Package ‘GeoTcgaData’

April 10, 2024

Type Package

Title Processing Various Types of Data on GEO and TCGA

Version 2.2.0

Description Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) provide us with a wealth of data, such as RNA-seq, DNA Methylation, SNP and Copy number variation data. It's easy to download data from TCGA using the gdc tool, but processing these data into a format suitable for bioinformatics analysis requires more work. This R package was developed to handle these data.

Depends R (>= 4.2.0)

License Artistic-2.0

Encoding UTF-8

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, DESeq2, S4Vectors, ChAMP, impute, tidyR, clusterProfiler, org.Hs.eg.db, edgeR, limma, quantreg, minfi, IlluminaHumanMethylation450kanno.ilmn12.hg19, dearseq, NOISeq, testthat (>= 3.0.0), CATT, TCGAbiolinks, enrichplot, GEOquery, BiocGenerics

VignetteBuilder knitr

Imports utils, data.table, plyr, cqn, topconflicts, stats, SummarizedExperiment, methods

Language en-US

URL https://github.com/YuLab-SMU/GeoTcgaData

BugReports https://github.com/YuLab-SMU/GeoTcgaData/issues

biocViews GeneExpression, DifferentialExpression, RNASeq, CopyNumberVariation, Microarray, Software, DNAmethylation, DifferentialMethylation, SNP, ATACSeq, MethylationArray

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/GeoTcgaData

git_branch RELEASE_3_18

git_last_commit e239614
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-10
Author Erqiang Hu [aut, cre] (<https://orcid.org/0000-0002-1798-7513>)
Maintainer Erqiang Hu <13766876214@163.com>

R topics documented:

array_preprocess .. 3
 cal_mean_module 3
 cluster_array 4
 combine_pvalue 5
 countToFpkm ... 5
 countToTpm .. 6
 differential_array 7
 differential_CNV 8
 differential_limma 9
 differential_methy 10
 differential_RNA 12
 differential_SNPs 15
 differential_SNPs_GEO 16
 differential_SNPs_tcga 17
 fpkmToTpm .. 18
 geneExpress ... 18
 gene_ave ... 19
 gene_cov ... 19
 get_geo_array 20
 GSE66705_sample2 20
 id_conversion_TCGA 21
 kegg_liver .. 21
 Merge_methy_tcga 22
 module ... 22
 prepare_chi ... 23
 profile ... 23
 repAssign .. 24
 repRemove .. 25
 SNP_QC .. 25
 ventricle .. 26

Index 27
array_preprocess

Preprocess of Microarray data

Description
Preprocess of Microarray data

Usage
array_preprocess(x, missing_value = "knn", string = "///")

Arguments
- x: matrix of Microarray data, each column is a sample, and each row is a gene.
- missing_value: Method to impute missing expression data, one of "zero" and "knn".
- string: a string, sep of the gene.

Value
matrix

Examples
arraylist <- get_geo_array("GSE781")
arraylist <- lapply(arraylist, array_preprocess)

cal_mean_module

Find the mean value of the gene in each module

Description
Find the mean value of the gene in each module

Usage
cal_mean_module(geneExpress, module)

Arguments
- geneExpress: a data.frame of gene expression data. Each column is a sample, and each row is a gene.
- module: a data.frame of two column. The first column is module name, the second column are genes in this module.
Value

a data.frame, means the mean of gene expression value in the same module

Examples

data(geneExpress)
data(module)
result <- cal_mean_module(geneExpress, module)

cluster_array

cluster probes of Microarray data

Description

cluster probes of Microarray data

Usage

cluster_array(x, clusterCutoff = 0.7)

Arguments

x matrix of Microarray data, the first is the name of the gene, and the others are the expression value.

clusterCutoff Pearson correlation threshold to cut off the hierarchical tree.

