Package ‘Damsel’

May 1, 2024

Type Package
Title Damsel: an end to end analysis of DamID
Version 1.0.0
Description Damsel provides an end to end analysis of DamID data.

Damsel takes bam files from Dam-only control and fusion samples and counts the reads matching to each GATC region. edgeR is utilised to identify regions of enrichment in the fusion relative to the control. Enriched regions are combined into peaks, and are associated with nearby genes.

Damsel allows for IGV style plots to be built as the results build, inspired by ggcoverage, and using the functionality and layering ability of ggplot2.

Damsel also conducts gene ontology testing with bias correction through goseq, and future versions of Damsel will also incorporate motif enrichment analysis.

Overall, Damsel is the first package allowing for an end to end analysis with visual capabilities. The goal of Damsel was to bring all the analysis into one place, and allow for exploratory analysis within R.

License MIT + file LICENSE
Encoding UTF-8
Suggests BiocStyle, biomaRt, biovizBase,
 BSgenome.Dmelanogaster.UCSC.dm6, knitr, limma, org.Dm.eg.db,
 markdown, testthat (>= 3.0.0),
 TxDb.Dmelanogaster.UCSC.dm6.ensGene
Config/testthat/edition 3
Depends R (>= 4.4.0)
RoxygenNote 7.3.1
Imports AnnotationDbi, Biostrings, dplyr, edgeR, GenomeInfoDb,
 GenomicFeatures, GenomicRanges, ggbio, ggplot2, goseq,
 magrittr, patchwork, plyranges, reshape2, rlang, Rsamtools,
 Rsubread, stats, stringr, tidyr, utils

BugReports https://github.com/Oshlack/Damsel
URL https://github.com/Oshlack/Damsel
biocViews DifferentialMethylation, PeakDetection, GenePrediction,
 GeneSetEnrichment
VignetteBuilder knitr
LazyData FALSE

git_url https://git.bioconductor.org/packages/Damsel
git_branch RELEASE_3_19
git_last_commit f617ae8
git_last_commit_date 2024-04-30

Repository Bioconductor 3.19
Date/Publication 2024-04-30

Author Caitlin Page [aut, cre] (<https://orcid.org/0009-0004-7949-8143>)

Maintainer Caitlin Page <caitlin.page@petermac.org>

Contents

- Damsel-package ... 3
- %>% ... 3
- annotatePeaksGenes 4
- collateGenes .. 5
- countBamInGATC ... 6
- dros_counts ... 7
- geom_dm .. 8
- geom_gatc ... 9
- geom_genes_tx .. 10
- geom_peak ... 11
- getGatcRegions .. 13
- identifyPeaks ... 13
- makeDGE .. 14
- plotCorrHeatmap ... 16
- plotCounts ... 17
- plotGeneOntology ... 18
- plotWrap .. 19
- random_counts .. 21
- random_edgeR_results 22
- random_regions .. 22
- testDmRegions ... 23
- testGeneOntology ... 24

Index 26
Damsel-package

Damsel: Damsel: an end to end analysis of DamID

Description

Damsel provides an end to end analysis of DamID data. Damsel takes bam files from Dam-only control and fusion samples and counts the reads matching to each GATC region. edgeR is utilised to identify regions of enrichment in the fusion relative to the control. Enriched regions are combined into peaks, and are associated with nearby genes. Damsel allows for IGV style plots to be built as the results build, inspired by ggcoverage, and using the functionality and layering ability of ggplot2. Damsel also conducts gene ontology testing with bias correction through goseq, and future versions of Damsel will also incorporate motif enrichment analysis. Overall, Damsel is the first package allowing for an end to end analysis with visual capabilities. The goal of Damsel was to bring all the analysis into one place, and allow for exploratory analysis within R.

Author(s)

Maintainer: Caitlin Page <caitlin.page@petermac.org> (ORCID)

See Also

Useful links:

- https://github.com/Oshlack/Damsel

%>%% Pipe operator

Description

See magrittr::%>% for details.

