Package ‘HiContacts’

January 15, 2024

Title Analysing cool files in R with HiContacts
Version 1.4.0
Date 2022-08-16
Description HiContacts provides a collection of tools to analyse and visualize Hi-C datasets imported in R by HiCExperiment.
License MIT + file LICENSE
URL https://github.com/js2264/HiContacts
BugReports https://github.com/js2264/HiContacts/issues
Depends R (>= 4.2), HiCExperiment
Imports InteractionSet, SummarizedExperiment, GenomicRanges, IRanges, GenomeInfoDb, S4Vectors, methods, BiocGenerics, BiocIO, BiocParallel, RSpectra, Matrix, tibble, tidyr, dplyr, readr, stringr, ggplot2, ggrastr, scales, stats, utils
Suggests HiContactsData, rtracklayer, GenomicFeatures, Biostrings, BSgenome.Scerevisiae.UCSC.sacCer3, WGCNA, Rfast, terra, patchwork, testthat (>= 3.0.0), BiocStyle, knitr, rmarkdown
biocViews HiC, DNA3DStructure
Encoding UTF-8
VignetteBuilder knitr
LazyData false
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/HiContacts
git_branch RELEASE_3_18
git_last_commit 00956df
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-01-15
Author Jacques Serizay [aut, cre] (<https://orcid.org/0000-0002-4295-0624>)
Maintainer Jacques Serizay <jacquesserizay@gmail.com>
R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Members</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>arithmetics</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>checks</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>cisTransRatio</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Contacts</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>distanceLaw</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>getCompartments</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>getDiamondInsulation</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>getLoops</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>HiContacts-plots</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>palettes</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>plot4C</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>plotMatrix</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>plotPs</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>plotSaddle</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>plotScalogram</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>reexports</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>scalogram</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>tracks</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>virtual4C</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

Index

21

Description

Different arithmetic operations can be performed on Hi-C contact matrices:

- normalize a contact matrix using iterative correction;
- detrend a contact matrix, i.e. remove the distance-dependent contact trend;
- autocorrelate a contact matrix: this is typically done to highlight large-scale compartments;
- divide one contact matrix by another;
- merge multiple contact matrices;
- despeckle (i.e. smooth out) a contact matrix out;
- aggregate (average) a contact matrix over a set of genomic loci of interest;
- boost Hi-C signal by enhancing long-range interactions while preserving short-range interactions (this is adapted from Boost-HiC);
- subsample interactions using a proportion or a fixed number of final interactions.
- coarsen a contact matrix to a larger (coarser) resolution.
Usage

```r
## S4 method for signature 'HiCExperiment'
aggregate(
  x,
  targets,
  flankingBins = 51,
  maxDistance = NULL,
  BPPARAM = BiocParallel::bpparam()
)

detrend(x, use.scores = "balanced")

autocorrelate(x, use.scores = "balanced", detrend = TRUE, ignore.ndiags = 3)

divide(x, by, use.scores = "balanced", pseudocount = 0)

## S4 method for signature 'HiCExperiment,HiCExperiment'
merge(x, y, ..., use.scores = "balanced", FUN = mean)

despeckle(x, use.scores = "balanced", focal.size = 1)

boost(x, use.scores = "balanced", alpha = 1, full.replace = FALSE)

coarsen(x, bin.size)

## S4 method for signature 'HiCExperiment'
normalize(
  object,
  use.scores = "count",
  niters = 200,
  min.nnz = 10,
  mad.max = 3
)

subsample(x, prop)
```

Arguments

- `x, y, object`
 a HiCExperiment object
- `targets`
 Set of chromosome coordinates for which interaction counts are extracted from the Hi-C contact file, provided as a GRanges object (for diagonal-centered loci) or as a GInteractions object (for off-diagonal coordinates).
- `flankingBins`
 Number of bins on each flank of the bins containing input targets.
- `maxDistance`
 Maximum distance to use when compiling distance decay
- `BPPARAM`
 BiocParallel parameters
- `use.scores`
 Which scores to use to perform operations
- `detrend`
 Detrend matrix before performing autocorrelation
ignore_ndiags
by
pseudocount
...
FUN
Focal.size
alpha
full.replace
bin.size
niters
min.nnz
mad.max
prop