Value
data.frame

Examples

arraylist <- get_geo_array("GSE781")
arraylist <- lapply(arraylist, array_preprocess)
arraylist_cluster <- lapply(arraylist, cluster_array)
combine_pvalue

Combine p-values of SNP difference analysis result

- **Description**: Combine p-values of SNP difference analysis result
- **Usage**: `combine_pvalue(snpResult, snp2gene, combineMethod = min)`
- **Arguments**:
 - `snpResult`: data.frame of SNP difference analysis result.
 - `combineMethod`: Method of combining the pvalue of multiple snp in a gene.
- **Value**: data.frame
- **Examples**:
  ```r
  snpResult <- data.frame(pvalue = runif(100), estimate = runif(100))
  rownames(snpResult) <- paste0("snp", seq_len(100))
  snp2gene <- data.frame(snp = rownames(snpResult),
                          gene = rep(paste0("gene", seq_len(20)), 5))
  result <- combine_pvalue(snpResult, snp2gene)
  ```

countToFpkm

Convert count to FPKM

- **Description**: Convert count to FPKM
- **Usage**: `countToFpkm(counts_matrix, keyType = "SYMBOL", gene_cov)`
- **Arguments**:
 - `counts_matrix`: a matrix, colnames of counts_matrix are sample name, rownames of counts_matrix are gene symbols
 - `keyType`: keyType, one of keytypes(org.Hs.eg.db).
 - `gene_cov`: data.frame of two column, the first column is gene length, the second column is gene GC content
countToTpm

Value

a matrix

Examples

data(gene_cov)
lung_squ_count2 <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), ncol = 3)
rownames(lung_squ_count2) <- c("DISC1", "TCOF1", "SPPL3")
colnames(lung_squ_count2) <- c("sample1", "sample2", "sample3")
result <- countToFpm(lung_squ_count2,
 keyType = "SYMBOL",
 gene_cov = gene_cov
)

countToTpm

Convert count to Tpm

Description

Convert count to Tpm

Usage

countToTpm(counts_matrix, keyType = "SYMBOL", gene_cov)

Arguments

counts_matrix a matrix, colnames of counts_matrix are sample name, rownames of counts_matrix are gene symbols
keyType keyType, one of keytypes(org.Hs.eg.db).
gene_cov data.frame of two column, the first column is gene length, the second column is gene GC content

Value

a matrix

Examples

data(gene_cov)
lung_squ_count2 <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), ncol = 3)
rownames(lung_squ_count2) <- c("DISC1", "TCOF1", "SPPL3")
colnames(lung_squ_count2) <- c("sample1", "sample2", "sample3")
result <- countToFpm(lung_squ_count2,
 keyType = "SYMBOL",
 gene_cov = gene_cov
)
differential_array

Differential analysis of Microarray data

Description

Differential analysis of Microarray data

Usage

```r
differential_array(df, group, method = "limma", adjust.method = "BH")
```

Arguments

- `df`: data.frame of the omic data, each column is a sample, and each row is a gene.
- `group`: a vector, group of samples.
- `method`: method to do differential analysis, one of "limma", "ttest", "wilcox".
- `adjust.method`: adjust.method, one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", and "none".

Value

data.frame

Examples

```r
library(GeoTcgaData)
library(data.table)

# Use real GEO data as example
arrayData <- read.table("GSE54807_series_matrix.txt.gz", 
    sep = "\t", header = TRUE,
    fill = TRUE, comment.char = "!", check.names = FALSE)
gpl <- fread("GPL6244-17930.txt", sep = "\t", header = TRUE)
gpl <- gpl[, c("ID", "gene_assignment")]
class(gpl) <- "data.frame"

for (i in seq_len(nrow(gpl))) {
    aa <- strsplit(gpl[i, 2], " // ")[[1]][5]
    gpl[i, 2] <- as.character(strsplit(aa, " /// ")[[1]][1])
}
gpl[,1] <- as.character(gpl[,1])
arrayData[,1] <- as.character(arrayData[,1])
rownames(gpl) <- gpl[,1]
arrayData[,1] <- gpl[arrayData[,1], 2]

arrayData <- repRemove(arrayData, " /// ")

# Remove rows that do not correspond to genes
```
arrayData <- arrayData[!is.na(arrayData[, 1]),]
arrayData <- arrayData[!arrayData[, 1] == "",]
arrayData <- arrayData[!arrayData[, 1] == "---",]

arrayData <- arrayData[order(arrayData[, 1]),]
arrayData <- gene_ave(arrayData, 1)

keep <- apply(arrayData, 1, function(x) sum(x < 1) < (length(x)/2))
arrayData <- arrayData[keep,]

group <- c(rep("group1", 12), rep("group2", 12))
result <- differential_array(df = arrayData, group = group)