Usage

```
lhs %>% rhs
```

Arguments

- **lhs**: A value or the magrittr placeholder.
- **rhs**: A function call using the magrittr semantics.

Value

The result of calling ‘rhs(lhs)’.
annotatePeaksGenes

Examples

```r
random_regions()$seqnames %>% unique()
```

Description

`annotatePeaksGenes` identifies the closest gene(s) for the peaks outputted from `aggregate_peaks()`. This distance is relative, as the function will identify the closest genes, even if they are up to a million bp away. The `max_distance` parameter limits this, with a default setting of 5000 bp. All of the possible pairings are visible with `max_distance=NULL`. The minimum distance between the peak and gene is calculated, (0 if the peak is within the gene or vice versa) and the relative position of the peak to the gene is also provided (Upstream, Downstream, Overlapping upstream, Contained within etc).

Usage

```r
annotatePeaksGenes(peaks, genes, regions, max_distance = 5000)
```

Arguments

- **peaks**: A data.frame of peaks as outputted from `[aggregate_peaks()]`.
- **genes**: A data.frame of genes as outputted from `[get_biomart_genes()]`.
- **regions**: A `GRanges` object of GATC regions.
- **max_distance**: A number providing the limit for the minimum distance from peak to gene.
 * Default is 5000. If set to `NULL`, will output all available combinations.

Value

A ‘list’ of 3 ‘data.frames’:
* closest - every peak with it’s closest gene
* top_5 - every peak with list of 5 closest genes
* all - all genes matching to each peak and all information

Examples

```r
txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
library(TxDb.Dmelanogaster.UCSC.dm6.ensGene)
library(org.Dm.eg.db)
set.seed(123)
example_regions <- random_regions()
dm_results <- random_edgeR_results()
peaks <- identifyPeaks(dm_results)
txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
genes <- collateGenes(genes = txdb, regions = example_regions, org.Db = org.Dm.eg.db)

annotatePeaksGenes(peaks, genes, example_regions, max_distance = 5000)
# view all combinations
annotatePeaksGenes(peaks, genes, example_regions, max_distance = NULL)
```
collateGenes Get list of genes

Description
Takes a Txdb object, path to a gff file, or a species (biomaRt) and returns a GRanges of genes.

Usage
collateGenes(genes, regions, org.Db = NULL, version = NULL)

Arguments
- genes: A Txdb object, path to file, or a species for accessing biomaRt.
- regions: GATC region file.
- org.Db: Required if using a Txdb object so to access gene names.
- version: Required for using biomaRt.

Value
A GRanges object of genes and available supplementary information - specifically the TSS, and number of GATC regions overlapping the gene.

References

Examples
library(TxDb.Dmelanogaster.UCSC.dm6.ensGene)
library(org.Dm.eg.db)
set.seed(123)
example_regions <- random_regions()
txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
genes <- collateGenes(genes = txdb, regions = example_regions, org.Db = org.Dm.eg.db)
head(genes)
countBamInGATC Obtain region counts for BAM files

Description

'countBamInGATC()' obtains the raw counts for the regions between GATC sites, from indexed BAM files specified in the path.

Usage

countBamInGATC(path_to_bams, regions, nthreads = 2, ...)

Arguments

path_to_bams A string identifying the directory containing the BAM files.
regions A GRanges object of GATC regions. The GATC regions can be made with 'gatc_track()'.
nthreads The number of computer cores to be used to parallelise the function and decrease it’s run time. If not specified, will use default (2 cores). * If computer is being used for multiple tasks at once, we recommend reducing the number of cores - or leave it at the default setting. * The number of available cores can be checked using [parallel::detectCores()]
... Other arguments passed onto ‘Rsubread::featureCounts()’

Value

A ‘data.frame’ containing the GATC region information in the form in the columns: seqnames (chromosome), start, end, width, and strand. The count information for the BAM files is in the subsequent columns, named by the name of the BAM file. * The ".bam" extension is retained in the sample name as an identifier for the sample columns * If necessary, at this stage please rearrange the BAM file columns so they are ordered in the following way: Dam_1, Fusion_1, Dam_2, Fusion_2 etc * The DamID data captures the ~75bp region extending from each GATC site, so although regions are of differing widths, there is a null to minimal length bias present on the data, and does not require length correction.

