Package ‘DiscoRhythm’

April 1, 2024

Title Interactive Workflow for Discovering Rhythmicity in Biological Data

Version 1.18.0

Description Set of functions for estimation of cyclical characteristics, such as period, phase, amplitude, and statistical significance in large temporal datasets. Supporting functions are available for quality control, dimensionality reduction, spectral analysis, and analysis of experimental replicates. Contains a R Shiny web interface to execute all workflow steps.

Depends R (>= 3.6.0)

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

VignetteBuilder knitr

Imports matrixTests, matrixStats, MetaCycle (>= 1.2.0), data.table, ggplot2, ggExtra, dplyr, broom, shiny, shinyBS, shinydashboard, shinyjs, BiocStyle, rmarkdown, knitr, kableExtra, magick, VennDiagram, UpSetR, heatmaply, viridis, plotly, DT, gridExtra, methods, stats, SummarizedExperiment, BiocGenerics, S4Vectors, zip, reshape2

Suggests testthat

SystemRequirements To generate html reports pandoc (http://pandoc.org/installing.html) is required.

biocViews Software, TimeCourse, QualityControl, Visualization, GUI, PrincipalComponent

URL https://github.com/matthewcarlucci/DiscoRhythm

BugReports https://github.com/matthewcarlucci/DiscoRhythm/issues

git_url https://git.bioconductor.org/packages/DiscoRhythm

git_branch RELEASE_3_18

git_last_commit 3019321
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-04-01
Author Matthew Carlucci [aut, cre],
Algimantas Kriščiūnas [aut],
Haohan Li [aut],
Povilas Gibas [aut],
Karolis Koncevičius [aut],
Art Petronis [aut],
Gabriel Oh [aut]
Maintainer Matthew Carlucci <Matthew.Carlucci@camh.ca>

R topics documented:

DiscoRhythm-package . 3
checkJTKperiod . 4
checkPeriod . 4
discoApp . 5
discoBatch . 5
discoCheckInput . 7
discoColors . 8
discoDesignSummary . 9
discoDFtoSE . 9
discoGetSimu . 10
discoODAexclusionMatrix . 11
discoODAid2name . 12
discoODAs . 12
discoParseMeta . 14
discoPCA . 15
discoPCAgetOutliers . 16
discoPeriodDetection . 16
discoQC . 17
discoShinyHandler . 19
fisherExact . 19
inferFilteredDesign . 20
lmCSmat . 20
lmCSmatNoNA . 21
PeriodDetection_range . 22
sincos . 23
theme_disco . 23

Index 24
Description

Set of functions for estimation of cyclical characteristics, such as period, phase, amplitude, and statistical significance in large temporal datasets. Supporting functions are available for quality control, dimensionality reduction, spectral analysis, and analysis of experimental replicates. Contains a R Shiny web interface to execute all workflow steps.

Details

The main function to run DiscoRhythm in batch mode is `discoBatch()`. Or to access the DiscoRhythm web application use `discoApp()`.

Author(s)

Maintainer: Matthew Carlucci <Matthew.Carlucci@camh.ca>

Authors:

- Algimantas Krįščiūnas <algimantas.krisciunas@gmc.vu.lt>
- Haohan Li <Xavier.li@edu.uwaterloo.ca>
- Povilas Gibas <povilas.gibas@btv.vu.lt>
- Karolis Koncervičius <karolis.koncevicius@gmc.vu.lt>
- Art Petronis <Art.Petronis@camh.ca>
- Gabriel Oh <Gabriel.Oh@camh.ca>

See Also

Useful links:

- https://github.com/matthewcarlucci/DiscoRhythm
- Report bugs at https://github.com/matthewcarlucci/DiscoRhythm/issues
checkJTKperiod Validate Detection Period for JTK Cycle

Description
Validate Detection Period for JTK Cycle

Usage
checkJTKperiod(time, period)

Value
logical stating whether the period is appropriate for JTK Cycle for this dataset.

checkPeriod Validate Detection Period

Description
Validate Detection Period

Usage
checkPeriod(time, period, min_n_values = 3)

Arguments
- time numeric vector of sample collection times.
- period hypothesized period.
- min_n_values numeric value specifying minimal number of unique "time MODULO period" values.

Value
logical indicating whether the period is suitable for testing given the sampling times of the dataset.
discoApp

Launch the DiscoRhythm Shiny Application

Description

This launches the web interface to DiscoRhythm containing all analysis tools. The vignette contains details on usage.

