Package ‘IVAS’

August 22, 2023

Type Package
Title Identification of genetic Variants affecting Alternative Splicing
Version 2.20.0
Author Seonggyun Han, Sangsoo Kim
Maintainer Seonggyun Han <hangost@ssu.ac.kr>
Description Identification of genetic variants affecting alternative splicing.
License GPL-2
Depends R (> 3.0.0), GenomicFeatures, ggplot2, Biobase
Imports doParallel, lme4, BiocGenerics, GenomicRanges, IRanges, foreach, AnnotationDbi, S4Vectors, GenomeInfoDb, ggfortify, grDevices, methods, Matrix, BiocParallel, utils, stats
Suggests BiocStyle
biocViews ImmunoOncology, AlternativeSplicing, DifferentialExpression, DifferentialSplicing, GeneExpression, GeneRegulation, Regression, RNASeq, Sequencing, SNP, Software, Transcription
git_url https://git.bioconductor.org/packages/IVAS
git_branch RELEASE_3_17
git_last_commit e2f07a5
git_last_commit_date 2023-04-25
Date/Publication 2023-08-22

R topics documented:

IVAS-package ... 2
ASdb-class ... 2
calSignificant .. 3
CalSigSNP .. 3
chrseparate .. 4
findAlternative 5
findOversnp ... 7
IVAS-package

IVAS: Identification of genomic variants affecting Alternative Splicing

Description

The tool is to detect genomic variants affecting the alternative splicing using genotypic and gene expression data (RNA-seq).

ASdb-class

ASdb class - a container for results from functions of the IVAS package.

Description

This class is the main object for storing results of the present package.

Note

An ASdb object stores information of alternative splicing patterns, expression ratios between transcripts with and without alternative target exons, and significant sQTLs from the functions of the present package. This ASdb object can be populated further slots during the analysis using functions for the analysis. Typically, an ASdb object can be created when the function Splicingfinder completes to define alternative splicing patterns. After creation, the ASdb contains the slot labeled as "SplicingModel", and the slot includes a list object named by "ES", "ASS", and "IR" (alternative splicing exons are saved separately in each element of the list based on their splicing pattern types; "ES": Exon skipping, "ASS": Alternative splice site, and "IR": Intron retention). In the next analysis step, further result slots can be added. The function RatioFromFPKM can add the "Ratio" slot containing expression ratio for each alternative splicing pattern based on the "SplicingModel" slot of the present class and for each individual from a matrix of FPKM values. Then, the result of the sQTLsFinder function can be saved by adding the "sQTLs" slot including significance of association between the expression ratios, which is stored in the "Ratio" slot of the present class, and SNPs for each alternative splicing exon.
See Also

Splicingfinder, RatioFromFPKM, sQTLsFinder

Examples

```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
data(sampleexp)
data(samplesnp)
data(samplesnplocus)
ASdb <- Splicingfinder(sample.Txdb)
ASdb <- RatioFromFPKM(sample.Txdb, ASdb, sampleexp)
ASdb <- sQTLsFinder(ASdb, samplesnp, samplesnplocus, method="lm")
ASdb
```

calSignificant *Deprecated*

Description

This function is deprecated and will be made defunct. Instead, use Splicingfinder.

CalSigSNP *Calculate significance SNPs*

Description

This function performs linear regression test to identify significance associations between expression ratio and genotypes using the `lm` function.

Usage

```r
CalSigSNP(ratio.mat=NULL, snp.mat=NULL, overlapsnp=NULL, each.snplocus=NULL, chr, each.gene=NULL, GroupSam=NULL, method="lm")
```

Arguments

- `ratio.mat`: A data frame consisting of expression ratio of an alternatively spliced exon.
- `snp.mat`: A data frame of genotype data.
- `overlapsnp`: A data frame containing SNPs which is within an alternatively spliced exon and its flanking introns.
- `each.snplocus`: A data frame consisting of locus information of SNP markers in the snpdata.
- `chr`: The chromosome number that you would like to test in this function.
- `each.gene`: The gene name that you would like to test in this function.
chrseparate

Separate a TxDb object based on a chromosome.

