Package ‘EnhancedVolcano’

March 13, 2024

Type Package

Title Publication-ready volcano plots with enhanced colouring and labeling

Version 1.20.0

Maintainer Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Description Volcano plots represent a useful way to visualise the results of differential expression analyses. Here, we present a highly-configurable function that produces publication-ready volcano plots. EnhancedVolcano will attempt to fit as many point labels in the plot window as possible, thus avoiding 'clogging' up the plot with labels that could not otherwise have been read. Other functionality allows the user to identify up to 4 different types of attributes in the same plot space via colour, shape, size, and shade parameter configurations.

License GPL-3

Depends ggplot2, ggrepel

Imports methods

Suggests ggalt, ggrastr, RUnit, BiocGenerics, knitr, DESeq2, pasilla, airway, org.Hs.eg.db, gridExtra, magrittr, rmarkdown

URL https://github.com/kevinblighe/EnhancedVolcano

biocViews RNASeq, GeneExpression, Transcription, DifferentialExpression, ImmunoOncology

VignetteBuilder knitr

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/EnhancedVolcano

git_branch RELEASE_3_18

git_last_commit f0abfa5

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-13

Author Kevin Blighe [aut, cre], Sharmila Rana [aut], Emir Turkes [ctb],
EnhancedVolcano

Benjamin Ostendorf [ctb],
Andrea Grioni [ctb],
Myles Lewis [aut]

R topics documented:

EnhancedVolcano

Index

EnhancedVolcano

Publication-ready volcano plots with enhanced colouring and labelling.

Description

Volcano plots represent a useful way to visualise the results of differential expression analyses. Here, we present a highly-configurable function that produces publication-ready volcano plots [@EnhancedVolcano]. EnhancedVolcano will attempt to fit as many variable names in the plot window as possible, thus avoiding ‘clogging’ up the plot with labels that could not otherwise have been read.

Usage

EnhancedVolcano(
 toptable,
 lab,
 x,
 y,
 selectLab = NULL,
 xlim = c(min(toptable[[x]], na.rm = TRUE) - 1.5, max(toptable[[x]], na.rm = TRUE) + 1.5),
 ylim = c(0, max(-log10(toptable[[y]]), na.rm = TRUE) + 5),
 xlab = bquote(~Log[2] ~ "fold change"),
 ylab = bquote(~-Log[10] ~ italic(P)),
 axisLabSize = 18,
 title = "Volcano plot",
 subtitle = bquote(italic(EnhancedVolcano)),
 caption = paste0("total = ", nrow(toptable), " variables"),
 titleLabSize = 18,
 subtitleLabSize = 14,
 captionLabSize = 14,
 pCutoff = 1e-05,
 pCutoffCol = y,
 FCcutoff = 1,
 cutoffLineType = "longdash",
 cutoffLineCol = "black",
)
cutoffLineWidth = 0.4,
pointSize = 2,
labSize = 5,
labCol = "black",
labFace = "plain",
boxedLabels = FALSE,
parseLabels = FALSE,
shape = 19,
shapeCustom = NULL,
col = c("grey30", "forestgreen", "royalblue", "red2"),
colCustom = NULL,
colAlpha = 1/2,
colGradient = NULL,
colGradientBreaks = c(pCutoff, 1),
colGradientLabels = c("0", "1.0"),
colGradientLimits = c(0, 1),
legendPosition = "top",
legendLabSize = 14,
legendIconSize = 5,
legendDropLevels = TRUE,
encircle = NULL,
encircleCol = "black",
encircleFill = "pink",
encircleAlpha = 3/4,
encircleSize = 2.5,
shade = NULL,
shadeFill = "grey",
shadeAlpha = 1/2,
shadeSize = 0.01,
shadeBins = 2,
drawConnectors = FALSE,
widthConnectors = 0.5,
typeConnectors = "closed",
endsConnectors = "first",
lengthConnectors = unit(0.01, "npc"),
colConnectors = "grey10",
max.overlaps = 15,
maxoverlapsConnectors = NULL,
min.segment.length = 0,
directionConnectors = "both",
arrowheads = TRUE,
hline = NULL,
hlineType = "longdash",
hlineCol = "black",
hlineWidth = 0.4,
vline = NULL,
vlineType = "longdash",
vlineCol = "black",
vlineWidth = 0.4,
gridlines.major = TRUE,
gridlines.minor = TRUE,
border = "partial",
borderWidth = 0.8,
borderColour = "black",
raster = FALSE
)