Usage

discoApp(ncores = 1, port = 3838, local = TRUE)

Arguments

- `ncores` numeric, number of cores to use for parallelized tasks. Currently, only used in oscillation detection function discoODAs.
- `port` numeric, port to run the shiny application on. Sets shiny.port option.
- `local` logical, set to FALSE for public server mode to reduce file size limits.

Value

Nothing is returned by this function.

Examples

```r
## Not run:
discoApp()
## End(Not run)
```

discoBatch

Core DiscoRhythm Workflow

Description

Execute the DiscoRhythm workflow with one command to obtain the results of oscillation detection (discoODAs) and optionally generate an html report with data visualizations from an Rmarkdown template. See the DiscoRhythm vignette for more details on the analysis procedures.
Usage

discoBatch(
 indata,
 report = NULL,
 outdata = TRUE,
 ncores = 1,
 timeType = "circular",
 main_per = 24,
 cor_threshold = 3,
 cor_method = "pearson",
 cor_threshType = "sd",
 pca_threshold = 3,
 pca_scale = TRUE,
 pca_pcToCut = paste0("PC", seq_len(4)),
 aov_method = "None",
 aov_pcut = 0.05,
 aov_Fcut = 0,
 avg_method = "Median",
 osc_method = NULL,
 osc_period = 24
)

Arguments

indata SummarizedExperiment or data.frame, see the vignette for the specific formats expected for each of these input types. discoParseMeta.

report character, if !is.null(report) an html report with

outdata logical, whether to return the final discoODAs (note if run with is.null(report) discoBatch will return nothing).

ncores numeric, number of cores to use for parallelized tasks. Currently, only used in oscillation detection function discoODAs.

timeType character, nature of the sample times provided (one of "circular" or "linear").

main_per numeric, the length of the main hypothesized period (e.g. 24hr for circadian experiments). Used in discoPeriodDetection.

cor_threshold numeric, threshold used in inter-sample correlation analysis for outlier detection. Either in units of correlation coefficient or standard deviations from the mean (see cor_threshType).

cor_method character, which correlation method to use for outlier removal (see cor for more details).

cor_threshType character, one of "sd" or "value" indicating whether cor_threshold should be set by absolute correlation coefficient or by standard deviations from the mean of all samples.

pca_threshold numeric, the number of standard deviations to set as the threshold for outlier detection in PCA outlier removal.

pca_scale logical, whether to scale the data prior to PCA.
discoCheckInput

Usage

```r
discoCheckInput(se, n_min_sample = 3)
```

Description

Performs various checks and cleaning operations on the input data.
Arguments

se
SummarizedExperiment, the main data object used by DiscoRhythm expected to contain seID, seReplicateID, se$Time sample metadata and non-null row-names. See the vignette for more details.

n_min_sample
numeric value specifying minimal number of samples needed to perform analysis.

Details

Rows containing NA's or all constant values are removed. If matrix values are character it will be attempted to convert them to numeric. If input is not a matrix it will be converted using as.matrix(). User will be warned if row IDs contain duplicate entries.

Value

SummarizedExperiment checked for errors and modified as needed

Examples

se <- discoGetSimu(TRUE)
se_clean <- discoCheckInput(se)

discoColors

Color palate used by DiscoRhythm for plotting. This palette is duplicated in inst/app/www/custom_styles.css for application to the shiny app.

Description

Color palate used by DiscoRhythm for plotting. This palette is duplicated in inst/app/www/custom_styles.css for application to the shiny app.

Usage

discoColors

Format

An object of class list of length 14.
discoDesignSummary

Summarize the experimental design

Description

Using sample times and biological sample IDs, constructs a summary table of the number of total samples at each timepoint and additionally summarizes the number of replicates for each biological sample.

Usage

discoDesignSummary(Metadata)

Arguments

Metadata data.frame of sample data, usually generated by using discoParseMeta on the column names of the Maindata data.frame. If is.null(Metadata) and Maindata is provided as input, Metadata will be generated from Maindata.

Value

A table where the first row summarizes the number of datapoints for each timepoint and other cells indicate the number of technical replicates for a given biological sample.

See Also

discoParseMeta

Examples

import example data
Metadata <- SummarizedExperiment::colData(discoGetSimu(TRUE))
Summarize the experiment design
discoDesignSummary(Metadata)

discoDFtoSE

Data formatting for DiscoRhythm

Description

Functions to import a data.frame (from the format expected by the web application discoApp()) as a SummarizedExperiment object or to export a SummarizedExperiment for use with the web application.
Usage

discoDFtoSE(Maindata, Metadata = NULL, shinySession = NULL)
discoSEtoDF(se)

Arguments

Maindata
data.frame with the first column containing row IDs and all subsequent columns containing experimental values. Columns should follow the expected naming format described in the vignette.

