Package ‘Dune’

March 1, 2024

Title Improving replicability in single-cell RNA-Seq cell type discovery

Version 1.14.0

Description Given a set of clustering labels, Dune merges pairs of clusters to increase mean ARI between labels, improving replicability.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Imports BiocParallel, SummarizedExperiment, utils, ggplot2, dplyr, tidyr, RColorBrewer, magrittr, gganimate, purrr, aricode

Suggests knitr, rmarkdown, testthat (>= 2.1.0)

VignetteBuilder knitr

Depends R (>= 3.6)

biocViews Clustering, GeneExpression, RNASeq, Software, SingleCell, Transcriptomics, Visualization

git_url https://git.bioconductor.org/packages/Dune

git_branch RELEASE_3_18

git_last_commit b34c4db

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-01

Author Hector Roux de Bezieux [aut, cre]

Maintainer Hector Roux de Bezieux <hector.rouxdebezieux@berkeley.edu>
R topics documented:

.adjustedRandIndex ... 2
ARIImp .. 3
ARIs ... 3
ARItrnd ... 4
clusMat ... 5
clusterConversion .. 5
ConfusionEvolution ... 6
ConfusionPlot ... 7
Dune ... 7
functionTracking ... 9
intermediateMat .. 10
NMIImp ... 11
NMIIs .. 11
NMItrnd ... 12
nuclei ... 13
plotARIs ... 13
plotNMIs ... 14
plotPrePost ... 15
whenToStop .. 15

Index

.adjustedRandIndex adjustedRandIndex

Description
adjustedRandIndex

Usage
.adjustedRandIndex(tab)

Arguments
tab The confusion matrix

Value
The ARI
ARIImp

Description

Compute the ARI improvement over the ARI merging procedure

Usage

`ARIImp(merger, unclustered = NULL)`

Arguments

- **merger**: the result from having run `Dune` on the dataset
- **unclustered**: The value assigned to unclustered cells. Default to NULL

Value

a vector with the mean ARI between methods at each merge

See Also

`ARItrend`

Examples

```r
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
plot(0:nrow(merger$merges), ARIImp(merger))
```

ARIs

Description

ARI Matrix

Usage

`ARIs(clusMat, unclustered = NULL)`

Arguments

- **clusMat**: The clustering matrix with a row per cell and a column per clustering label type
- **unclustered**: The value assigned to unclustered cells. Default to NULL
Details

In the ARI matrix where each cell i,j is the adjusted Rand Index between columns i and j of the original clusMat. If unclustered is not NULL, the cells which have been assigned to the unclustered cluster will not be counted towards computing the ARI.

Value

The ARI matrix

Examples

data("clusMat", package = "Dune")
ARIs(clusMat)

Description

A plot to see how ARI improves over merging

Usage

ARItrend(merger, unclustered = NULL)

Arguments

merger

the result from having run Dune on the dataset

unclustered

The value assigned to unclustered cells. Default to NULL

Value

a ggplot object

Examples

data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
ARItrend(merger)
clusMat

A clustering matrix used to demonstrate the ari-merging process.

Description

A clustering matrix used to demonstrate the ari-merging process.

Usage

clusMat

Format

An object of class matrix (inherits from array) with 100 rows and 5 columns.

Details

This matrix has 100 samples with 5 cluster labels. Cluster labels 2 through 5 are modified versions of cluster label 1, where some clusters from label 1 were broken down into smaller clusters. It is just a toy dataset that can be re-generated with the code in https://github.com/HectorRDB/Pipeline_Brain/blob/master/Sandbox/createToyDataset.R

clusterConversion

clusterConversion

Description

Find the conversion between the old cluster and the final clusters

Usage

clusterConversion(merger, p = 1, average_n = NULL, n_steps = NULL)

Arguments

merger the result from having run Dune on the dataset

p A value between 0 and 1. We stop when the metric used for merging has improved by p of the final total improvement. Default to 1 (i.e running the full merging).

average_n Alternatively, you can specify the average number of clusters you want to have.

n_steps Finally, you can specify the number of merging steps to do before stopping.

Details

If more than one of p, average_n and n_steps is specified, then the order of preference is n_steps, then average_n then p.
ConfusionEvolution

Value
A list containing a matrix per clustering method, with a column for the old labels and a column for the new labels.

Examples
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
clusterConversion(merger)[[2]]

ConfusionEvolution Plot the evolution of the ConfusionPlot as merging happens

Description
Animated version of ConfusionPlot

Usage
ConfusionEvolution(merger, unclustered = NULL, x, y, state_length = 1)

Arguments
merger the result from having run Dune on the dataset
unclustered The value assigned to unclustered cells. Default to NULL
x The name of the first cluster label to plot
y The name of the second cluster label to plot
state_length Time between steps. Default to 1. See transition_states for details.

Details
See ConfusionPlot and animate.

Value
a gganim object

Examples
Not run:
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
ConfusionEvolution(merger, x = "A", y = "B")
End(Not run)
ConfusionPlot

Plot confusion matrix

Description

A plot to visualize how alike two clustering labels are.

