be "lines" or "rect" to plot lines or barplots respectively. The latter is not recommended when several series are to be plotted on the same axis.)
- **col** (character) vector of colors for data series. If provided as a named vector, will use the metadata column "group" to code points by colour. This option is available for plotType="seg_tracks" only.
- **bpLim** (numeric) (xlim); display only a section of the chromosome and the corresponding values
- **val_range** (numeric) (ylim); y-axis scale for data series
- **addScale** (logical) if TRUE, bp positions will be shown along the chromosomes. This feature should be turned off if numerous chromosomes’ worth of data are being plotted and all objects don’t fit on the final graphics device.
- **scaleChrom** (logical) if FALSE, all chroms will display as the same size. scaleChrom will be ignored if bpLim is not NULL
- **vertical** (logical) if TRUE, chromosomes will be plotted vertically
- **addOnetoStart** (logical) if TRUE, adds 1 to chromStart. Useful to convert data in half-open coordinates - which is all data from the UCSC genome browser, including cytoBandIdeo, into 1-base.
- **smoothVals** (logical) if T, smoothes each trendline. Currently hard-coded to lowess smoothing with span=0.03
- **cex.axis** (integer) axis font size
- **plot_title** (character) title for overall graph
- **ablines_y** (numeric) when supplied, draws reference lines on the y-axis
- **cex.main** (numeric) font size for plot title.
- **...** other graphing options for barplot (i.e. main="Values", to title bar plot "Values")

Details

Main function to plot binned data alongside chromosomal ideogram. plotOnIdeo() is the main function of this package. It is the one the end-user is expected to call to generate plots. Input is provided as a GRanges object (values_GR), with data to be plotted contained in its metadata slot. The user is responsible for providing pre-binned data, if binning is required. Data can also be binned using the avgByBin() function in this package. The ideogram table (ideoTable) is the same as the cytoBandIdeo table available from the UCSC genome browser database for a given genome is a can be either automatically downloaded from UCSC (see getIdeo()) or read in from a local-file and passed to this function.

There are numerous arguments which control the appearance of the plot. The main decision points are:
1. **vertical**: Whether the entire plot should have a horizontal or vertical orientation

2. **plotType**: One of `rect|lines|seg_tracks`. Type of plot, trendline ("lines"), barplot ("rect") or tracks of GenomicRanges (seg_tracks). "rect" only works when there is a single data series (single set of values) to be plotted on the same axis.

Other considerations:

- The size of the graphics device limits the number of chromosomes that can be plotted. A simple solution may be to set `addScale=FALSE`. However, it is recommended to call `plotOnIdeo()` multiple times, and plotting a fewer number of chromosomes on each page.

- The code expects coordinates of `values_GR` to be in 1-base. Set `addOneToStart=TRUE` if supplied coordinates are in 0-base.

Examples

```r
data(binned_multiSeries)
data(hg18_ideo)
plotOnIdeo(chrom=seqlevels(binned_multiSeries),
ideoTable=hg18_ideo, values_GR=binned_multiSeries,
value_cols=colnames(mcols(binned_multiSeries)), col=1:5)
```

wins

Data for vignette example 1.

Description

A simulated dataseries spanning three chromosomes, and containing five series. The chromosomes are tiled in 1Mb windows.

Usage

```r
data(wins)
```

Source

Simulation by Shraddha Pai

Examples

```r
data(wins)
head(wins)
```
wins_discrete

Description
Simulated data spanning 3 human chromosomes and varying in a random uniform distribution between -1 and +1.

Usage
data(wins_discrete)

Source
Simulated data by Shraddha Pai

Examples
data(wins_discrete)
head(wins_discrete)

wins_entiregenome

Description
Simulated data spanning all human chromosomes. Values follow random uniform distribution between -1 and +1.

Usage
data(wins_entiregenome)

Source
Simulated data, generated by Shraddha Pai

Examples
data(wins_entiregenome)
head(wins_entiregenome)
seqlevels(wins_entiregenome)
Index

* datasets
 binned_fullGenome, 5
 binned_multiSeries, 5
 binned_singleSeries, 6
 GSM733664_broadPeaks, 8
 hg18_ideo, 8
 wins, 12
 wins_discrete, 13
 wins_entiregenome, 13

* package
 IdeoViz-package, 2

avgByBin, 3

binned_fullGenome, 5
binned_multiSeries, 5
binned_singleSeries, 6

getBins, 6
getIdeo, 7
GSM733664_broadPeaks, 8

hg18_ideo, 8

IdeoViz-package, 2

plotChromValuePair, 9
plotOnIdeo, 10

wins, 12
wins_discrete, 13
wins_entiregenome, 13