Use random data as example
arrayData <- matrix(runif(200), 25, 8)
rownames(arrayData) <- paste0("gene", 1:25)
colnames(arrayData) <- paste0("sample", 1:8)
group <- c(rep("group1", 4), rep("group2", 4))
result <- differential_array(df = arrayData, group = group)

differential_CNV

Do difference analysis of gene level copy number variation data

Description

Do difference analysis of gene level copy number variation data

Usage

differential_CNV(
 cnvData,
 sampleGroup,
 method = "Chisquare",
 adjust.method = "BH",
 ...
)

Arguments

cnvData data.frame of CNV data, each column is a sample, and each row is a CNV.
sampleGroup vector of sample group
method method to do differential analysis, one of "Chisquare", "fisher", and "CATT" (Cochran-Armitage trend test)
adjust.method adjust.method, one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", and "none".
... parameters for "Chisquare", "fisher", and "CATT" (Cochran-Armitage trend test)
differential_limma

Value

data.frame with pvalue and estimate

Examples

use TCGAbiolinks data as example
library(TCGAbiolinks)
query <- GDCquery(
 project = "TCGA-ACC",
 data.category = "Copy Number Variation",
 data.type = "Gene Level Copy Number",
 access = "open"
)
GDCdownload(query)
cnvData <- GDCprepare(query)
aa <- assays(cnvData)$copy_number
bb <- aa
aa[bb == 2] <- 0
aa[bb < 2] <- -1
aa[bb > 2] <- 1
sampleGroup <- sample(c("A", "B"), ncol(cnvData), replace = TRUE)
diffCnv <- differential_CNV(aa, sampleGroup)

Use sangerbox CNV data as example
cnvData <- fread("Merge_GeneLevelCopyNumber.txt")
class(cnvData) <- "data.frame"
rownames(cnvData) <- cnvData[, 1]
cnvData <- cnvData[, -c(1, 2, 3)]
sampleGroup <- sample(c("A", "B"), ncol(cnvData), replace = TRUE)
diffCnv <- differential_CNV(cnvData, sampleGroup)

use random data as example
aa <- matrix(sample(c(0, 1, -1), 200, replace = TRUE), 25, 8)
rownames(aa) <- paste0("gene", 1:25)
colnames(aa) <- paste0("sample", 1:8)
sampleGroup <- sample(c("A", "B"), ncol(aa), replace = TRUE)
diffCnv <- differential_CNV(aa, sampleGroup)

differential_limma differential_limma

Description

differential_limma

Usage

differential_limma(df, group, adjust.method = "BH")
Arguments

df data.frame of the omic data

group a vector, group of samples.

adjust.method adjust.method.

Value
data.frame

Examples
df <- matrix(runif(200), 25, 8)
df <- as.data.frame(df)
rownames(df) <- paste0("gene", 1:25)
colnames(df) <- paste0("sample", 1:8)
group <- sample(c("group1", "group2"), 8, replace = TRUE)
result <- differential_limma(df = df, group = group)

differential_methy
differential_methy

differential_methy
differential_methy

Description
Get methylation difference gene

Usage
differential_methy(
cpgData, sampleGroup, groupCol,
combineMethod = "stouffer", missing_value = "knn",
cpg2gene = NULL, normMethod = "PBC",
region = "TSS1500", model = "gene",
adjust.method = "BH",
adjPvalCutoff = 0.05, ucscData = FALSE)
)
differential_methy

