Package ‘CytoGLMM’

March 5, 2024

Type Package

Title Conditional Differential Analysis for Flow and Mass Cytometry Experiments

Version 1.10.0

Description The CytoGLMM R package implements two multiple regression strategies: A bootstrapped generalized linear model (GLM) and a generalized linear mixed model (GLMM). Most current data analysis tools compare expressions across many computationally discovered cell types. CytoGLMM focuses on just one cell type. Our narrower field of application allows us to define a more specific statistical model with easier to control statistical guarantees. As a result, CytoGLMM finds differential proteins in flow and mass cytometry data while reducing biases arising from marker correlations and safeguarding against false discoveries induced by patient heterogeneity.

License LGPL-3

URL https://christofseiler.github.io/CytoGLMM, https://github.com/ChristofSeiler/CytoGLMM

BugReports https://github.com/ChristofSeiler/CytoGLMM/issues

Encoding UTF-8

LazyData true

Imports stats, methods, BiocParallel, RColorBrewer, cowplot, doParallel, dplyr, factoextra, flexmix, ggplot2, magrittr, mbest, pheatmap, stringr, strucchange, tibble, ggrepel, MASS, logging, Matrix, tidyr, caret, rlang, grDevices

Suggests knitr, rmarkdown, testthat, BiocStyle

VignetteBuilder knitr

RoxygenNote 7.2.3

biocViews FlowCytometry, Proteomics, SingleCell, CellBasedAssays, CellBiology, ImmunoOncology, Regression, StatisticalMethod, Software

git_url https://git.bioconductor.org/packages/CytoGLMM
cytoflexmix

Logistic mixture regression

Description

Logistic mixture regression
Usage

```r
cytoflexmix(
    df_samples_subset,
    protein_names,
    condition,
    group = "donor",
    cell_n_min = Inf,
    cell_n_subsample = 0,
    ks = seq_len(10),
    num_cores = 1
)
```

Arguments

- **df_samples_subset**: Data frame or tibble with proteins counts, cell condition, and group information
- **protein_names**: A vector of column names of protein to use in the analysis
- **condition**: The column name of the condition variable
- **group**: The column name of the group variable
- **cell_n_min**: Remove samples that are below this cell counts threshold
- **cell_n_subsample**: Subsample samples to have this maximum cell count
- **ks**: A vector of cluster sizes
- **num_cores**: Number of computing cores

Value

A list of class `cytoglm` containing

- **flexmixfits**: list of `flexmix` objects
- **df_samples_subset**: possibly subsampled `df_samples_subset` table
- **protein_names**: input protein names
- **condition**: input condition variable
- **group**: input group names
- **cell_n_min**: input `cell_n_min`
- **cell_n_subsample**: input `cell_n_subsample`
- **ks**: input `ks`
- **num_cores**: input `num_cores`
Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
mix_fit <- CytoGLMM::cytoflexmix(df,
    protein_names = protein_names,
    condition = "condition",
    group = "donor",
    ks = 2)
mix_fit
```

cytoglm
Fit GLM with bootstrap resampling

Description

Fit GLM with bootstrap resampling

Usage

```r
cytoglm(
    df_samples_subset, 
    protein_names, 
    condition, 
    group = "donor", 
    covariate_names = NULL, 
    cell_n_min = Inf, 
    cell_n_subsample = 0, 
    num_boot = 100, 
    num_cores = 1
)
```

Arguments

df_samples_subset Data frame or tibble with proteins counts, cell condition, and group information
protein_names A vector of column names of protein to use in the analysis
condition The column name of the condition variable
group The column name of the group variable
covariate_names The column names of covariates
cell_n_min Remove samples that are below this cell counts threshold
cell_n_subsample Subsample samples to have this maximum cell count
num_boot Number of bootstrap samples
num_cores Number of computing cores
Value

A list of class cytoglm containing

tb_coef coefficient table
df_samples_subset possibly subsampled df_samples_subset table
protein_names input protein names
condition input condition variable
group input group names
covariate_names input covariates
cell_n_min input cell_n_min
cell_n_subsample input cell_n_subsample
unpaired true if unpaired samples were provided as input
num_boot input num_boot
num_cores input num_cores
formula_str formula use in the regression model

Examples

set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
glm_fit <- CytoGLMM::cytoglm(df,
 protein_names = protein_names,
 condition = "condition",
 group = "donor",
 num_boot = 10) # in practice >=1000

glm_fit
Usage

cytoeglmm(
 df_samples_subset,
 protein_names,
 condition,
 group = "donor",
 covariate_names = NULL,
 cell_n_min = Inf,
 cell_n_subsample = 0,
 num_cores = 1
)

Arguments

df_samples_subset
 Data frame or tibble with proteins counts, cell condition, and group information
protein_names
 A vector of column names of protein to use in the analysis
condition
 The column name of the condition variable
group
 The column name of the group variable
covariate_names
 The column names of covariates
cell_n_min
 Remove samples that are below this cell counts threshold
cell_n_subsample
 Subsample samples to have this maximum cell count
num_cores
 Number of computing cores

Value

A list of class cytoglm containing
glmmfit mbest object
df_samples_subset
 possibly subsampled df_samples_subset table
protein_names
 input protein names
condition
 input condition variable
group
 input group names
covariate_names
 input covariates
cell_n_min
 input cell_n_min
cell_n_subsample
 input cell_n_subsample
num_cores
 input num_cores
Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
glmm_fit <- CytoGLMM::cytoglmm(df,
  protein_names = protein_names,
  condition = "condition",
  group = "donor")

glmm_fit
```