Value

a HiCExperiment object with extra scores

Examples

```r
library(HiContacts)
contacts_yeast <- contacts_yeast()
normalize(contacts_yeast)

detrend(contacts_yeast)

autocorrelate(contacts_yeast)
```
checks

Divide 2 contact matrices

```r
contacts_yeast <- refocus(contacts_yeast, 'II')
contacts_yeast_eco1 <- contacts_yeast_eco1() |> refocus('II')
divide(contacts_yeast_eco1, by = contacts_yeast)
```

Merge 2 contact matrices

```r
merge(contacts_yeast_eco1, contacts_yeast)
```

Despeckle (smoothen) a contact map

```r
despeckle(contacts_yeast)
```

Aggregate a contact matrix over centromeres, at different scales

```r
contacts <- contacts_yeast() |> zoom(resolution = 1000)
centros <- topologicalFeatures(contacts, 'centromeres')
aggregate(contacts, targets = centros, flankingBins = 51)
```

Enhance long-range interaction signal

```r
contacts <- contacts_yeast() |> zoom(resolution = 1000) |> refocus('II')
boost(contacts, alpha = 1)
```

Subsample & "coarsen" contact matrix

```r
subcontacts <- subsample(contacts, prop = 100000)
coarsened_subcontacts <- coarsen(subcontacts, bin.size = 4000)
```

<table>
<thead>
<tr>
<th>checks</th>
<th>Checks functions</th>
</tr>
</thead>
</table>

Description

Useful functions to validate the nature/structure of (m)cool files or HiCExperiment objects. All these check functions should return a logical.
Usage

.is_symmetrical(x)

.is_comparable(...)

.are_HiCExperiment(...)

.is_same_seqinfo(...)

.is_same_resolution(...)

.is_same_bins(...)

.is_same_regions(...)

Arguments

x A HiCExperiment object

... HiCExperiment objects

Value

Logical

cisTransRatio cisTransRatio

Description

Quickly computes a cis-trans ratio of interactions.

Usage

cisTransRatio(x)

Arguments

x A HiCExperiment object over the full genome

Value

a tibble, listing for each chr. the % of cis/trans interactions

Examples

library(HiContacts)
full_contacts_yeast <- contacts_yeast(full = TRUE)
cisTransRatio(full_contacts_yeast)
Description

This function has been deprecated in favor of the generic HiCExperiment() constructor (from HiCExperiment package).

Usage

Contacts(
 file,
 resolution = NULL,
 focus = NULL,
 metadata = list(),
 topologicalFeatures = S4Vectors::SimpleList(loops =
 S4Vectors::Pairs(GenomicRanges::GRanges(), GenomicRanges::GRanges()),
 borders = GenomicRanges::GRanges(),
 compartments = GenomicRanges::GRanges(),
 viewpoints = GenomicRanges::GRanges(),
 pairsFile = NULL
)
)

Arguments

file Path to a (m)cool file
resolution Resolution to use with mcool file
focus focus Chr. coordinates for which interaction counts are extracted from the .(m)cool file, provided as a character string (e.g. "II:4001-5000"). If not provided, the entire (m)cool file will be imported.
metadata list of metadata
topologicalFeatures topologicalFeatures provided as a named SimpleList
pairsFile Path to an associated .pairs file

Value

a new HiCExperiment object.

Examples

library(HiContacts)
library(HiContactsData)
mcool_path <- HiContactsData::HiContactsData('yeast_wt', 'mcool')
Contacts(mcool_path, resolution = 1000)
distanceLaw

Compute the law of distance-dependent contact frequency, a.k.a. \(P(s) \)

Description

\(P(s) \) will be approximated if no pairs are provided, or the exact \(P(s) \) will be computed if a .pairs file is added to the HiCExperiment object using \texttt{pairsFile(x) \leftarrow "..."}.