Arguments

- `cpgData`: data.frame of cpg beta value, or SummarizedExperiment object
- `sampleGroup`: vector of sample group
- `groupCol`: group column
- `combineMethod`: method to combine the cpg pvalues, a function or one of "stouffer", "fisher" and "rhoScores".
- `missing_value`: Method to impute missing expression data, one of "zero" and "knn".
- `cpg2gene`: data.frame to annotate cpg locus to gene
- `normMethod`: Method to do normalization: "PBC" or "BMIQ".
- `region`: region of genes, one of "Body", "TSS1500", "TSS200", "3'UTR", "1stExon", "5'UTR", and "IGR". Only used when cpg2gene is NULL.
- `model`: if "cpg", step1: calculate difference cpgs; step2: calculate difference genes. if "gene", step1: calculate the methylation level of genes; step2: calculate difference genes.
- `adjust.method`: character string specifying the method used to adjust p-values for multiple testing. See `p.adjust` for possible values.
- `adjPvalCutoff`: adjusted pvalue cutoff
- `ucscData`: Logical, whether the data comes from UCSC Xena.

Value

data.frame

Examples

```r
# use TCGAbiolinks data
library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-ACC",
data.category = "DNA Methylation",
data.type = "Methylation Beta Value",
platform = "Illumina Human Methylation 450")
GDCdownload(query, method = "api", files.per.chunk = 5,
directory = Your_Path)
merge_result <- Merge_methy_tcga(Your_Path_to_DNA_Methylation_data)
library(ChAMP) # To avoid reporting errors
differential_gene <- differential_methy(cpgData = merge_result,
sampleGroup = sample(c("C","T"),
ncol(merge_result[[1]]), replace = TRUE))

# use user defined data
library(ChAMP)
cpgData <- matrix(runif(2000), nrow = 200, ncol = 10)
rownames(cpgData) <- paste0("cpg", seq_len(200))
colnames(cpgData) <- paste0("sample", seq_len(10))
sampleGroup <- c(rep("group1", 5), rep("group2", 5))
names(sampleGroup) <- colnames(cpgData)
cpg2gene <- data.frame(cpg = rownames(cpgData),
```

differential_RNA

differential_RNA

Description

Do difference analysis of RNA-seq data

Usage

differential_RNA(
 counts,
 group,
 groupCol,
 method = "limma",
 geneLength = NULL,
 gccontent = NULL,
 filter = TRUE,
 edgeRNorm = TRUE,
 adjust.method = "BH",
 useTopConfects = TRUE,
 ucscData = FALSE
)
differential RNA

Arguments

- **counts**: a dataframe or numeric matrix of raw counts data, or SummarizedExperiment object
- **group**: sample groups
- **groupCol**: group column
- **method**: one of "DESeq2", "edgeR", "limma", "dearseq", "NOISeq", "Wilcoxon", and "auto".
- **geneLength**: a vector of gene length.
- **gccontent**: a vector of gene GC content.
- **filter**: if TRUE, use filterByExpr to filter genes.
- **edgeRNorm**: if TRUE, use edgeR to do normalization for dearseq method.
- **adjust.method**: character string specifying the method used to adjust p-values for multiple testing. See `p.adjust` for possible values.
- **useTopconfects**: if TRUE, use topconfects to provide a more biologically useful ranked gene list.
- **ucscData**: Logical, whether the data comes from UCSC Xena.

Value

data.frame

Examples

```r
library(TCGAbiolinks)

query <- GDCquery(
  project = "TCGA-ACC",
  data.category = "Transcriptome Profiling",
  data.type = "Gene Expression Quantification",
  workflow.type = "STAR - Counts"
)

GDCdownload(query,
  method = "api", files.per.chunk = 3,
  directory = Your_Path
)

dataRNA <- GDCprepare(
  query = query, directory = Your_Path,
  save = TRUE, save.filename = "dataRNA.RData"
)

# get raw count matrix
dataPrep <- TCGAanalyze_Preprocessing(
  object = dataRNA,
  cor.cut = 0.6,
  datatype = "STAR - Counts"
)
```