Description

With the `isActiveSeq` method in `GenomicFeatures` package, this function filters the TxDb object in the `GenomicFeatures` package based on a single chromosome.

GroupSam A list object of a group of each sample.

method The option for statistical models and boxplot ("lm" : analysis using linear regression model, "glm" : analysis using generalized linear mixed model, "both" : "lm" and "glm", and "boxplot" : for writing boxplot).

Value

The lm or glm method returns matrix including; SNP marker IDs, P values, information of differential median values of expression ratio among genotypes ("sig" if differential median > 0.1 and "not sig" otherwise), gene names, and methods ("lm" or "glm"). The boxplot method returns matrix with relative ratio values and genotypes of samples.

Author(s)

Seonggyun Han, Sangsoo Kim

References

See Also

`lm`, `glmer`

Examples

```r
  sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
  sample.Txdb <- loadDb(sampleDB)
  data(sampleexp)
  data(samplesnp)
  data(samplesnplocus)
  A$Db <- Splicingfinder(sample.Txdb)
  A$Db <- RatioFromFPKM(sample.Txdb,A$Db,sampleexp,CalIndex="ASS7")
  ratio.mat <- slot(A$Db,"Ratio")$ASS
  ratio.mat <- rbind(ratio.mat[,grep("NA",colnames(ratio.mat))])
  each.snp <- rbind(samplesnplocus[rownames(samplesnplocus) == "rs3810232",])
  each.snplocus <- rbind(samplesnplocus["SNP" == "rs3810232",])
  overlapsnp <- rbind(c(snp="rs3810232",locus="54704760"))
  CalSigSNP(ratio.mat,as.matrix(each.snp),overlapsnp,each.snplocus,"19","ENSG00000170889",method="lm")
```
Usage

chrseparate(GTFdb = NULL, chrname = NULL)

Arguments

 GTFdb The TxDb object in the GenomicFeatures package.
 chrname The chromosome number you would like to select from TxDb

Value

 This function returns the TxDb limited to the chromosome number that you want.

Author(s)

 Seonggyun Han, Sangsoo Kim

References

See Also

 isActiveSeq, seqinfo

Examples

 sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
 sample.Txdb <- loadDb(sampleDB)
 filtered.txdb <- chrseparate(sample.Txdb, 19)

findAlternative Find alternative exons of a gene.

Description

 Search alternative exons among transcript isoforms from a single gene.

Usage

 findAlternative(geneid = NULL, txTable = NULL, totalExrange = NULL,
 totalInrange = NULL, one.chr = NULL)
Arguments

- **geneid**
 Ensembl gene name.

- **txTable**
 The matrix of transcripts including transcript IDs, Ensembl gene names, Ensembl transcript names, transcript start sites, and transcript end sites.

- **totalExrange**
 A list of GRanges objects including total exon ranges in each transcript resulted from the `exonsBy` function in `GenomicFeatures`.

- **totalInrange**
 A list of GRanges objects including total intron ranges in each transcript resulted from the `intronsByTranscript` function in `GenomicFeatures`.

- **one.chr**
 The chromosome number that you would like to test.

Value

- **alterIntron**
 A GRanges object with flanking introns of alternative exons.

- **tableBygene**
 An information table of transcripts including transcript IDs, Ensembl gene names, Ensembl transcript names, transcript start sites, and transcript end sites.

- **exonRange**
 All exons locus of a gene.

- **intronRange**
 All intron locus of a gene.