Usage

distanceLaw(x, coords, ...)

S4 method for signature 'GInteractions,missing'

distanceLaw(x, by_chr = FALSE)

S4 method for signature 'HiCExperiment,missing'

distanceLaw(
 x,
 by_chr = FALSE,
 filtered_chr = c("XII", "chrXII", "chr12", "12", "Mito", "MT", "chrM")
)

S4 method for signature 'PairsFile,missing'

distanceLaw(
 x,
 by_chr = FALSE,
 filtered_chr = c("XII", "chrXII", "chr12", "12", "Mito", "MT", "chrM"),
 chunk_size = 1e+05
)

S4 method for signature 'HiCExperiment,GRanges'

distanceLaw(x, coords, chunk_size = 1e+05)

S4 method for signature 'PairsFile,GRanges'

distanceLaw(x, coords, chunk_size = 1e+05)

localDistanceLaw(x, coords = coords)

Arguments

\(x \) A HiCExperiment object
\(\text{coords} \) GRanges to specify which genomic loci to use when computing \(P(s) \)
\(\ldots \) Arguments passed to corresponding method
\(\text{by_chr} \) \(\text{by_chr} \)
\(\text{filtered_chr} \) filtered_chr
\(\text{chunk_size} \) For pairs files which do not fit in memory, pick a number of pairs to parse by chunks (1e7 should be a good compromise)
getCompartments

Value
a tibble

Examples

contacts_yeast <- contacts_yeast()
ps <- distanceLaw(contacts_yeast)
ps
local_ps <- localDistanceLaw(
 contacts_yeast,
 GenomicRanges::GRanges(
 c("telomere" = "II:1-20000", "arm" = "II:300001-700000")
)
)
local_ps

getCompartments | Contact map compartments

Description
Computes eigen vectors for each chromosome using cis contacts and extract chromosome compartments.

Usage
getCompartments(
 x,
 resolution = NULL,
 genome = NULL,
 chromosomes = NULL,
 neigens = 3,
 sort_eigens = FALSE,
 BPPARAM = BiocParallel::bpparam()
)

Arguments

x | A HiCExperiment object over a full genome
resolution | Which resolution to use to compute eigen vectors
genome | a BSgenome of DNAStringSet object associated with the Hi-C contact matrix.
chromosomes | character or integer vector indicating which
neigens | Number of eigen vectors to extract
sort_eigens | Can be FALSE or one of c(‘Spearman’, ‘Pearson’)
BPPARAM | BiocParallel parallelization settings
getDiamondInsulation

Value

A HiCExperiment object with additional eigens metadata containing the normalized eigenvectors and a new "compartments" topologicalFeatures storing A and B compartments as a GRanges object.

Examples

```r
library(HiContacts)
full_contacts_yeast <- contacts_yeast(full = TRUE)
comps <- getCompartments(full_contacts_yeast)
metadata(comps)$eigens
```

getDiamondInsulation Contact map insulation

Description

Computes diamond insulation score along the entire genome.

Usage

```r
getDiamondInsulation(x, window_size = NULL, BPPARAM = BiocParallel::bpparam())
getBorders(x, weak_threshold = 0.2, strong_threshold = 0.5)
```

Arguments

- **x**: A HiCExperiment object over a full genome.
- **window_size**: Which window size to use to compute diamond insulation score (default: 10 * resolution).
- **BPPARAM**: BiocParallel parallelization settings.
- **weak_threshold**: Less stringent cutoff to call borders in the diamond insulation score.
- **strong_threshold**: More stringent cutoff to call borders in the diamond insulation score.

Value

A HiCExperiment object with additional insulation metadata, containing the diamond insulation score computed.

Examples

```r
library(HiContacts)
hic <- contacts_yeast() |>
  refocus(‘II:1-300000’) |>
  zoom(1000)
diams <- getDiamondInsulation(hic)
getDiamondInsulation(diams)
```
getLoops

Finding loops in contact map

Description

Find loops using chromosight.