Use `differential_RNA` to do difference analysis.
We provide the data of human gene length and GC content in `gene_cov`.
group <- sample(c("grp1", "grp2"), ncol(dataPrep), replace = TRUE)
library(cqn) # To avoid reporting errors: there is no function "rq"
get gene length and GC content
library(org.Hs.eg.db)
genes_bitr <- bitr(rownames(gene_cov),
 fromType = "ENTREZID", toType = "ENSEMBL",
 OrgDb = org.Hs.eg.db, drop = TRUE)

genes_bitr <- genes_bitr[!duplicated(genes_bitr[, 2]),]
gene_cov2 <- gene_cov[genes_bitr$ENTREZID,]
rownames(gene_cov2) <- genes_bitr$ENSEMBL
genes <- intersect(rownames(dataPrep), rownames(gene_cov2))
dataPrep <- dataPrep[genes,]
geneLength <- gene_cov2(genes, "length")
gccontent <- gene_cov2(genes, "GC")
names(geneLength) <- names(gccontent) <- genes
Difference analysis
DEGAll <- differential_RNA(
 counts = dataPrep, group = group,
 geneLength = geneLength, gccontent = gccontent)
Use `clusterProfiler` to do enrichment analytics:
diffGenes <- DEGAll$logFC
names(diffGenes) <- rownames(DEGAll)
diffGenes <- sort(diffGenes, decreasing = TRUE)
library(clusterProfiler)
library(enrichplot)
library(org.Hs.eg.db)
gsego <- gseGO(gene = diffGenes, OrgDb = org.Hs.eg.db, keyType = "ENSEMBL")
dotplot(gsego)

use user-defined data
df <- matrix(rnbinom(400, mu = 4, size = 10), 25, 16)
df <- as.data.frame(df)
rownames(df) <- paste0("gene", 1:25)
colnames(df) <- paste0("sample", 1:16)
group <- sample(c("group1", "group2"), 16, replace = TRUE)
result <- differential_RNA(counts = df, group = group,
 filte = FALSE, method = "Wilcoxon")
use SummarizedExperiment object input
df <- matrix(rnbinom(400, mu = 4, size = 10), 25, 16)
rownames(df) <- paste0("gene", 1:25)
colnames(df) <- paste0("sample", 1:16)
group <- sample(c("group1", "group2"), 16, replace = TRUE)
nrows <- 200; ncols <- 20
counts <- matrix(
 runif(nrows * ncols, 1, 1e4), nrows,
 dimnames = list(paste0("cg", 1:200), paste0("S", 1:20))
)
differential_SNP

colData <- S4Vectors::DataFrame(
 row.names = paste0("sample", 1:16),
 group = group
)
data <- SummarizedExperiment::SummarizedExperiment(
 assays=S4Vectors::SimpleList(counts=df),
 colData = colData)
result <- differential_RNA(counts = data, groupCol = "group",
 filte = FALSE, method = "Wilcoxon")

differential_SNP Do difference analysis of SNP data

Description

Do difference analysis of SNP data

Usage

differential_SNP(snpDf, sampleGroup, combineMethod = min)

Arguments

- **snpDf**: data.frame of SNP data, each column is a sample, and each row is a SNP.
- **sampleGroup**: vector of sample group.
- **combineMethod**: Method of combining the pvalue of multiple snp in a gene.

Value

data.frame

Examples

library(TCGAbiolinks)
query <- GDCquery(
 project = "TCGA-CHOL",
 data.category = "Simple Nucleotide Variation",
 access = "open",
 legacy = FALSE,
 data.type = "Masked Somatic Mutation",
 workflow.type = "Aliquot Ensemble Somatic Variant Merging and Masking"
)
GDCdownload(query)
data_snp <- GDCprepare(query)
samples <- unique(data_snp$Tumor_Sample_Barcode)
sampleGroup <- sample(c("A", "B"), length(samples), replace = TRUE)
names(sampleGroup) <- samples
pvalue <- differential_SNP_tcga(snpData = data_snp,
```r
# use demo data
snpDf <- matrix(sample(c("mutation", NA), 100, replace = TRUE), 10, 10)
snpDf <- as.data.frame(snpDf)
sampleGroup <- sample(c("A", "B"), 10, replace = TRUE)
result <- differential_SNP(snpDf, sampleGroup)
```

differential_SNP_GEO
Do difference analysis of SNP data downloaded from GEO

Description

Do difference analysis of SNP data downloaded from GEO

Usage

```r
differential_SNP_GEO(snpData, sampleGroup, method = "Chisquare")
```

Arguments

- `snpData`: data.frame of SNP data downloaded from GEO
- `sampleGroup`: vector of sample group
- `method`: one of "Chisquare", "fisher", and "CATT" (Cochran-Armitage trend test)