References

Examples

```r
path_to_bams <- system.file("extdata", package = "Damsel")
example_regions <- random_regions()
counts.df <- countBamInGATC(path_to_bams,
    regions = example_regions,
    nthreads = 2
)
head(counts.df)
# rearrange columns of bam files so that: Dam_1, Fusion_1, Dam_2, Fusion_2
```

Description

A subset of data from the DamID experiment in Vissers et al., (2018), GEO accession GSE120731. Shown are the 2 Dam-only controls, and the 2 Scalloped fusion samples. The samples have the following accessions: * Dam_1: SRR7948872 * Sd_1: SRR7948874 * Dam_2: SRR7948876 * Sd_2: SRR7948877

Usage

```r
data("dros_counts")
```

Format

```r
## 'dros_counts' A data frame with 383,654 rows and 10 columns:
Position Chromosome and start position
seqnames Chromosome name
start, end, width Region information
strand DNA strand
dam_1_SRR7948872.BAM, sd_1_SRR7948874.BAM, dam_2_SRR7948876.BAM, sd_2_SRR7948877.BAM
Sample counts
```

Details

Individual samples were downloaded in fastq format from the SRA portal. Instructions for using 'pre-fetch' to download the accessions and 'fasterq-dump' to extract the files can be found here: https://github.com/ncbi/sra-tools/wiki/08.-prefetch-and-fasterq-dump

As per Vissers et. al., (2018), the fastq files were aligned into Bam files using Rsubread with appropriate settings for single and paired-end files. The Bamfiles were sorted and indexed using Samtools. Alignment: Rsubread ‘buildindex(basename = "dros_ref", reference = "path/to/fasta")’ For the single end ‘align(index = "dros_ref", readfile1 = "path/SRR7948877.fastq")’ For the paired ‘align(index = "dros_ref", readfile1 = "path/SRR7948872_1.fastq.gz", path/SRR7948872_2.fastq.gz")’
The Bam files were then sorted with `samtools sort file_in.BAM -o file_out.BAM` before being indexed with `samtools index file_out.BAM -o file_out.BAM.bai`.

The counts file was made by running `countBamInGATC()` using the above samples, and a GATC region file made from: `getGatcRegions(BSgenome.Dmelanogaster.UCSC.dm6)$regions`.

Source

geom_dm

Plotting results from differential methylation testing

Description

`geom_dm.res.lfc` is a ggplot2 layer that visualises the dm_results and logFC across a given region.

Usage

```r
geom_dm(dm_results.df, plot.space = 0.1, plot.height = 0.1)
```

Arguments

- `dm_results.df` A data.frame of differential testing results as outputted from `edgeR_results()`.
- `plot.space` Specify gap to next plot. Recommend leaving to the default: 0.1.
- `plot.height` Specify overall height of plot. Recommend leaving to the default: 0.1.

Details

* regions are coloured by dm result: 1, 0, NA (grey for NA) * cannot be plotted by itself, must be added to an existing plot - see examples.

Value

A ‘ggplot_add’ object.

References

ggcoverage - Visualise and annotate omics coverage with ggplot. https://github.com/showteeth/ggcoverage/tree/main

See Also

[geom_peak()] [plotCounts()] [geom_genes()] [geom_gate()] [plotWrap()] [ggplot2::ggplot_add()]
Examples

```r
set.seed(123)
counts.df <- random_counts()
dm_results <- random_edgeR_results()
plotCounts(counts.df,
  seqnames = "chr2L",
  start_region = 1,
  end_region = 40000,
  log2_scale = FALSE
) +
  geom_dm(dm_results)
```

Description

'geom_gatc' is a ggplot2 layer that visualises the positions of GATC sites across a given region. It cannot be plotted by itself, must be added to an existing ggplot2 object - see examples.