Metadata
data.frame of sample data, usually generated by using discoParseMeta on the column names of the Maindata data.frame. If is.null(Metadata) and Maindata is provided as input, Metadata will be generated from Maindata.

shinySession
shiny session object for use only by the DiscoRhythm shiny app discoApp() to update the axis labels using the time value prefix.

se
SummarizedExperiment, the main data object used by DiscoRhythm expected to contain seID, seReplicateID, se$Time sample metadata and non-null row-names. See the vignette for more details.

Value

discoDFtoSE returns a SummarizedExperiment object with colData containing sample metadata.
discoSEtoDF returns a DiscoRhythm format data.frame.

Examples

df <- discoGetSimu()
se <- discoDFtoSE(df)
df <- discoSEtoDF(se)

discoGetSimu Read in the DiscoRhythm Simulated dataset

Description

A convenience function to get the simulated circadian transcriptomic system data file used in DiscoRhythm for various demonstrations and tests.

Usage

discoGetSimu(as_se = FALSE)

Arguments

as_se
logical, indicates if example data should be returned as a SummarizedExperiment or data.frame.
Value

The simulated demo dataset used in the DiscoRhythm web application as a data.frame or Summa-
izedExperiment.

Examples

```r
indata <- discoGetSimu()
```

discoODAexclusionMatrix

Algorithm Exclusion Matrix

Description

A small matrix indicating which algorithms should be excluded given certain experimental designs
and data types.

Usage

discoODAexclusionMatrix

Format

An object of class matrix (inherits from array) with 4 rows and 7 columns.

Examples

```r
# Code used to generate discoODAexclusionMatrix

itemNames <- c(
  "missing_value",
  "with_bio_replicate",
  "non_integer_interval",
  "uneven_interval",
  "circular_t",
  "invalidPeriod",
  "invalidJTKperiod"
)

# Creating requirements matrix, first assuming all methods are valid
# Then appying exclusion criteria of MetaCycle plus CS criteria
mat <- matrix(TRUE, nrow = 4, ncol = length(itemNames))
rownames(mat) <- c("CS", "JTK", "LS", "ARS")
colnames(mat) <- itemNames

# Exclusion criteria from MetaCycle v1.1, i.e. can algorithm handle XXX
mat[c("ARS", "JTK"), c("non_integer_interval", "uneven_interval")]) <- FALSE
```
mat["ARS", "with_bio_replicate"] <- FALSE
mat["ARS", "missing_value"] <- FALSE
mat["JTK", "invalidJTKperiod"] <- FALSE

Additional exclusion criteria
mat["ARS", "circular_t"] <- FALSE
mat["CS", "JTK", "ARS", "LS"]; "invalidPeriod"] <- FALSE
discoODAexclusionMatrix <- mat

discoODAid2name

Mapping Identifiers to Full Names

Description

A small named vector mapping oscillation detection algorithm names to a convenient identifier.

Usage

discoODAid2name

Format

A named vector, length 4

names(discoODAid2name) Identifier
as.vector(discoODAid2name) Full names

discoODAs

Execute Oscillation Detection Using DiscoRhythm

Description

Runs specified oscillation detection algorithms (ODAs) sequentially to obtain oscillation characteristics for each row of the input data.

Usage

discoGetODAs(se, method = NULL, period, circular_t = FALSE)

discoODAs(
 se,
 period = 24,
 method = c("CS", "JTK", "LS", "ARS"),
 circular_t = FALSE,
 ncores = 1
)
Arguments

se SummarizedExperiment, the main data object used by DiscoRhythm expected to contain seID, seReplicateID, se$Time sample metadata and non-null row-names. See the vignette for more details.

method character, short names of ODAs to use. If length>1 all input method names will be evaluated.

period numeric, the hypothesized period to test for.

circular_t logical, is time circular on some base-cycle (ex. time of day). See the DiscoRhythm vignette for details.

ncore numeric, number of cores to parallelize with (applicable to JTK, ARSER and LS only). If 1, will execute in serial.

Details

There are currently 4 available algorithms for rhythm detection:

- **CS** = Cosinor (Cornelissen, G. 2014): a.k.a “Harmonic Regression” fits a sinusoid with a free phase parameter.
- **LS** = Lomb-Scargle (Glynn, 2006): an approach using spectral power density.
- **ARS** = ARSER (Yang, 2010): removes linear trends and performs the Cosinor test.
- **JTK** = JTK Cycle (Hughes, 2010): non-parametric test of rhythmicity robust to outliers.