Value

data.frame

Examples

```r
file1 <- read.table("GSE66903_series_matrix.txt.gz", fill=TRUE, comment.char="!", header = TRUE)
rownames(file1) <- file1[, 1]
snpData <- file1[, -1]
sampleGroup <- sample(c("A", "B"), ncol(snpData ), replace = TRUE)
names(sampleGroup) <- colnames(snpData)
snpData <- SNP_QC(snpData)
sampleGroup <- sample(c("A", "B"), ncol(snpData ), replace = TRUE)
result1 <- differential_SNP_GEO(snpData = snpData, sampleGroup = sampleGroup, method = "Chisquare")

# use demo data
snpDf <- matrix(sample(c("AA", "Aa", "aa"), 100, replace = TRUE), 10, 10)
snpDf <- as.data.frame(snpDf)
sampleGroup <- sample(c("A", "B"), 10, replace = TRUE)
result <- differential_SNP_GEO(snpDf, sampleGroup, method = "fisher")
```
differential_SNP_tcga
Do difference analysis of SNP data downloaded from TCGAbiolinks

Description

Do difference analysis of SNP data downloaded from TCGAbiolinks

Usage

```r
differential_SNP_tcga(snpData, sampleGroup, combineMethod = NULL)
```

Arguments

- `snpData`: data.frame of SNP data downloaded from TCGAbiolinks
- `sampleGroup`: vector of sample group
- `combineMethod`: Method of combining the pvalue of multiple snp in a gene.

Value

data.frame

Examples

```r
library(TCGAbiolinks)
query <- GDCquery(
  project = "TCGA-CHOL",
  data.category = "Simple Nucleotide Variation",
  access = "open",
  legacy = FALSE,
  data.type = "Masked Somatic Mutation",
  workflow.type = "Aliquot Ensemble Somatic Variant Merging and Masking"
)
GDCdownload(query)
data_snp <- GDCprepare(query)
samples <- unique(data_snp$Tumor_Sample_Barcode)
sampleGroup <- sample(c("A", "B"), length(samples), replace = TRUE)
names(sampleGroup) <- samples
pvalue <- differential_SNP_tcga(snpData = data_snp,
  sampleGroup = sampleGroup)

# use demo data
snpDf <- matrix(sample(c("mutation", NA), 100, replace = TRUE), 10, 10)
snpDf <- as.data.frame(snpDf)
sampleGroup <- sample(c("A", "B"), 10, replace = TRUE)
result <- differential_SNP(snpDf, sampleGroup)
```
fpkmToTpm

Description

Convert fpkm to Tpm

Usage

fpkmToTpm(fpkm_matrix)

Arguments

fpkm_matrix

a matrix, colnames of fpkm_matrix are sample name, rownames of fpkm_matrix are genes

Value

a matrix

Examples

lung_squ_count2 <- matrix(c(0.11, 0.22, 0.43, 0.14, 0.875,
0.66, 0.77, 0.18, 0.29), ncol = 3)
rownames(lung_squ_count2) <- c("DISC1", "TCOF1", "SPPL3")
colnames(lung_squ_count2) <- c("sample1", "sample2", "sample3")
result <- fpkmToTpm(lung_squ_count2)

geneExpress

Description

It is a randomly generated expression data used as an example of functions in this package. the
rowname is gene symbols the columns are gene expression values

Usage

geneExpress

Format

A data.frame with 10779 rows and 2 column
gene_ave

Average the values of same genes in gene expression profile

Description

Average the values of same genes in gene expression profile

Usage

```r
gene_ave(file_gene_ave, k = 1)
```

Arguments

- `file_gene_ave` a data.frame of gene expression data, each column is a sample, and each row is a gene.
- `k` a number, indicates which is the gene column.