Usage

```r
geom_gatc(
  gatc_sites.df = NULL,
  gatc.color = "red",
  gatc.size = 5,
  plot.space = 0.2,
  plot.height = 0.05
)
```

Arguments

- **gatc_sites.df**: A data.frame of positions of GATC sites - can be made from `gate_track()`$sites.
- **gatc.color**: Specify colour of lines. Default is red.
- **gatc.size**: Specify size of the line. Default is 5.
- **plot.space**: Specify gap to next plot. Recommend leaving to the default: 0.2.
- **plot.height**: Specify overall height of the plot. Recommend leaving to the default: 0.05.

Value

A `ggplot_add` object.

References

ggcoverage - Visualise and annotate omics coverage with ggplot2. https://github.com/showteeth/ggcoverage/tree/main
See Also

[plotCounts()] [geom_peak()] [geom_dm()] [geom_genes.tx()] [plotWrap()] [ggplot2::ggplot_add()]

Examples

```r
set.seed(123)
exampol_regions <- random_regions()
counts.df <- random_counts()
gatc_sites <- dplyr::mutate(example_regions,
  start = start - 3, end = start + 4, width = end - start + 1
)

plotCounts(counts.df,
  seqnames = "chr2L",
  start_region = 1,
  end_region = 40000,
  log2_scale = FALSE
) +
  geom_gatc(gatc_sites)
# The plots can be layered --------------------------------------------
```

tocentor

Description

`geom_genes_tx` is a ggplot2 layer that visualises the positions of genes across a given region. * cannot be plotted by itself, must be added to an existing ggplot object - see examples.

Usage

```r
geom_genes_tx(
  genes.df,
  txdb,
  gene_limits = NULL,
  plot.space = 0.1,
  plot.height = 0.3
)
```

Arguments

- **genes.df**
 - A data.frame of genes as outputted from `get_biomart_genes`.
- **txdb**
 - A TxDb object as from a TxDb package.
- **gene_limits**
 - Set the height of the transcripts generated by `ggbio::autoplot()`. Default is NULL. * If the gene is disproportionately large for the plot space, we recommend reducing the size with gene_limits = c(0,2). * If there are a large amount of transcripts present, we recommend increasing the overall limit, example: gene_limits = c(0,11).
geom_peak

plot.space Specify gap to next plot. Recommend leaving to the default: 0.1.
plot.height Specify overall height of plot. Recommend leaving to the default: 0.3.

Value

A ‘ggplot_add‘ object.

References

ggcoverage - Visualise and annotate omics coverage with ggplot2. https://github.com/showteeth/ggcoverage/tree/main

See Also

[geom_peak()] [geom_dm()] [geom_counts()] [geom_gatc()] [plotWrap()] [ggplot2::ggplot_add()]

Examples

```r
library(TxDb.Dmelanogaster.UCSC.dm6.ensGene)
library(org.Dm.eg.db)
set.seed(123)
example_regions <- random_regions()
counts.df <- random_counts()

txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
genes <- collateGenes(txdb, example_regions, org.Dm.eg.db)

plotCounts(counts.df,
  seqnames = "chr2L",
  start_region = 1,
  end_region = 40000,
  log2_scale = FALSE
 ) +
  geom_genes_tx(genes, txdb)
```

Description

‘geom_peak‘ is a ggplot2 layer that visualises the positions of peaks across a given region. * cannot be plotted by itself, must be added to an existing ggplot object - see examples.
Usage

 geom_peak(
 peaks.df = NULL,
 peak.label = FALSE,
 peak.color = "black",
 peak.size = 5,
 plot.space = 0.1,
 plot.height = 0.05
)