LS, ARS, and JTK results come directly from MetaCycle meta2d() output using the specified fixed period. ARSmle is set to “nomle” and no method integration is used (see meta2d documentation for details).

CS is implemented directly in DiscoRhythm’s lmCSmat() as the single-component cosinor described in Cornelissen, G. (2014).

All q-values are calculated by performing p.adjust() on the resulting p-values with method=“fdr”.

Technical replicates are expected to be merged (likely by discoRepAnalysis) prior to usage of discoODAs.

The discoGetODAs function is called by discoODAs to determine if the selected methods may be used. If any methods are not valid, a warning will be thrown and only valid methods will be computed. discoGetODAs is not typically used directly, however, it may be called by the user to determine if the provided SummarizedExperiment is suitable for use with the specified methods.

Value

A named list of results where each element is a data.frame for the corresponding method with rownames corresponding to the feature identifiers and columns containing estimates for:

- acrophase
- amplitude
- p-value
- q-value

Additional columns relevant to each method will be present.
References

See Also

lmCSmat meta2d

Examples

```r
# Return valid ODAs for example dataset
discoGetODAs(discoGetSimu(as_se=TRUE), period=24)

# Import the simulated example dataset
se <- discoCheckInput(discoGetSimu(TRUE))

# Use discoRepAnalysis to average technical replicates
se_merged <- discoRepAnalysis(se, aov_pcut=1)$se

# Execute the Cosinor and JTK methods with a 24hr period
discoODAres <- discoODAs(se_merged, method=c("CS", "JTK"))

# Get the index of rhythmic features detected by both methods at qvalue<0.05
idx <- which(discoODAres$CS$qvalue<0.05 & discoODAres$JTK$qvalue<0.05)

# Get the identifiers for common rhythmic features
rownames(se_merged)[idx]
```

discoParseMeta Generate Experiment Metadata

Description

Parses the sample metadata from a vector of sample names (often column names of a Maindata format data.frame).

Usage

discoParseMeta(sample_names, shinySession = NULL)
Arguments

- **samplenames**: character, a list of sample names following the DiscoRhythm naming convention (<prefix><Time>_<UniqueID>_<ReplicateID>).
- **shinySession**: shiny session object for use only by the DiscoRhythm shiny app discoApp() to update the axis labels using the time value prefix.

Details

The regular expression used to obtain metadata is "^([[:alpha:]*])(\-?[0-9]+[\.]?[0-9]*_? ([[:alnum:]\.]_?([[:alnum:]\.]_?([[:alnum:]\.]\?)*\^)*\$"

Where each () will be used to construct the final metadata data.frame

Value

a data.frame containing 3 columns of metadata. ID = unique sample identity. Time = sample collection time. ReplicateID = Identifier where Time + ReplicateID indicates a biological sample ID.

Examples

discoParseMeta(c("CT24_AD_1","CT24_AS_1","CT24_AE_2","CT24_AW_2", "CT26_AB_1","CT26_AC_1","CT26_BB_2","CT26_BC_2"))

discoPCA

Perform PCA

Description

Calculates PCA results from prcomp with error handling and outputs suitable for the DiscoRhythm workflow.

Usage

discoPCA(se, scale = TRUE,npcs = 10)

Arguments

- **se**: SummarizedExperiment, the main data object used by DiscoRhythm expected to contain seID, seReplicateID, se$Time sample metadata and non-null row-names. See the vignette for more details.
- **scale**: logical, whether or not to scale the data prior to PCA, see prcomp for more details.
- **npcs**: numeric, maximum number of principal components to return.
Value

output from prcomp with an added table summary

Examples

se <- discoGetSimu(TRUE)
pca <- discoPCA(se)

discoPCAgetOutliers

Internal function for applying SD cutoff to PCA results Returns a logical indicating which samples are not outliers

Description

Internal function for applying SD cutoff to PCA results Returns a logical indicating which samples are not outliers

Usage

discoPCAgetOutliers(x, SDfactor = 3, pcToCut = seq_len(4))

Value

logical indicating which samples are outliers in PCA

discoPeriodDetection

Detect dataset-wide fits to multiple periodicities

Description

Detect dataset-wide fits to multiple periodicities

Usage

discoPeriodDetection(
 se,
 timeType = c("linear", "circular"),
 main_per = 24,
 test_periods = NULL
)
Arguments

se SummarizedExperiment, the main data object used by DiscoRhythm expected to contain seID, seReplicateID, se$Time sample metadata and non-null row-names. See the vignette for more details.

timeType character, time is either reported as "linear" or "circular" on some base-cycle (ex. time of day). This determines the periods that will be tested for.

main_per numeric, if timeType="circular" main_per indicates the period of the base-cycle where sampling times are derived.

test_periods numeric, a vector of the periods to test. if timeType="linear" and length(test_periods)==2 it will be assumed to be a range of periods to test over.