This function is actually provided by the HiCool package rather than the HiContacts package. HiCool provides a self-managed conda environment, and this limits

Usage

getLoops(...)

Arguments

... Parameters passed to HiCool::getLoops().

HiContacts-plots

HiContacts plotting functionalities

Description

Several plots can be generated in HiContacts:

- Hi-C contact matrices
- Distance-dependant interaction frequency decay (a.k.a. "Distance law" or "P(s)"
- Virtual 4C profiles
- Scalograms
- Saddle plots

palettes

Matrix palettes

Description

Matrix palettes
Usage

bwrColors()
bbrColors()
bgrColors()
afmhotrColors()
coolerColors()
rainbowColors()

Value

A vector of colours carefully picked for Hi-C contact heatmaps

Examples

bwrColors()
bbrColors()
bgrColors()
afmhotrColors()
coolerColors()
rainbowColors()

plot4C

Plotting virtual 4C profiles

Description

Plotting virtual 4C profiles

Usage

plot4C(x, mapping = ggplot2::aes(x = center, y = score, col = seqnames))

Arguments

x

GRanges, generally the output of virtual4C()

mapping

aes to pass on to ggplot2 (default: ggplot2::aes(x = center, y = score, col = seqnames))

Value

ggplot
plotMatrix

Examples

```r
contacts_yeast <- contacts_yeast()
v4C <- virtual4C(contacts_yeast, GenomicRanges::GRanges('II:490001-510000'))
plot4C(v4C)
```

Description

Plotting a contact matrix

Usage

```r
plotMatrix(x, ...)

montage(x, ...)
```

```r
## S4 method for signature 'HiCExperiment'
plotMatrix(
  x,
  compare.to = NULL,
  use.scores = "balanced",
  scale = "log10",
  maxDistance = NULL,
  loops = NULL,
  borders = NULL,
  tracks = NULL,
  limits = NULL,
  dpi = 500,
  rasterize = TRUE,
  symmetrical = TRUE,
  chrom_lines = TRUE,
  show_grid = FALSE,
  cmap = NULL,
  caption = TRUE
)
```

```r
## S4 method for signature 'GInteractions'
plotMatrix(
  x,
  use.scores = NULL,
  scale = "log10",
  maxDistance = NULL,
  loops = NULL,
  borders = NULL,
  tracks = NULL,
```
plotMatrix

limits = NULL,
dpi = 500,
rasterize = TRUE,
symmetrical = TRUE,
chrom_lines = TRUE,
show_grid = FALSE,
cmap = NULL
)

S4 method for signature 'matrix'
plotMatrix(
 x,
 scale = "log10",
 limits = NULL,
 dpi = 500,
 rasterize = TRUE,
 cmap = NULL
)

S4 method for signature 'AggrHiCExperiment'
plotMatrix(
 x,
 use.scores = "balanced",
 scale = "log10",
 maxDistance = NULL,
 loops = NULL,
 borders = NULL,
 limits = NULL,
 dpi = 500,
 rasterize = TRUE,
 chrom_lines = TRUE,
 show_grid = FALSE,
 cmap = NULL,
 caption = TRUE
)

S4 method for signature 'AggrHiCExperiment'
montage(
 x,
 use.scores = "balanced",
 scale = "log10",
 limits = NULL,
 dpi = 500,
 rasterize = TRUE,
 cmap = NULL
)
Arguments

- **x**: A HiCExperiment object
- **...**: Extra arguments passed to the corresponding method.
- **compare.to**: Compare to a second HiC matrix in the lower left corner
- **use.scores**: Which scores to use in the heatmap
- **scale**: Any of ‘log10’, ‘log2’, ‘linear’, ‘exp0.2’ (Default: ‘log10’)
- **maxDistance**: maximum distance. If provided, the heatmap is plotted horizontally
- **loops**: Loops to plot on top of the heatmap, provided as GInteractions
- **borders**: Borders to plot on top of the heatmap, provided as GRanges
- **tracks**: Named list of bigwig tracks imported as Rle
- **limits**: color map limits
- **dpi**: DPI to create the plot (Default: 500)
- **rasterize**: Whether the generated heatmap is rasterized or vectorized (Default: TRUE)
- **symmetrical**: Whether to enforce a symmetrical heatmap (Default: TRUE)
- **chrom_lines**: Whether to display separating lines between chromosomes, should any be necessary (Default: TRUE)
- **show_grid**: Whether to display an underlying grid (Default: FALSE)
- **cmap**: Color scale to use. (Default: bgrColors() if limits are c(-1, 1) and coolerColors() otherwise)
- **caption**: Whether to display a caption (Default: TRUE)