Value

a data.frame, the values of same genes in gene expression profile

Examples

```r
aa <- c("MARCH1", "MARC1", "MARCH1", "MARCH1", "MARCH1")
bb <- c(2.969058399, 4.722410064, 8.165514853, 8.24243893, 8.60815086)
c <- c(3.969058399, 5.722410064, 7.165514853, 6.24243893, 7.60815086)
file_gene_ave <- data.frame(aa = aa, bb = bb, cc = cc)
colnames(file_gene_ave) <- c("Gene", "GSM1629982", "GSM1629983")
result <- gene_ave(file_gene_ave, 1)
```

gene_cov

a data.frame of gene length and GC content

Description

the gene length and GC content data comes from TxDb.Hsapiens.UCSC.hg38.knownGene and BSgenome.Hsapiens.UCSC.hg38

Usage

```r
gene_cov
```

Format

A data.frame with 27341 rows and 2 column
get_geo_array
Get Microarray matrix data from GEO

Description
Get Microarray matrix data from GEO

Usage
```
get_geo_array(gse)
```

Arguments
- **gse**: GSE number, such as GSE781.

Value
a list of matrix

Examples
```
arraylist <- get_geo_array("GSE781")
```

GSE66705_sample2
a matrix of gene expression data in GEO

Description
the first column represents the gene symbol

Usage
```
GSE66705_sample2
```

Format
A matrix with 999 rows and 3 column

Details
the other columns represent the expression of genes
id_conversion_TCGA

Convert ENSEMBL gene id to gene Symbol in TCGA

Description
Convert ENSEMBL gene id to gene Symbol in TCGA

Usage
id_conversion_TCGA(profiles, toType = "SYMBOL")

Arguments
profiles a data.frame of gene expression data, each column is a sample, and each row is a gene.
toType one of `keytypes(org.Hs.eg.db)`

Value
a data.frame, gene symbols and their expression value

Examples
library(org.Hs.eg.db)
data(profile)
result <- id_conversion_TCGA(profile)

kegg_liver

a matrix of gene expression data in TCGA

Description
It is a randomly generated expression data used as an example of functions in this package. The first column represents the gene symbol

Usage
kegg_liver

Format
A matrix with 100 rows and 150 column

Details
the other columns represent the expression(count) of genes
Merge_methy_tcga
Merge methylation data downloaded from TCGA

Description

When the methylation data is downloaded from TCGA, each sample is saved in a folder, which contains the methylation value file and the descriptive file. This function can directly extract and consolidate all folders.

Usage

```r
Merge_methy_tcga(dirr = NULL)
```

Arguments

- `dirr`
 a string for the directory of methylation data download from tcga using the tools gdc

Value

- a matrix, a combined methylation expression spectrum matrix

Examples

```r
merge_result <- Merge_methy_tcga(system.file(file.path("extdata", "mehy"), package = "GeoTcgaData"))
```

module
a matrix of module name, gene symbols, and the number of gene symbols

Description

It is a randomly generated expression data used as an example of functions in this package.

Usage

```r
module
```

Format

- A matrix with 176 rows and 3 column
prepare_chi

Preparer file for chi-square test

Usage

```r
prepare_chi(cnv)
```

Arguments

- **cnv**: result of `ann_merge()`

Value

a matrix

Examples

```r
cnv <- matrix(c(-1.09150, -1.47120, -0.87050, -0.50880, -0.50880, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.601962, 2.621332, 2.621332, 2.621332, 2.621332, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0), nrow = 5)
cnv <- as.data.frame(cnv)
rownames(cnv) <- c("AJAP1", "FHAD1", "CLCNKB", "CROCCP2", "AL137798.3")
cnv_chi_file <- prepare_chi(cnv)
```

profile

A matrix of gene expression data in TCGA

Description

It is a randomly generated expression data used as an example of functions in this package. The first column represents the gene symbol