Value

A data.frame of Rsquared values for each period, for each row of Maindata.

Examples

```r
se <- discoGetSimu(TRUE)
# Detect periods
rsqs <- discoPeriodDetection(se)
```

Description

Functions for executing outlier detection and row filtering procedures prior to rhythmicity analysis.

Usage

discoPCAOutliers(se, threshold = 3, scale = TRUE, pcToCut = seq_len(4))
discoInterCorOutliers(
 se,
 cor_method = c("pearson", "kendall", "spearman"),
 threshold = 3,
 thresh_type = c("sd", "value")
)
discoRepAnalysis(
 se,
 aov_method = c("Equal Variance", "Welch", "None"),
 aov_pcut = 0.05,
 aov_Fcut = 0,
 avg_method = c("Median", "Mean", "Random", "None")
)
Arguments

- **se**: SummarizedExperiment, the main data object used by DiscoRhythm expected to contain seID, seReplicateID, se$Time sample metadata and non-null row-names. See the vignette for more details.
- **threshold**: numeric, a threshold determining which samples are outliers (for discoInterCorOutliers, in units of thresh_type, for discoPCAOutliers in units of standard deviations).
- **scale**: logical, whether or not to scale the data prior to PCA, see `prcomp` for more details.
- **pcToCut**: numeric, which PCs to use for outlier detection. It is recommended to select the first X PCs based on which PCs explain a significant amount of variance in the data.
- **cor_method**: character, method of pairwise correlation (see `cor`'s "method" argument for all options).
- **thresh_type**: character indicating threshold type (either standard deviations below the mean, or an absolute correlation value). One of: "sd" or "value".
- **aov_method**: character, method to use for ANOVA. One of: "Equal Variance", "Welch", or "None".
- **aov_pcut**: numeric, p-value cutoff used to select rows with statistically significant signal-to-noise.
- **aov_Fcut**: numeric, F-statistic cutoff used to select rows with high signal-to-noise based on magnitude.
- **avg_method**: character, method for averaging technical replicates. One of: "Median", "Mean", "Random", or "None".

Value

A list containing PCA results and the detected outliers

- 1) outliers - named logical indicating if the sample is an outlier
- 2) meanCor - mean of all pairwise correlations for a given sample
- 3) corMat - Matrix of all pairwise correlation values

Examples

```r
se <- discoGetSimu(TRUE)
PCAre <- discoPCAOutliers(se)
CorRes <- discoInterCorOutliers(se)
ANOVAres <- discoRepAnalysis(se)
```
discoShinyHandler

`discoShinyHandler` Handle Error/Warning messages appropriately with shiny notifications for warnings and pop-ups for errors

Description

Handle Error/Warning messages appropriately with shiny notifications for warnings and pop-ups for errors

Usage

```r
discoShinyHandler(expr, section = "Execution", shinySession = NULL)
```

Value

output from expr

fisherExact

`fisherExact` Extract key values from stats::fisher.test results

Description

Set p-values of 0 to < 2.2e-16 and reformat odds ratio using formatC

Usage

```r
fisherExact(var1, var2)
```

Value

modified output of `fisher.test`
inferFilteredDesign
DiscoRhythm Experimental Design

Description
Infer the experimental design from various input data.

Usage

```
inferFilteredDesign(se)
```

Arguments

- `se`
 SummarizedExperiment, the main data object used by DiscoRhythm expected to contain `se$ID`, `se$ReplicateID`, `se$Time` sample metadata and non-null row-names. See the vignette for more details.

Details
Characteristics of the experiment sampling are gathered to determine which oscillation detection algorithms are suitable.

Value

- list with inferred experimental design features needed to perform replicate analysis and merging in `discoRepAnalysis`.

lmCSmat
Cosinor

Description
Fixed period cosinor ("harmonic regression") on each row of a matrix.