Value

ggplot object

Examples

```r
contacts_yeast <- contacts_yeast()
plotMatrix(  
  contacts_yeast,  
  use.scores = 'balanced',  
  scale = 'log10',  
  limits = c(-4, -1)  
)
```
plotPs

Plotting a $P(s)$ distance law

Description

Plotting a $P(s)$ distance law

Usage

plotPs(x, mapping, xlim = c(5000, 499000), ylim = c(1e-08, 1e-04))
plotPsSlope(x, mapping, xlim = c(5000, 499000), ylim = c(-3, 0))

Arguments

x
the output data.frame of distanceLaw function
mapping
aes to pass on to ggplot2
xlim
xlim
ylim
ylim

Value

ggplot

Examples

Single $P(s)$
contacts_yeast <- contacts_yeast()
ps <- distanceLaw(contacts_yeast)
plotPs(ps, ggplot2::aes(x = binned_distance, y = norm_p))

Comparing several $P(s)$
contacts_yeast <- contacts_yeast()
contacts_yeast_eco1 <- contacts_yeast_eco1()
ps_wt <- distanceLaw(contacts_yeast)
ps_wt$sample <- 'WT'
ps_eco1 <- distanceLaw(contacts_yeast_eco1)
ps_eco1$sample <- 'eco1'
ps <- rbind(ps_wt, ps_eco1)
plotPs(ps, ggplot2::aes(x = binned_distance, y = norm_p, group = sample, color = sample))
plotPsSlope(ps, ggplot2::aes(x = binned_distance, y = slope, group = sample))
plotSaddle

Plotting saddle plots

Description
Plotting saddle plots

Usage
plotSaddle(
 x,
 nbins = 50,
 limits = c(-1, 1),
 plotBins = FALSE,
 BPPARAM = BiocParallel::bpparam()
)

Arguments
 x a HiCExperiment object with a stored eigens metadata
 nbins Number of bins to use to discretize the eigenvectors
 limits limits for color map being used
 plotBins Whether to plot the distribution of bins on top of the plot
 BPPARAM a BiocParallel registered method

Value
 ggplot

plotScalogram

Plotting scalograms

Description
Plotting scalograms

Usage
plotScalogram(x, ylim = c(500, 1e+05))

Arguments
 x GRanges, the output of scalogram()
 ylim Range of distances to use for y-axis in scalograms
Value

ggplot

Examples

```r
contacts_yeast <- HiCExperiment::contacts_yeast()
pairsFile(contacts_yeast) <- HiContactsData::HiContactsData(
  'yeast_wt', format = 'pairs.gz'
)
scalo <- scalogram(contacts_yeast[['II']])
plotScalogram(scalo)
```

reexports

Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

HiCExperiment *contacts_yeast, contacts_yeast_ecol*

scalogram

Compute a scalogram of contacts

Description

Compute a scalogram of contacts

Usage

```r
scalogram(x, dist_min = 0, nbins = 250, probs = c(0.25, 0.5, 0.75))
```

Arguments

- `x` A HiCExperiment object
- `dist_min` Minimum distance for interactions to be considered.
- `nbins` Number of bins to divide each chromosome
- `probs` Quantiles of interactions

Value

- a tibble
- a tibble
tracks

Examples

```r
contacts_yeast <- HiCExperiment::contacts_yeast()
pairsFile(contacts_yeast) <- HiContactsData::HiContactsData(
  'yeast_wt', format = 'pairs.gz'
)
scalo <- scalogram(contacts_yeast['II'])
scalo
```

tracks

Aligning tracks with HiCExperiment objects

Description

Aligning tracks with HiCExperiment objects

Usage

```r
## S4 method for signature 'HiCExperiment'
coverage(x, use.pairs = FALSE, bin.size = resolution(x))
```