Author(s)

Seonggyun Han, Sangsoo Kim

References

See Also

- GRanges, IRanges

Examples

```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
filtered.txdb <- chrseparate(sample.Txdb,19)
trans.exon.range <- exonsBy(filtered.txdb, by="tx")
trans.intron.range <- intronsByTranscript(filtered.txdb)
txTable <- select(filtered.txdb, keys=names(trans.exon.range),
  columns=c("TXID","TXNAME","GENEID","TXSTART","TXEND"), keytype="TXID")
Altvalue <- findAlternative("ENSG00000170889", txTable, trans.exon.range, trans.intron.range,19)
```
findOversnp

Find SNPs which belong to alternative exons and flanking introns of them.

Description

Find SNPs which belong to alternative exons and flanking introns of them.

Usage

```r
defindOversnp(altInvalue = NULL, snprange = NULL)
```

Arguments

- `altInvalue` A list data set from the `findAlternative` function.
- `snprange` A matrix of SNP ranges.

Value

This function returns a matrix with SNPs which are located in alternative exons and flanking introns and ranges of those SNPs.

Author(s)

Seonggyun Han, Sangsoo Kim

See Also

`findOverlaps`

Examples

```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
data(samplesnplocus)
data(samplesnp)
filtered.txdb <- chrseparate(sample.Txdb, 19)
trans.exon.range <- exonsBy(filtered.txdb, by="tx")
trans.intron.range <- intronsByTranscript(filtered.txdb)
txTable <- select(filtered.txdb, keys=names(trans.exon.range),
                   columns=c("TXID","TXNAME","GENEID","TXSTART","TXEND"),
                   keytype="TXID")
ch.snp.locus <- as.matrix(samplesnplocus[samplesnplocus[,2] == 19,])
ch.snps <- matrix(ch.snp.locus[is.element(ch.snp.locus[,1], rownames(samplesnp)),], ncol=3, byrow=FALSE)
ch.snps.range <- GRanges(seqnames=Rle(19), ranges=IRanges(start=as.integer(ch.snps[,3]),
                                                         end=as.integer(ch.snps[,3])),
                         metadata=ch.snps[,1])
Altvalue <- findAlternative("ENSG00000170889", txTable, trans.exon.range, trans.intron.range, 19)
overlapsnp <- findOversnp(Altvalue, ch.snps.range)
```
IVAS-deprecated Deprecated functions in package 'IVAS'

Description

These functions are provided for compatibility with older versions of ‘IVAS’ only, and will be defunct at the next release.

Details

The following functions are deprecated and will be made defunct; use the replacement indicated below:

• MsqtlFinder: sQTLsFinder
• sqtlfinder: sQTLsFinder
• calSignificant: Splicingfinder

MsqtlFinder Deprecated

Description

This function is deprecated and will be made defunct. Instead, use sQTLsFinder.

RatioFromFPKM Estimate relative expression ratio.

Description

With the FPKM expression data set of transcripts, this function estimates relative expression ratio between transcripts with and without alternatively spliced exons based on splicing models of the ASdb object

Usage

```r
RatioFromFPKM(GTFdb = NULL, ASdb = NULL, Total.expdata = NULL, CalIndex = NULL, Ncor = 1, out.dir = NULL)
```
RatioFromFPKM

Arguments

- **GTFdb**
 A TxDb object in the *GenomicFeatures* package.

- **ASdb**
 A ASdb object including "SplicingModel" slot from the *Splicingfinder* function.

- **Total.expdata**
 A data frame of expression data.

- **CalIndex**
 An index number in the ASdb object which will be tested in this function.

- **Ncor**
 The number of cores for multi-threads function.

- **out.dir**
 An output directory.

Value

ASdb with the slot (labeled by "Ratio") containing results from the the *RatioFromFPKM* function. The "Ratio" slot contains a list object and each element of the list object returns the results assigned to three elements, which is of each alternative splicing type (i.e. Exon skipping, Alternative splice site, Intron retention). Three elements are as follows:

- **ES**
 A data frame for the result of Exon skipping, consisting of the columns named as follows; Index (index number), EnsID (gene name), Nchr (chromosome name), 1stEX (alternatively spliced target exon), 2ndEX (second alternatively spliced target exon which is the other one of the mutually exclusive spliced exons), DownEX (downstream exon range), UpEX (upstream exon range), Types (splicing type), and names of individuals.