Usage

```
lmCSmat(x, zts, per = 24)
```

Arguments

- `x`
 - numeric data matrix

- `zts`
 - numeric vector of length `ncol(data)` representing time points for each data column

- `per`
 - period of oscillations (default=24)
Details

Fits a cosinor model to each row of a matrix.

Value

data frame with the following estimated statistics:

- acrophase - acrophases
- amplitude - amplitudes
- Rsq - r-squared values
- pvalue - p-values
- mesor - intercept coefficient
- sincoef - sine coefficient
- coscoef - cosine coefficient

Author(s)

Karolis Koncevičius

Examples

```r
## Not run:
tmpData <- matrix(rnorm(24 * 1000), ncol = 24)
tmpData[sample(length(tmpData), nrow(tmpData))] <- NA
lmCSmat(tmpData, 1:24, 24)
## End(Not run)
```

lmCSmatNoNA
Cosinor Without NA Values

Description

Fixed period cosinor on each row of a matrix with no missing values.

Usage

```r
lmCSmatNoNA(x, zts, per = 24)
```

Arguments

- `x` - numeric data matrix
- `zts` - numeric vector of length ncol(data) representing time points for each data column
- `per` - period of oscillations (default=24)
Details

Fits a cosinor model to each row of a matrix that has no NA values.

Value

data frame with the following estimated statistics:

- acrophase - acrophases
- amplitude - amplitudes
- Rsq - r-squared values
- pvalue - p-values
- mesor - intercept coefficient
- sincoef - sine coefficient
- coscoef - cosine coefficient

Author(s)

Karolis Koncevičius

Examples

```r
## Not run:
tmpData <- matrix(rnorm(24 * 1000), ncol = 24)
lmCSmat(tmpData, 1:24, 24)
## End(Not run)
```

Description

Helper for discoPeriodDetection

Usage

`PeriodDetection_range(times, circular_t, main_per, test_periods)`

Value

a set of periods to use for discoPeriodDetection
sincos

\textit{sin/cos cosinor operations}

Description

Converts sine and cosine coefficients to acrophase/amplitude

Usage

\begin{verbatim}
sincos2acr(sin, cos, per = 24)
sincos2amp(sin, cos)
\end{verbatim}

Arguments

- \textit{sin} - sine coefficient returned from cosinor model.
- \textit{cos} - cosine coefficient returned from cosinor model.
- \textit{per} - period of oscillation (default = 24).

Value

acrophase

Author(s)

Matthew Carlucci

Examples

\begin{verbatim}
Not run: # don't run since internal
sincos2acr(0.5, 0.5, per = 24)
sincos2amp(0.5, 0.5)
End(Not run)
\end{verbatim}

\textit{theme_disco}

\textit{Common theme elements in DiscoRhythm plots}

Description

Common theme elements in DiscoRhythm plots

Usage

\begin{verbatim}
theme_disco()
\end{verbatim}
Index

* datasets
 discoODAexclusionMatrix, 11
 discoODAid2name, 12
* internal
 checkJTKperiod, 4
 checkPeriod, 4
 discoColors, 8
 discoPCAgetOutliers, 16
 DiscoRhythm-package, 3
 discoShinyHandler, 19
 fisherExact, 19
 inferFilteredDesign, 20
 lmCSmat, 14
 lmCSmatNoNA, 21
 PeriodDetection_range, 22
 sincos, 23
 theme_disco, 23
 discoApp, 5
 discoBatch, 5
 discoCheckInput, 7
 discoColors, 8
 discoDesignSummary, 9
 discoDFtoSE, 9
 discoGetODAs (discoODAs), 12
 discoGetSimu, 10
 discoInterCorOutliers (discoQC), 17
 discoODAexclusionMatrix, 11
 discoODAid2name, 12
 discoODAs, 12
 discoParseMeta, 14
 discoPCA, 15
 discoPCAgetOutliers, 16
 discoPCAnOutliers (discoQC), 17
 discoPeriodDetection, 16
 discoQC, 17
 discoRepAnalysis (discoQC), 17
 DiscoRhythm (DiscoRhythm-package), 3
 DiscoRhythm-package, 3
 discoSEtoDF (discoDFtoSE), 9
 discoShinyHandler, 19
 fisher.test, 19
 fisherExact, 19
 inferFilteredDesign, 20
 lmCSmat, 14
 lmCSmatNoNA, 21
 meta2d, 14
 PeriodDetection_range, 22
 prcomp, 15, 16, 18
 sincos, 23
 sincos2acr (sincos), 23
 sincos2amp (sincos), 23
 theme_disco, 23