Usage

```r
profile
```
Format

A matrix with 10 rows and 10 column

Details

the other columns represent the expression(FPKM) of genes

repAssign

Handle the case where one id corresponds to multiple genes

Description

Handle the case where one id corresponds to multiple genes

Usage

repAssign(input_file, string)

Arguments

input_file input file, a data.frame or a matrix, the first column should be genes.
string a string, sep of the gene

Value

a data.frame, when an id corresponds to multiple genes, the expression value is assigned to each gene

Examples

aa <- c("MARCH1 /// MMA", "MARC1", "MARCH2 /// MARCH3", "MARCH3 /// MARCH4", "MARCH1")
bb <- c("2.969058399", "4.722410064", "8.165514853", "8.24243893", "8.60815086")
cc <- c("3.969058399", "5.722410064", "7.165514853", "6.24243893", "7.60815086")
input_file <- data.frame(aa = aa, bb = bb, cc = cc)

repAssign_result <- repAssign(input_file, " /// ")
repRemove

Handle the case where one id corresponds to multiple genes

Description

Handle the case where one id corresponds to multiple genes

Usage

repRemove(input_file, string)

Arguments

input_file input file, a data.frame or a matrix, the first column should be genes.
string a string, sep of the gene

Value

a data.frame, when an id corresponds to multiple genes, the expression value is deleted

Examples

aa <- c("MARCH1 /// MMA", "MARC1", "MARCH2 /// MARCH3",
"MARCH3 /// MARCH4", "MARCH1")
bb <- c("2.969058399", "4.722410064", "8.16514853",
"8.24243893", "8.60815086")
cc <- c("3.969058399", "5.722410064", "7.16514853",
"6.24243893", "7.60815086")
input_file <- data.frame(aa = aa, bb = bb, cc = cc)
repRemove_result <- repRemove(input_file, " /// ")

SNP_QC

Do quality control of SNP data downloaded from TCGAbiolinks

Description

Do quality control of SNP data downloaded from TCGAbiolinks

Usage

SNP_QC(
 snpData,
 geon = 0.02,
 mind = 0.02,
 maf = 0.05,
 hwe = 1e-06,
 miss = "NoCall"
)
Arguments

snpData data.frame of SNP data downloaded from TCGAbiolinks
geon filters out all variants with missing call rates exceeding the provided value (default 0.02) to be removed
mind filters out all samples with missing call rates exceeding the provided value (default 0.02) to be removed
maf filters out all variants with minor allele frequency below the provided threshold
hwe filters out all variants which have Hardy-Weinberg equilibrium exact test p-value below the provided threshold
miss character of miss value

Value

data.frame

Examples

use demo data
snpDf <- matrix(sample(c("AA", "Aa", "aa"), 100, replace = TRUE), 10, 10)
snpDf <- as.data.frame(snpDf)
sampleGroup <- sample(c("A", "B"), 10, replace = TRUE)
result <- SNP_QC(snpDf)

ventricle a matrix of gene expression data in GEO

Description

It is a randomly generated expression data used as an example of functions in this package. the first column represents the gene symbol

Usage

ventricle

Format

A matrix with 32 rows and 20 column

Details

the other columns represent the expression of genes
Index

* datasets
 gene_cov, 19
 geneExpress, 18
 GSE66705_sample2, 20
 kegg_liver, 21
 module, 22
 profile, 23
 ventricle, 26

array_preprocess, 3

cal_mean_module, 3
cluster_array, 4
combine_pvalue, 5
countToFpkm, 5
countToTpm, 6

differential_array, 7
differential_CNV, 8
differential_limma, 9
differential_methy, 10
differential_RNA, 12
differential_SNPS, 15
differential_SNPS_GEO, 16
differential_SNPS_tcga, 17

fpkmToTpm, 18

gene_ave, 19
gene_cov, 19
geneExpress, 18
get_geo_array, 20
GSE66705_sample2, 20

id_conversion_TCGA, 21
kegg_liver, 21

Merge_methy_tcga, 22
module, 22

p.adjust, 11, 13

prepare_chi, 23
profile, 23
repAssign, 24
repRemove, 25
SNP_QC, 25
ventricle, 26