Arguments

- **peaks.df**: A `data.frame` of peaks as outputted from 'aggregate_peaks()'.
- **peak.label**: Specify whether peak_id labels should be added to the plot. Default is FALSE.
- **peak.color**: Specify colour of peak. Default is black.
- **peak.size**: Specify size of rectangle. Default is 5.
- **plot.space**: Specify gap to next plot. Recommend leaving to the default: 0.1.
- **plot.height**: Specify overall height of plot. Recommend leaving to the default: 0.05.

Value

A ‘ggplot_add’ object.

References

ggcoverage - Visualise and annotate omics coverage with ggplot2. https://github.com/showteeth/ggcoverage/tree/main

See Also

- plotCounts()
- geom_dm()
- geom_genes.tx()
- geom_gatc()
- plotWrap()
- ggplot2::ggplot_add()

Examples

```r
set.seed(123)
counts.df <- random_counts()
dm_results <- random_edgeR_results()
peaks <- identifyPeaks(dm_results)
plotCounts(counts.df,
  seqnames = "chr2L",
  start_region = 1,
  end_region = 40000,
  log2_scale = FALSE
) +
  geom_peak(peaks)
```
```r
plotCounts(counts.df,
  seqnames = "chr2L",
  start_region = 1,
  end_region = 40000,
  log2_scale = FALSE
) +
  geom_peak(peaks)
```
getGatcRegions

Extract GATC regions

Description

‘getGatcRegions’ identifies and extracts the GATC sites and regions from a BSgenome object or a fasta file.

Usage

getGatcRegions(object)

Arguments

object A BSgenome package OR the path to a FASTA file.

Value

A ‘GRangesList’ object of two GRanges; regions - providing the coordinates between adjacent GATC sites, and sites - providing the coordinates of the GATC sites.

Examples

if (require("BSgenome.Dmelanogaster.UCSC.dm6")) {
 gatc <- getGatcRegions(BSgenome.Dmelanogaster.UCSC.dm6::BSgenome.Dmelanogaster.UCSC.dm6)
 head(gatc$regions)
 head(gatc$sites)
}

identifyPeaks

Identify peaks from differentially methylated regions

Description

‘identifyPeaks’ aggregates neighbouring differentially methylated regions, identifying ‘peaks’ where the provided transcription factor is believed to have bound to the DNA. These locations can then be used to identify the potential target genes.

Usage

identifyPeaks(dm_results, gap_size = 150)
Arguments

dm_results The results from differential testing.

gap_size The maximum gap in base pairs between differentially methylated regions to be 'skipped'. Default is 150

Details

Small unmethylated regions are able to be 'skipped' over and included into peaks through the gap_size parameter, whose default is 150bp. This was selected due to the common approach of 75bp sequencing of DamID from the edges of the fragments. The FDR and logFC for each peak is calculated via the theory of [csaw::getBestTest()] where the 'best' (smallest) p-value in the regions that make up the peak is selected as representative of the peak. The logFC is therefore the corresponding logFC from the FDR.

Value

A data.frame of peaks ranked by p-value.

References

Examples

```r
set.seed(123)
counts.df <- random_counts()
dm_results <- random_edgeR_results()
peaks <- identifyPeaks(dm_results)
peaks
```

```
makeDGE Create DGE object for differential testing
```

Description

'makeDGE()' sets up the edgeR analysis for visualisation of the samples [limma::plotMDS()], and then for identifying differentially methylated regions [edgeR_results()].
Usage

makeDGE(
 counts.df,
 max.width = 10000,
 lib.size = NULL,
 min.cpm = 0.5,
 min.samples = 3
)

Arguments

counts.df A data.frame generated from [process_bams]. Ensure that the samples are ordered by (Dam_1.bam, Fusion_1.bam, Dam_2.bam, Fusion_2.bam, ...).

max.width Remove large regions, default is width of 10,000. We recommend this value as the Dam can methylate GATC sites up to 5kb away from the binding site, generating a total width of 10 kb.

lib.size Library size for each sample is calculated as the sum across all rows for that sample unless otherwise specified.

min.cpm Filtering parameter, minimum counts per million (cpm) of each sample. Recommend leaving at default of 0.5.

min.samples Filtering parameter, minimum number of samples to meet the criteria of keep_a in order to retain the region in the downstream analysis. Default is 3 (assuming 6 samples).