- **ASS**
 A data frame for the result of Alternative splice sites, consisting of the columns named as follows; Index (index number), EnsID (gene name), Nchr (chromosome name), ShortEX (shorter spliced target exon), LongEX (longer spliced target exon), NeighborEX (neighboring down or upstream exons), Types (splicing type), and names of individuals.

- **IR**
 A data frame for the result of Intron retention, consisting of the columns named as follows; Index (index number), EnsID (gene name), Nchr (chromosome name), RetainEX (retained intron exon), DownEX (downstream exon range), UpEX (upstream exon range), Types (splicing type), and names of individuals.

Author(s)

Seonggyun Han, Sangsoo Kim

See Also

isActiveSeq, *seqinfo*, *Splicingfinder*

Examples

```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
data(sampleexp)
ASdb <- Splicingfinder(sample.Txdb)
ASdb <- RatioFromFPKM(sample.Txdb,ASdb,sampleexp)
```
sampleexp

CEU expression data

Description

CEU expression data including 78 individuals

Usage

```r
data("sampleexp")
```

Format

A data frame with 64 transcript expressions on the 78 individuals

Value

A data frame with 64 transcript expressions on the 78 individuals

Source

The data was generated by GEUVADIS (Genetic European Variation in Health and Disease, A European Medical Sequencing Consortium) RNA sequencing project for 1000 Genomes samples (http://www.geuvadis.org/web/geuvadis/RNAseq-project).

References

Examples

```r
data(sampleexp)
```

samplesnp

CEU genotype data

Description

CEU genotype data including 78 individuals

Usage

```r
data("samplesnp")
```
samplesnplocus

Format
A data frame with 11 SNPs on the 78 individuals

Value
A data frame with 11 SNPs on the 78 individuals

Source
The data has 1000 genomes Phages 1 dataset and was imputed by GEUVADIS (Genetic European Variation in Health and Disease, A European Medical Sequencing Consortium) RNA sequencing project for 1000 Genomes samples (http://www.geuvadis.org/web/geuvadis/RNAseq-project).

References

Examples

```r
data(samplesnp)
```

<table>
<thead>
<tr>
<th>samplesnplocus</th>
<th>snplocus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description
snplocus

Usage
data("samplesnplocus")

Format
A data frame with 11 SNPs and locus of them

Value
A data frame with 11 SNPs and locus of them

Examples

```r
data(samplesnplocus)
```
saveBplot

Description

Save boxplots

Usage

saveBplot(ASdb=ASdb, Total.snpdata=NULL, Total.snplocus=NULL, CalIndex=NULL, out.dir=NULL)

Arguments

ASdb A ASdb object including "sQTLs" slot from the sQTLsFinder function.
Total.snpdata A data frame of genotype data.
Total.snplocus A data frame containing locus information of SNP markers in the snpdata.
CalIndex An index number in the ASdb object which will be tested in this function.
out.dir An output directory.

Value

This function draws the boxplot

Author(s)

Seonggyun Han, Sangsoo Kim

See Also

boxplot

Examples

```
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
data(sampleexp)
data(samplesnp)
data(samplesnplocus)
ASdb <- Splicingfinder(sample.Txdb)
ASdb <- RatioFromFPKM(sample.Txdb, ASdb, sampleexp)
ASdb <- sQTLsFinder(ASdb, samplesnp, samplesnplocus, method="lm")
saveBplot(ASdb=ASdb, Total.snpdata=samplesnp, Total.snplocus=samplesnplocus, CalIndex="ASS7", out.dir="./result")
```
Splicingfinder

Find alternatively spliced exons

Description

Find alternatively spliced exons based on GTF reference transcript models.