Usage

ConfusionPlot(x, y = NULL)

Arguments

- **x**: A vector of clustering labels or a matrix of clustering labels. See details.
- **y**: Optional. Another vector of clustering labels

Value

A `ggplot` object

Examples

data("nuclei", package = "Dune")
ConfusionPlot(nuclei[, c("SC3", "Monocle")])

Dune

Compute the Metric between every pair of clustering labels after merging every possible pair of clusters. Find the one that improves the Metric merging the most, merge the pair. Repeat until there is no improvement.

Usage

Dune(clusMat, ...)

```r
## S4 method for signature 'matrix'
Dune(
    clusMat,
    unclustered = NULL,
    verbose = FALSE,
    parallel = FALSE,
    BPPARAM = BiocParallel::bpparam(),
    metric = "NMI"
)
```

Dune(clusMat, unclustered = NULL, verbose = FALSE, parallel = FALSE, BPPARAM = BiocParallel::bpparam(), metric = "NMI")

S4 method for signature 'SummarizedExperiment'
Dune(clusMat, cluster_columns, unclustered = NULL, verbose = FALSE, parallel = FALSE, BPPARAM = BiocParallel::bpparam(), metric = "NMI")

Arguments

- **clusMat**: the matrix of samples by clustering labels.
- **unclustered**: The value assigned to unclustered cells. Default to NULL.
- **verbose**: Whether or not the print cluster merging as it happens.
- **parallel**: Logical, defaults to FALSE. Set to TRUE if you want to parallellize the fitting.
- **BPPARAM**: object of class bpparamClass that specifies the back-end to be used for computations. See bpparam in BiocParallel package for details. Won’t be used if parallel is FALSE.
- **metric**: The metric that is tracked to decide which clusters to merge. For now, either ARI and NMI are accepted. Default to NMI. See details.
- **cluster_columns**: if clusMat is a SummarizedExperiment, then this defines the columns of colData that are outputs from a clustering algorithm.

Details

The Dune algorithm merges pairs of clusters in order to improve the mean adjusted Rand Index or the mean normalized mutual information with other clustering labels. It returns a list with five components:

- **initialMat**: The initial matrix of cluster labels
- **currentMat**: The final matrix of cluster labels
Function Tracking

- **merges**: The step-by-step detail of the merges, recapitulating which clusters were merged in which cluster label.
- **impMetric**: How much each merge improved the mean Metric between the cluster label that has been merged and the other cluster labels.
- **metric**: The metric that was used to find the merges.

Value

A list with four components: the initial matrix of clustering labels, the final matrix of clustering labels, the merge info matrix and the Metric improvement vector.

See Also

`clusterConversion`, `ARIImp`

Examples

```r
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
# clusters 11 to 14 from cluster label 5 and 3 are subset of cluster 2 from
# other cluster labels. Designing cluster 2 as unclustered therefore means we
# do fewer merges.
merger2 <- Dune(clusMat = clusMat, unclustered = 2)
merger$merges
merger2$merges
```

functionTracking
Track the evolution of a function along merging

Description

For a given ARI merging, compute the evolution on the function `f`.

Usage

`functionTracking(merger, f, p = 1, n_steps = NULL, ...)`

Arguments

- **merger**: the result from having run `Dune` on the dataset.
- **f**: the function used. It must take as input a clustering matrix and return a value.
- **p**: A value between 0 and 1. We stop when the metric used for merging has improved by `p` of the final total improvement. Default to 1 (i.e running the full merging).
- **n_steps**: Alternatively, you can specify the number of merging steps to do before stopping.
- **...**: additional arguments passed to `f`.

Value

A vector of length the number of merges

Examples

Return the number of clusters for the fourth cluster label
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
f <- function(clusMat, i) dplyr::n_distinct(clusMat[, i])
functionTracking(merger, f, i = 4)

intermediateMat

Find the clustering matrix that we would get if we stopped the ARI merging early

Description

Find the clustering matrix that we would get if we stopped the ARI merging early

Usage

intermediateMat(merger, p = 1, average_n = NULL, n_steps = NULL)

Arguments

merger the result from having run Dune on the dataset
p A value between 0 and 1. We stop when the metric used for merging has improved by p of the final total improvement. Default to 1 (i.e running the full merging).
average_n Alternatively, you can specify the average number of clusters you want to have.
n_steps Finally, you can specify the number of merging steps to do before stopping.

Details

If more than one of p,average_n and n_steps is specified, then the order of preference is n_steps, then average_n then p.