Value

An object of class ‘DGEList’. Refer to [edgeR::DGEListClass] for details

References

See Also

[edgeR_results()] [process_bams()]
Examples

```r
counts.df <- random_counts()
makeDGE(counts.df)

plotCorrHeatmap(counts.df, method = "spearman")
```

plotCorrHeatmap
Plot correlation heatmap

Description

`plotCorrHeatmap` plots the correlation of all available BAM files Dam and Fusion, to visualise the similarity between files. * uses the non-parametric "spearman's" correlation.

Usage

```r
plotCorrHeatmap(df, method = "spearman")
```

Arguments

- `df` A data.frame of GATC region counts as outputted from `[process_bams()]`.
- `method` The correlation method used. If not specified, will use default of non-parametric spearman’s. * Non-parametric methods are recommended as data does not reliably meet the requirements for parametric analysis.

Details

The correlation between Dam_1 and Fusion_1 can be expected to reach ~ 0.7, whereas the correlation between Dam_1 & Dam_3 or Fusion_1 & Fusion_2 would be expected to be closer to ~0.9

Value

A ‘ggplot2’ object. A heatmap style plot of the samples, coloured by correlation value. * Colour spectrum is determined from the minimum correlation as the lowest correlation, the median correlation as the midpoint colour, and 1 as the top colour.

Examples

```r
counts.df <- random_counts()
plotCorrHeatmap(counts.df, method = "spearman")
```
plotCounts

Plot for counts for all samples across a given region

Description

'plotCounts' plots a ggplot2 object visualising the raw counts from the bam files across a given region. * this can be used as the base layer (set n_col = 1) for additional plot layers (geom_peak.new, geom_gatc, geom_de.res.lfc etc)

Usage

plotCounts(
 counts.df,
 seqnames,
 start_region = NULL,
 end_region = NULL,
 layout = c("stacked", "spread"),
 log2_scale = FALSE,
 colours = NULL,
 ...
)

Arguments

counts.df A data.frame of counts as outputted from [process_bams()].
seqnames A character string of the chromosome of interest.
start_region A number providing the start of region to plot.
end_region A number providing the end of region to plot.
layout Determines the layout of the plot. Default is "stacked" collapsing the Dam samples into one plot, and the Fusion samples into another. Samples can be plotted separately using "spread".
log2_scale Determines whether or not to display the counts on a log2 scale. Default is FALSE.
colours Specify colours for the replicates.
... Arguments passed to ggplot2

Value

A 'ggplot2' object.

References

ggcovr - Visualise and annotate omics coverage with ggplot2. https://github.com/showteeth/ggcovr/tree/main
plotGeneOntology

Plot gene ontology results

Description

‘plotGeneOntology()’ plots the top 10 GO terms in a ggplot2 style plot.

Usage

plotGeneOntology(signif_results, fdr_threshold = 0.05)

Arguments

signif_results The results as outputted from goseq_fn$signif_results. Selects the top 10 GO terms as default.

fdr_threshold The FDR threshold used for significance in the ontology. Default is 0.05
plotWrap

Details

A dot plot with the FDR on the x-axis, the size of the dot being the number of genes in the GO category, and the colour of the dot being the ontology (Biological Process, Cellular Component, and Molecular Function).