cytogroup

Group-specific fixed effects model

Description

Group-specific fixed effects model

Usage

```r
cytogroup(
  df_samples_subset,
  protein_names,
  condition,
  group = "donor",
  cell_n_min = Inf,
  cell_n_subsample = 0
)
```

Arguments

- `df_samples_subset`
 Data frame or tibble with proteins counts, cell condition, and group information
- `protein_names`
 A vector of column names of protein to use in the analysis
- `condition`
 The column name of the condition variable
- `group`
 The column name of the group variable
- `cell_n_min`
 Remove samples that are below this cell counts threshold
- `cell_n_subsample`
 Subsample samples to have this maximum cell count

Value

A list of class cytoglm containing

- `groupfit`
 glm object
- `df_samples_subset`
 possibly subsampled df_samples_subset table
protein_names input protein names
condition input condition variable
group input group names

Examples
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
group_fit <- CytoGLMM::cytogroup(df,
 protein_names = protein_names,
 condition = "condition",
 group = "donor")
group_fit

Description
Evaluate parameter stability with respect to gating scheme

Usage
cytostab(
 df_samples_subset,
 protein_names,
 condition,
 group = "donor",
 cell_n_min = Inf,
 cell_n_subsample = 0
)

Arguments
df_samples_subset Data frame or tibble with proteins counts, cell condition, and group information
protein_names A vector of column names of protein to use in the analysis
condition The column name of the condition variable
group The column name of the group variable
cell_n_min Remove samples that are below this cell counts threshold
cell_n_subsample Subsample samples to have this maximum cell count
cyto_check

Value

A data frame

Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
stab <- CytoGLMM::cytostab(df,
                          protein_names = protein_names,
                          condition = "condition",
                          group = "donor")
stab
```

cyto_check Check if input to cytoxxx function have errors

Description

Check if input to cytoxxx function have errors

Usage

```
cyro_check(cell_n_subsample, cell_n_min, protein_names)
```

Arguments

- `cell_n_subsample` Subsample samples to have this maximum cell count
- `cell_n_min` A vector of column names of protein to use in the analysis
- `protein_names` A vector of column names of protein to use in the analysis

Value

NULL.
generate_data

Generate dataset for vignettes and simulation studies

Description

Generate dataset for vignettes and simulation studies

Usage

```r
generate_data()
```

Value

* `tibble` data frame

Examples

```r
set.seed(23)
df <- generate_data()
str(df)
df
```

glmm_moment

Generalized linear mixed model with maximum likelihood

Description

Generalized linear mixed model with maximum likelihood

Usage

```r
glmm_moment(
  df_samples,
  protein_names,
  response,
  group = "donor",
  covariate_names = NULL,
  num_cores = 1
)
```
is_unpaired

Arguments

- `df_samples`: Data frame or tibble with proteins counts, cell condition, and group information
- `protein_names`: A vector of column names of protein to use in the analysis
- `response`: The column name of the condition variable
- `group`: The column name of the group variable
- `covariate_names`: The column names of covariates
- `num_cores`: Number of computing cores

Value

A boolean

`is_unpaired`
Check if samples match or paired on condition

Description

Check if samples match or paired on condition

Usage

`is_unpaired(df_samples_subset, condition, group)`

Arguments

- `df_samples_subset`: Data frame or tibble with proteins counts, cell condition, and group information
- `condition`: The column name of the condition variable
- `group`: The column name of the group variable

Value

A boolean
plot.cytoflexmix

Plot all components of mixture regression

Description

Plot all components of mixture regression

Usage

```r
## S3 method for class 'cytoflexmix'
plot(x, k = NULL, separate = FALSE, ...)
```

Arguments

- **x**: A `cytoflexmix` class
- **k**: Number of clusters
- **separate**: create two separate `ggplot2` objects
- **...**: Other parameters

Value

`ggplot2` object

Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
mix_fit <- CytoGLMM::cytoflexmix(df,
    protein_names = protein_names,
    condition = "condition",
    group = "donor",
    ks = 2)
plot(mix_fit)
```

plot.cytoglm

Plot bootstraped coefficients

Description

Plot bootstraped coefficients

Usage

```r
## S3 method for class 'cytoglm'
plot(x, order = FALSE, separate = FALSE, ...)
```
Arguments

- **x**: A cytoglmm class
- **order**: Order the markers according to the magnitude of the coefficients
- **separate**: Create two separate ggplot2 objects
- ...