Value

A data.frame with the same dimensions as the currentMat of the merger argument, plus one column with cell names, related to the rownames of the original input

Examples

data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
head(intermediateMat(merger, n_steps = 1))
NMIImp

Description
Compute the NMI improvement over the NMI merging procedure

Usage
NMIImp(merger, unclustered = NULL)

Arguments
merger the result from having run Dune on the dataset
unclustered The value assigned to unclustered cells. Default to NULL

Value
a vector with the mean NMI between methods at each merge

See Also
NMItrend

Examples
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
plot(0:nrow(merger$merges), NMIImp(merger))

NMIs

Description
NMI Matrix

Usage
NMIs(clusMat, unclustered = NULL)

Arguments
clusMat The clustering matrix with a row per cell and a column per clustering label type
unclustered The value assigned to unclustered cells. Default to NULL
Details

In the NMI matrix where each cell i,j is the normalized mutual information between columns i and j of the original clusMat. If unclustered is not NULL, the cells which have been assigned to the unclustered cluster will not be counted towards computing the NMI.

Value

The NMI matrix

Examples

data("clusMat", package = "Dune")
NMIs(clusMat)

NMItrend

NMI improvement plot

Description

A plot to see how NMI improves over merging

Usage

NMItrend(merger, unclustered = NULL)

Arguments

merger the result from having run Dune on the dataset
unclustered The value assigned to unclustered cells. Default to NULL

Value

a ggplot object

Examples

data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
NMItrend(merger)
nuclei

Cluster labels for a subset of the allen Smart-Seq nuclei dataset

Description
Cluster labels for a subset of the allen Smart-Seq nuclei dataset

Usage
nuclei

Format
An object of class data.frame with 1744 rows and 7 columns.

Details
This matrix of clusters was obtained by running 3 clustering algorithms on a brain snRNA-Seq dataset from Tasic et al (https://doi.org/10.1038/s41586-018-0654-5). This dataset was then subsetted to the GABAergic neurons. Code to reproduce all this can be found in the github repository from the Dune paper (https://github.com/HectorRDB/Dune_Paper).

plotARIs
Plot an heatmap of the ARI matrix

Description
We can compute the ARI between pairs of cluster labels. This function plots a matrix where a cell is the adjusted Rand Index between cluster label of row i and cluster label of column j.

Usage
plotARIs(clusMat, unclustered = NULL, values = TRUE, numericalLabels = FALSE)

Arguments
- clusMat: The clustering matrix with a row per cell and a column per clustering label type
- unclustered: The value assigned to unclustered cells. Default to NULL
- values: Whether to also display the ARI values. Default to TRUE.
- numericalLabels: Whether labels are numerical values. Default to FALSE.

Value
a ggplot object
Examples

```r
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
plotARIs(merger$initialMat)
plotARIs(merger$currentMat)
```

plotNMIs

Plot an heatmap of the NMI matrix

Description

We can compute the NMI between pairs of cluster labels. This function plots a matrix where a cell is the Normalized Mutual Information between cluster label of row i and cluster label of column j.

Usage

```r
plotNMIs(clusMat, unclustered = NULL, values = TRUE, numericalLabels = FALSE)
```

Arguments

- `clusMat` The clustering matrix with a row per cell and a column per clustering label type
- `unclustered` The value assigned to unclustered cells. Default to `NULL`
- `values` Whether to also display the ARI values. Default to `TRUE`.
- `numericalLabels` Whether labels are numerical values. Default to `FALSE`.

Value

a `ggplot` object

Examples

```r
data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat, metric = "NMI")
plotNMIs(merger$initialMat)
plotNMIs(merger$currentMat)
```
plotPrePost

Plot the reduction in cluster size for an ARI merging with Dune

Description

Plot the reduction in cluster size for an ARI merging with Dune

Usage

plotPrePost(merger)

Arguments

merger The output from an ARI merging, by calling Dune

Value

a ggplot object

Examples

data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
plotPrePost(merger)

whenToStop

When to Stop

Description

When to Stop

Usage

whenToStop(merger, p = 1, average_n = NULL)

Arguments

merger the result from having run Dune on the dataset

p A value between 0 and 1. We stop when the metric used for merging has improved by p of the final total improvement. Default to 1 (i.e running the full merging).

average_n Alternatively, you can specify the average number of clusters you want to have.
Details

The Dune process improves the metric. This return the first merging step after which the metric has been improved by p of the total. Setting p = 1 just return the number of merges.

Value

An integer giving the step where to stop.

Examples

data("clusMat", package = "Dune")
merger <- Dune(clusMat = clusMat)
whenToStop(merger, p = .5)
Index

* datasets
 clusMat, 5
 nuclei, 13
 .adjustedRandIndex, 2

animate, 6
ARIImp, 3
ARIs, 3
ARItrend, 4

clusMat, 5
clusterConversion, 5
ConfusionEvolution, 6
ConfusionPlot, 6, 7

Dune, 3–6, 7, 9–12, 15, 16
Dune, data.frame-method (Dune), 7
Dune, matrix-method (Dune), 7
Dune, SummarizedExperiment-method (Dune), 7

functionTracking, 9

ggplot, 4, 7, 12–15

intermediateMat, 10

NMIImp, 11
NMIs, 11
NMItrend, 12
nuclei, 13

plotARIs, 13
plotNMIs, 14
plotPrePost, 15

SummarizedExperiment, 8

transition_states, 6

whenToStop, 15