Arguments

- `x`: A HiCExperiment object over a full genome
- `use.pairs`: logical. Whether to use pairsFile to compute Hi-C coverage
- `bin.size`: if use.pairs == TRUE, to which resolution

Value

A HiCExperiment object with 2 added columns in regions(x)

Examples

```r
mcool_file <- HiContactsData::HiContactsData('yeast_wt', format = 'mcool')
hic <- import(mcool_file, format = 'mcool', resolution = 1000)
coverage(hic)
```
virtual4C Computing virtual 4C profiles

Description

From a (m)cool pre-imported in memory, computes a 4C profile using a user-specified viewpoint.

Usage

virtual4C(x, viewpoint, use.scores = "balanced")

Arguments

x a HiCExperiment object
viewpoint viewpoint, defined as a GRanges
use.scores use.scores

Value

A tibble with the contact frequency of the viewpoint, per bin along the imported genomic range.

Examples

library(HiContacts)
contacts_yeast <- contacts_yeast()
v4C <- virtual4C(contacts_yeast, GenomicRanges::GRanges('II:490001-510000'))
v4C
Index

* **internal**
 - checks, 5
 - reexports, 18
 - .are_HiCExperiment (checks), 5
 - .is_comparable (checks), 5
 - .is_same_bins (checks), 5
 - .is_same_regions (checks), 5
 - .is_same_resolution (checks), 5
 - .is_same_seqinfo (checks), 5
 - .is_symmetrical (checks), 5

 afmhotrColors (palettes), 11
 aggregate,HiCExperiment-method (arithmetics), 2
 autocorrelate (arithmetics), 2
 bbrColors (palettes), 11
 bgrColors (palettes), 11
 boost (arithmetics), 2
 bwrColors (palettes), 11

 checks, 5
 cisTransRatio, 6
 coarsen (arithmetics), 2
 Contacts, 7
 contacts_yeast, 18
 contacts_yeast (reexports), 18
 contacts_yeast_ecol, 18
 contacts_yeast_ecol (reexports), 18
 coolerColors (palettes), 11
 coverage,HiCExperiment-method (tracks), 19

 despeckle (arithmetics), 2
 detrend (arithmetics), 2
 distanceLaw, 8
 distanceLaw,GIInteractions,missing-method (distanceLaw), 8
 distanceLaw,HiCExperiment,GRanges-method (distanceLaw), 8
 distanceLaw,HiCExperiment,missing-method (distanceLaw), 8
 distanceLaw,PairsFile,GRanges-method (distanceLaw), 8
 distanceLaw,PairsFile,missing-method (distanceLaw), 8
 divide (arithmetics), 2
 getBorders (getDiamondInsulation), 10
 getCompartments, 9
 getDiamondInsulation, 10
 getLoops, 11
 HiContacts-plots, 11
 localDistanceLaw (distanceLaw), 8
 merge,HiCExperiment,HiCExperiment-method (arithmetics), 2
 montage (plotMatrix), 13
 montage,AggrHiCExperiment-method (plotMatrix), 13
 normalize,HiCExperiment-method (arithmetics), 2

 palettes, 11
 plot4C, 12
 plotMatrix, 13
 plotMatrix,AggrHiCExperiment-method (plotMatrix), 13
 plotMatrix,GIInteractions-method (plotMatrix), 13
 plotMatrix,HiCExperiment-method (plotMatrix), 13
 plotMatrix,matrix-method (plotMatrix), 13
 plotPs, 16
 plotPsSlope (plotPs), 16
 plotSaddle, 17
 plotScalogram, 17
Ps (distanceLaw), 8
rainbowColors (palettes), 11
reexports, 18
scalogram, 18
subsample (arithmetics), 2
tracks, 19
virtual4C, 20