Usage

```r
Splicingfinder(GTFdb = NULL, txTable = NULL, calGene = NULL, Ncor = 1, out.dir = NULL)
```

Arguments

- **GTFdb**: A TxDb object in the `GenomicFeatures` package.
- **txTable**: A matrix of transcripts including transcript IDs, gene names, transcript names, transcript start sites, and transcript end sites based on a GTF reference transcript model file.
- **calGene**: An interest of a gene that will be tested. If calGene is inputted by a single gene, the splicing pattern for the only gene is tested. If not, the splicing patterns for total of genes are tested.
- **Ncor**: The number of cores for multi-threads.
- **out.dir**: An output directory.

Value

ASdb with the slot (labeled by "SplicingModel") containing results from the the `Splicingfinder` function. The “Splicingfinder” slot contains a list object and each element of the list object returns the results assigned to three elements, which is of each alternative splicing type (i.e. Exon skipping, Alternative splice site, Intron retention). Three elements are as follows;

- **ES**: A data frame for the result of Exon skipping, consisting of the columns named as follows; Index (index number), EnsID (gene name), Nchr (chromosome name), 1stEX (alternatively spliced target exon), 2ndEX (second alternatively spliced target exon which is the other one of the mutually exclusive spliced exons), DownEX (downstream exon range), UpEX (upstream exon range), 1st_des (alternatively spliced target exons in a representative exon), 2nd_des (second alternatively spliced target exons in a representative exon), Do_des (downstream exons in a representative exon), Up_des (upstream exons in a representative exon), and Types (splicing type).

- **ASS**: A data frame for the result of Alternative splice site, consisting of the columns named as follows; Index (index number), EnsID (gene name), Nchr (chromosome name), ShortEX (shorter spliced target exon), LongEX (longer spliced target exon), NeighborEX (neighboring downstream or upstream exons), Short_des (shorter spliced target exons in a representative exon), Long_des (longer spliced target exons in a representative exon), Neighbor_des (neighboring downstream or upstream exons in a representative exon), and Types (splicing type).
A data frame for the result of Intron retention, consisting of the columns named as follows: Index (index number), EnsID (gene name), Nchr (chromosome name), RetainEX (retained intron exon), DownEX (downstream exon range), UpEX (upstream exon range), Retain_des (retained intron exons in a representative exon), Do_des (downstream exons in a representative exon), Up_des (upstream exons in a representative exon), and Types (splicing type).

Author(s)
Seonggyun Han, Sangsoo Kim

See Also
isActiveSeq, seqinfo

Examples
```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
ASdb <- Splicingfinder(sample.Txdb)
```

This function is deprecated and will be made defunct. Instead, use sQTLsFinder.

Find significant SNPs using the calSignificant function.

Usage
```r
sQTLsFinder(ASdb, Total.snpdata = NULL, Total.snplocus = NULL,
            GroupSam = NULL, method = "lm", CalIndex = NULL, Ncor = 1, out.dir = NULL)
```
Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASdb</td>
<td>A ASdb object including "SplicingModel" and "Ratio" slots from the Splicingfinder and RatioFromFPKM functions, respectively.</td>
</tr>
<tr>
<td>Total.snpdata</td>
<td>A data frame of genotype data.</td>
</tr>
<tr>
<td>Total.snplocus</td>
<td>A data frame containing locus information of SNP markers in the snpdata.</td>
</tr>
<tr>
<td>GroupSam</td>
<td>A list object of conditions for each individual. If GroupSam is not NULL, the odds ratio and its confidence intervals between conditions are calculated.</td>
</tr>
<tr>
<td>CalIndex</td>
<td>An index number in the ASdb object which will be tested in this function.</td>
</tr>
<tr>
<td>Ncor</td>
<td>The number of cores for multi-threads function.</td>
</tr>
<tr>
<td>out.dir</td>
<td>An output directory.</td>
</tr>
</tbody>
</table>