Arguments

toptable A data-frame of test statistics (if not, a data frame, an attempt will be made to convert it to one). Requires at least the following: column for variable names (can be rownames); a column for log2 fold changes; a column for nominal or adjusted p-value.

lab A column name in toptable containing variable names. Can be rownames(toptable).

x A column name in toptable containing log2 fold changes.

y A column name in toptable containing nominal or adjusted p-values.

selectLab A vector containing a subset of lab.

xlim Limits of the x-axis.

ylim Limits of the y-axis.

xlab Label for x-axis.

ylab Label for y-axis.

axisLabSize Size of x- and y-axis labels.

title Plot title.

subtitle Plot subtitle.

caption Plot caption.

titleLabSize Size of plot title.

subtitleLabSize Size of plot subtitle.

captionLabSize Size of plot caption.
pCutoff Cut-off for statistical significance. A horizontal line will be drawn at -log10(pCutoff).
pCutoffCol Column name of statistical significance values to be used as the cut-off. A typical usage situation would be to pass nominal [un-adjusted] p-values as 'y', but adjusted p-values as pCutoffCol. In this way, a plot is generated via -log10(unadjusted p-value), but cut-offs based on adjusted p-values.

FCcutoff Cut-off for absolute log2 fold-change. Vertical lines will be drawn at the negative and positive values of log2FCcutoff.

cutoffLineType Line type for FCcutoff and pCutoff ('blank', 'solid', 'dashed', 'dotted', 'dot-dash', 'longdash', 'twodash').