Value

A ggplot2 object

Examples

```r
library("TxDb.Dmelanogaster.UCSC.dm6.ensGene")
library("org.Dm.eg.db")
set.seed(123)
example_regions <- random_regions()
peaks <- identifyPeaks(random_edgeR_results())
txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
genes <- collateGenes(genes = txdb, regions = example_regions, org.Db = org.Dm.eg.db)
annotation <- annotatePeaksGenes(peaks, genes, example_regions)$all
ontology <- testGeneOntology(annotation, genes, example_regions)$signif_results
plotGeneOntology(ontology)
```

Description

'plot_wrap' plots all the available plots at once

Usage

```r
plotWrap(
  id = NULL,
  seqnames = NULL,
  start_region = NULL,
  end_region = NULL,
  counts.df = NULL,
  dm_results.df = NULL,
  peaks.df = NULL,
  genes.df = NULL,
  txdb = NULL,
  gatc_sites.df = NULL,
  extend_by = 250,
  ...
)
```
Arguments

id
A character vector of peak OR gene identifier(s) if wish to plot in peak/gene centric manner. Default is NULL.

seqnames
A chromosome. Default is NULL.

start_region
A number providing the start of region to plot. Default is NULL.

end_region
A number providing the end of region to plot. Default is NULL.

counts.df
A data.frame of counts as from [process_bams()]. Default is NULL.

dm_results.df
A data.frame of dm results as from [edgeR_results()]. Default is NULL.

peaks.df
A data.frame of peaks as from [aggregate_peaks()]. Default is NULL.

genes.df
A data.frame of genes as from [get_biomart_genes()]. Default is NULL.

txdb
A TxDb object as from a TxDb package. Default is NULL.

gatc_sites.df
A data.frame of gatc sites as from [gatc_track()$sites]. Default is NULL.

extend_by
A number to extend the limits of the provided region by. Default is 250 bp.

... arguments passed to geom_genes.me. Allows for adjusting of the plot appearance via gene_limits and plot.height if necessary. * Default for gene_limits is NULL. If the gene is disproportionately large for the plot space, we recommend reducing the size with gene_limits = c(0,2)

Value

A ’ggplot2’ object - or list of plots if provided multiple peaks/genes

See Also

[geom_peak()] [geom_dm()] [geom_genes()] [geom_gatc()] [plotCounts()]

Examples

library("TxDb.Dmelanogaster.UCSC.dm6.ensGene")
library("org.Dm.eg.db")
set.seed(123)
example_regions <- random_regions()
gatc_sites <- dplyr::mutate(example_regions,
 start = start - 3, end = start + 4, width = end - start + 1
)
counts.df <- random_counts()
dm_results <- random_edgeR_results()
peaks <- identifyPeaks(dm_results)
txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
genes <- collateGenes(txdb, example_regions, org.Db = org.Dm.eg.db)

plot using a peak_id
plotWrap(
 id = peaks[1,]$peak_id,
 counts.df = counts.df,
 dm_results.df = dm_results,
 ...
random_counts

Create example counts

Description

Create example counts

Usage

```r
random_counts(size = 50)
```

Arguments

- **size**: number of rows to create
random_regions

Value
example data.frame of counts similar to `process_bams()`

Examples
head(random_counts(size = 50))

random_edgeR_results Create example edgeR results

Description
Create example edgeR results

Usage
random_edgeR_results(size = 50)

Arguments
size number of rows to create

Value
example data.frame of edgeR results, output similar to `edgeR_results()`

Examples
head(random_edgeR_results(size = 50))

random_regions Create example regions

Description
Create example regions

Usage
random_regions(size = 50)

Arguments
size number of rows to create
testDmRegions

Value

element data.frame with output similar to 'gatc_track()$regions'

Examples

head(random_regions(size = 50))

testDmRegions

Description

'testDmRegions' calculates the differential methylation results, identifying which GATC regions
have been enriched in the Fusion samples relative to the controls. Refer to the following pages for
further details: * [edgeR::glmQLFit()] * [edgeR::glmQLFTest()] * [edgeR::decideTestsDGE()]

Usage

testDmRegions(dge, regions, p.value = 0.05, lfc = 1, plot = TRUE)

Arguments

dge A DGEList object as outputted from [makeDGE()].
regions A data.frame of GATC regions.
p.value A number between 0 and 1 providing the required false discovery rate (FDR).
 Default is 0.05.
lfc A number giving the minimum absolute log2-fold-change for significant results.
 Default is 1.
plot An option to plot the results using edgeR::plotSmear. Default is TRUE.