Value

ASdb with the slot (labeled by "sQTLs") containing results from the the sQTLsFinder function. The "Splicingfinder" slot contains a list object and each element of the list object returns the results assigned to three elements, which is of each alternative splicing type (i.e. Exon skipping, Alternative splice site, Intron retention). Three elements are as follows;

ES

A data frame for the result of Exon skipping, consisting of the columns named as follows; Index (index number), EnsID (gene name), Nchr (chromosome name), 1stEX (alternatively spliced target exon), 2ndEX (second alternatively spliced target exon which is the other one of the mutually exclusive spliced exons), DownEX (downstream exon range), UpEX (upstream exon range), Types (splicing type), pByGeno (P-values of "lm" or "glm" test for association PSI values and genotypes), FdrByGeno (pByGeno), diff ("diff" if differential median > 0.1 and "Nondiff" otherwise), pByGroups (P-values of chi-square test for association between genotypes of two groups), fdrByGroups (FDR values for the pByGroups column), OR (odds ratio), lowCI(low confidence interval), highCI(high confidence interval), and methods ("lm" or "glm").

ASS

A data frame for the result of Alternative splice sites, consisting of the columns named as follows; Index (index number), EnsID (gene name), Nchr (chromosome name), ShortEX (shorter spliced target exon), LongEX (longer spliced target exon), NeighborEX (neighboring down or upstream exons), Types (splicing type), pByGeno (P-values of "lm" or "glm" test for association PSI values and genotypes), FdrByGeno (pByGeno), diff ("diff" if differential median > 0.1 and "Nondiff" otherwise), pByGroups (P-values of chi-square test for association between genotypes of two groups), fdrByGroups (FDR values for the pByGroups column), OR (odds ratio), lowCI(low confidence interval), highCI(high confidence interval), and methods ("lm" or "glm").

IR

A data frame for the result of Intron retention, consisting of the columns named as follows; Index (index number), EnsID (gene name), Nchr (chromosome name), RetainEX (retained intron exon), DownEX (downstream exon range), UpEX (upstream exon range), Types (splicing type), pByGeno (P-values of "lm" or...
"glm" test for association PSI values and genotypes), FdrByGeno (pByGeno),
diff ("diff" if differential median > 0.1 and "Nondiff" otherwise), pByGroups (P-
values of chi-square test for association between genotypes of two groups), fdr-
ByGroups (FDR values for the pByGroups column), OR (odds ratio), lowCI(low
confidence interval), highCI(high confidence interval), and methods ("lm" or
"glm").

The boxplot method returns matrix data with relative ratio values and genotypes of samples.

Author(s)
Seonggyun Han, Sangsoo Kim

References

See Also
lm, glmer

Examples
```r
sampleDB <- system.file("extdata", "sampleDB", package="IVAS")
sample.Txdb <- loadDb(sampleDB)
data(sampleexp)
data(samplesnp)
data(samplesnplocus)
ASdb <- Splicingfinder(sample.Txdb)
ASdb <- RatioFromFPKM(sample.Txdb,ASdb,sampleexp)
ASdb <- sQTLsFinder(ASdb,samplesnp,samplesnplocus,method="lm")
```
Index

* datasets
 sampleexp, 10
 samplesnp, 10
 samplesnplocus, 11

* package
 IVAS-package, 2
 ASdb-class, 2
 boxplot, 12
 calSignificant, 3
 CalSigSNP, 3
 chrseparate, 4
 exonsBy, 6
 findAlternative, 5, 7
 findOverlaps, 7
 findOversnp, 7
 glmer, 4, 16
 GRanges, 6
 intronsByTranscript, 6
 IRanges, 6
 isActiveSeq, 4, 5, 9, 14
 IVAS (IVAS-package), 2
 IVAS-deprecated, 8
 IVAS-package, 2
 lm, 3, 4, 16
 MsqtlFinder, 8
 RatioFromFPKM, 2, 3, 8, 9, 15
 sampleexp, 10
 samplesnp, 10
 samplesnplocus, 11
 saveBplot, 12
 seqinfo, 5, 9, 14