cutoffLineCol Line colour for FCcutoff and pCutoff.
cutoffLineWidth

pointSize

labSize

labCol

labFace

boxedLabels

parseLabels

shape

shapeCustom

col

colCustom

colAlpha

colGradient

colGradientBreaks

colGradientLabels

colGradientLimits

legendLabels

legendPosition

legendLabSize

legendIconSize

legendDropLevels

encircle

circleCol

circleFill

circleAlpha

circleSize
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shade</td>
<td>A vector of variable names to shade.</td>
</tr>
<tr>
<td>shadeFill</td>
<td>Colour of shaded regions.</td>
</tr>
<tr>
<td>shadeAlpha</td>
<td>Alpha for purposes of controlling colour transparency of shaded region.</td>
</tr>
<tr>
<td>shadeSize</td>
<td>Size of the shade contour lines.</td>
</tr>
<tr>
<td>shadeBins</td>
<td>Number of bins for the density of the shade.</td>
</tr>
<tr>
<td>drawConnectors</td>
<td>Logical, indicating whether or not to connect plot labels to their corresponding points by line connectors.</td>
</tr>
<tr>
<td>widthConnectors</td>
<td>Line width of connectors.</td>
</tr>
<tr>
<td>typeConnectors</td>
<td>Have the arrow head open ('open') or filled ('closed')?</td>
</tr>
<tr>
<td>endsConnectors</td>
<td>Which end of connectors to draw arrow head? ('last', 'first', 'both').</td>
</tr>
<tr>
<td>lengthConnectors</td>
<td>Length (size) of the connector arrowheads.</td>
</tr>
<tr>
<td>colConnectors</td>
<td>Line colour of connectors and line segments.</td>
</tr>
<tr>
<td>max.overlaps</td>
<td>Equivalent of max.overlaps in ggrepel. Set to 'Inf' to always display all labels when drawConnectors = TRUE.</td>
</tr>
<tr>
<td>maxoverlapsConnectors</td>
<td>See max.overlaps.</td>
</tr>
<tr>
<td>min.segment.length</td>
<td>When drawConnectors = TRUE, specifies the minimum length of the connector line segments.</td>
</tr>
<tr>
<td>directionConnectors</td>
<td>direction in which to draw connectors. 'both', 'x', or 'y'.</td>
</tr>
<tr>
<td>arrowheads</td>
<td>Logical, indicating whether or not to draw arrow heads or or just have straight lines.</td>
</tr>
<tr>
<td>hline</td>
<td>Draw one or more horizontal lines passing through this/these values on y-axis. For single values, only a single numerical value is necessary. For multiple lines, pass these as a vector, e.g., c(60,90).</td>
</tr>
<tr>
<td>hlineType</td>
<td>Line type for hline ('blank', 'solid', 'dashed', 'dotted', 'dotdash', 'longdash', 'twodash').</td>
</tr>
<tr>
<td>hlineCol</td>
<td>Colour of hline.</td>
</tr>
<tr>
<td>hlineWidth</td>
<td>Width of hline.</td>
</tr>
<tr>
<td>vline</td>
<td>Draw one or more vertical lines passing through this/these values on x-axis. For single values, only a single numerical value is necessary. For multiple lines, pass these as a vector, e.g., c(60,90).</td>
</tr>
<tr>
<td>vlineType</td>
<td>Line type for vline ('blank', 'solid', 'dashed', 'dotted', 'dotdash', 'longdash', 'twodash').</td>
</tr>
<tr>
<td>vlineCol</td>
<td>Colour of vline.</td>
</tr>
<tr>
<td>vlineWidth</td>
<td>Width of vline.</td>
</tr>
<tr>
<td>gridlines.major</td>
<td>Logical, indicating whether or not to draw major gridlines.</td>
</tr>
</tbody>
</table>
gridlines.minor Logical, indicating whether or not to draw minor gridlines.
border Add a border for just the x and y axes ('partial') or the entire plot grid ('full')?
borderWidth Width of the border on the x and y axes.
borderColour Colour of the border on the x and y axes.
raster Logical, indicating whether to rasterize the geom_point layer. Requires installation of ggrastr.

Details
Volcano plots represent a useful way to visualise the results of differential expression analyses. Here, we present a highly-configurable function that produces publication-ready volcano plots [@EnhancedVolcano]. EnhancedVolcano will attempt to fit as many variable names in the plot window as possible, thus avoiding 'clogging' up the plot with labels that could not otherwise have been read.

Value
A ggplot2 object.

Author(s)
Kevin Blighe <kevin@clinicalbioinformatics.co.uk>

Examples
library('pasilla')
pasCts <- system.file('extdata', 'pasilla_gene_counts.tsv', package='pasilla', mustWork=TRUE)
pasAnno <- system.file('extdata', 'pasilla_sample_annotation.csv', package='pasilla', mustWork=TRUE)
cnts <- as.matrix(read.csv(pasCts, sep='\t', row.names='gene_id'))
coldata <- read.csv(pasAnno, row.names=1)
coldata <- coldata[,c('condition', 'type')]
ownames(coldata) <- sub('fb', '', rownames(coldata))
cnts <- cnts[, rownames(coldata)]
library('DESeq2')
dds <- DESeqDataSetFromMatrix(countData = cts,
colData = coldata,
design = ~ condition)

featureData <- data.frame(gene=rownames(cts))
mcols(dds) <- DataFrame(mcols(dds), featureData)
.dds <- DESeq(dds)
res <- results(dds)
EnhancedVolcano(res,
lab = rownames(res),
x = 'log2FoldChange',
y = 'pvalue',
pCutoff = 10e-4,
FCcutoff = 1.333,
xlim = c(-5.5, 5.5),
ylim = c(0, -log10(10e-12)),
pointSize = 1.5,
labSize = 2.5,
title = 'DESeq2 results',
subtitle = 'Differential expression',
caption = 'FC cutoff, 1.333; p-value cutoff, 10e-4',
legendPosition = "right",
legendLabSize = 14,
col = c('grey30', 'forestgreen', 'royalblue', 'red2'),
colAlpha = 0.9,
drawConnectors = TRUE,
hline = c(10e-8),
widthConnectors = 0.5)
Index

EnhancedVolcano, 2

ggalt, 5
ggplot2, 7
ggrastr, 7