Value

A 'data.frame' of differential methylation results. Columns are: Position (chromosome-start), seq-
names, start, end, width, strand, number (region number), dm (edgeR result: 0,1,NA), logFC, adjust.p, meth_status (No_signal, Upreg, Not_included). If plot=TRUE, will also return a [edgeR::plotSmear()]
plot of the results.

References

expression analysis of digital gene expression data.” Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616.
McCarthy DJ, Chen Y, Smyth GK (2012). “Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation.” Nucleic Acids Research, 40(10), 4288-4297.
differential expression analysis of RNA-Seq experiments using Rsparse and the edgeR quasi-

See Also

[makeDGE()]

Examples

```r
set.seed(123)
example_regions <- random_regions()
counts.df <- random_counts()
dge <- makeDGE(counts.df)

dm_results <- testDmRegions(dge, regions = example_regions, p.value = 0.05, lfc = 1)
head(dm_results)
```

testGeneOntology Gene ontology analysis

Description

‘testGeneOntology’ identifies the over-represented GO terms from the peak data, correcting for the number of GATC regions matching to each gene.

Usage

```r
testGeneOntology(
  annotation,
  genes,
  regions,
  extend_by = 2000,
  fdr_threshold = 0.05,
  bias = NULL
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
</table>
| annotation | A data.frame of annotated genes and peaks as ‘annotate_peaks()$all’.
| genes | A data.frame of gene data as outputted from ‘get_biomart_genes()’.
| regions | A data.frame of GATC regions.
| extend_by | A number to extend the start and end of the genes. We recommend leaving to the default of 2000 bp. *This is done to incorporate the acceptable distance of a peak to a gene.* *This also allows for consistency across significant and non-significant genes*
| fdr_threshold | The FDR threshold used for significance in the ontology. Default is 0.05
| bias | Alternatively, the bias can be input by itself. |
Value

- 3 objects
- Plot of goodness of fit of model
- Data frame of significant GO category results
- Probability weights for each gene

References

Examples

```r
library(TxDb.Dmelanogaster.UCSC.dm6.ensGene)
library(org.Dm.eg.db)
set.seed(123)
example_regions <- random_regions()
peaks <- identifyPeaks(random_edgeR_results())

txdb <- TxDb.Dmelanogaster.UCSC.dm6.ensGene
genes <- collateGenes(genes = txdb, regions = example_regions, org.Db = org.Dm.eg.db)
annotation <- annotatePeaksGenes(peaks, genes, example_regions)$all

ontology <- testGeneOntology(annotation, genes, example_regions)
ontology$signif_results
ontology$prob_weights
```
Index

* datasets
 dros_counts, 7

* internal
 %>%, 3
 Damsel-package, 3
%>%, 3, 3

annotatePeaksGenes, 4
collateGenes, 5
countBamInGATC, 6

Damsel (Damsel-package), 3
Damsel-package, 3
dros_counts, 7
gene_dm, 8
gene_gatc, 9
gene_genes_tx, 10
gene_peak, 11
getGatcRegions, 13
identifyPeaks, 13

makeDGE, 14
plotCorrHeatmap, 16
plotCounts, 17
plotGeneOntology, 18
plotWrap, 19

random_counts, 21
random_edgeR_results, 22
random_regions, 22
testDmRegions, 23
testGeneOntology, 24