Other parameters

Value

- ggplot2 object

Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
glm_fit <- CytoGLMM::cytoglm(df,
          protein_names = protein_names,
          condition = "condition",
          group = "donor",
          num_boot = 10) # in practice >=1000
plot(glm_fit)
```

Description

Plot fixed coefficients of random effects model

Usage

```r
## S3 method for class 'cytoglm'
plot(x, order = FALSE, separate = FALSE, ...)
```

Arguments

- **x**: A cytoglmm class
- **order**: Order the markers according to the magnitude of the coefficients
- **separate**: Create two separate ggplot2 objects
- ...

Other parameters

Value

- ggplot2 object
Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
glmm_fit <- CytoGLMM::cytoglmm(df,
  protein_names = protein_names,
  condition = "condition",
  group = "donor")
plot(glm_fit)
```

plot.cytogroup
Plot fixed coefficients of group-specific fixed effects model

Description

Plot fixed coefficients of group-specific fixed effects model

Usage

```r
# S3 method for class 'cytogroup'
plot(x, order = FALSE, separate = FALSE, ...)
```

Arguments

- **x**: A cytoglm class
- **order**: Order the markers according to the magnitude of the coefficients
- **separate**: Create two separate ggplot2 objects
- **...**: Other parameters

Value

- ggplot2 object

Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
group_fit <- CytoGLMM::cytogroup(df,
  protein_names = protein_names,
  condition = "condition",
  group = "donor")
plot(group_fit)
```
plot_coeff

Helper function to plot regression coefficient

Description

Helper function to plot regression coefficient

Usage

plot_coeff(
 tb,
 title_str,
 title_str_right,
 xlab_str,
 redline = 0,
 order = FALSE,
 separate = FALSE
)

Arguments

tb A data frame

Title string for summary plot

title_str_right

Title for bootstrap sample plot

xlabel_str Label on x-axis

redline Point on x-axis to draw the red line

order Order the markers according to the magnitude of the coefficients

separate Plot both summary and bootstrap samples

Value

`ggplot2` object or list of two objects if separate is true

plot_heatmap

Heatmap of median marker expression

Description

Heatmap of median marker expression
Usage

plot_heatmap(
 df_samples,
 sample_info_names,
 protein_names,
 arrange_by_1,
 arrange_by_2 = "",
 cluster_cols = FALSE,
 fun = median
)

Arguments

df_samples Data frame or tibble with proteins counts, cell condition, and group information
sample_info_names Column names that contain information about the cell, e.g. donor, condition, file name, or cell type
protein_names A vector of column names of protein to use in the analysis
arrange_by_1 Column name
arrange_by_2 Column name
cluster_cols Apply hierarchical cluster to columns
fun Summary statistics of marker expression

Value

pheatmap object

Examples

set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
CytoGLMM::plot_heatmap(df,
 protein_names = protein_names,
 sample_info_names = c("donor", "condition"),
 arrange_by_1 = "condition")

plot_lda LDA on marker expression

Description

LDA on marker expression
Usage

plot lda(
 df_samples,
 protein_names,
 group,
 cor_scaling_factor = 1,
 arrow_color = "black",
 marker_color = "black",
 marker_size = 5
)

Arguments

df_samples Data frame or tibble with proteins counts, cell condition, and group information
protein_names A vector of column names of protein to use in the analysis
group The column name of the group variable
cor_scaling_factor Scaling factor of circle of correlations
arrow_color Color of correlation circle
marker_color Colors of marker names
marker_size Size of marker names

Value

ggplot2 object

Examples

set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
df$condition <- rep(c("A", "B", "C", "D"), each = length(df$condition)/4)
CytoGLMM::plot lda(df,
 protein_names = protein_names,
 group = "condition",
 cor_scaling_factor = 2)

Description

MDS on median marker expression
Usage

plot_mds(
 df_samples,
 protein_names,
 sample_info_names,
 color,
 sample_label = ""
)

Arguments

df_samples Data frame or tibble with proteins counts, cell condition, and group information
protein_names A vector of column names of protein to use in the analysis
sample_info_names Column names that contain information about the cell, e.g. donor, condition, file name, or cell type
color Column name
sample_label Column name

Value

cowplot object

Examples

set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
CytoGLMM::plot_mds(df,
 protein_names = protein_names,
 sample_info_names = c("donor", "condition"),
 color = "condition")

plot_model_selection

Plot model selection to choose number optimal number of clusters

Description

Plot model selection to choose number optimal number of clusters

Usage

plot_model_selection(fit, k = NULL)
Arguments

- `fit` A cytoflexmix class
- `k` Number of clusters

Value
cowplot object

Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
mix_fit <- CytoGLMM::cytoflexmix(df,
  protein_names = protein_names,
  condition = "condition",
  group = "donor",
  ks = 1:2)
plot_model_selection(mix_fit)
```

plot_prcomp

Plot PCA of subsampled data using ggplot

Description

Plot PCA of subsampled data using ggplot

Usage

```r
plot_prcomp(
  df_samples,
  protein_names,
  color_var = "treatment",
  subsample_size = 10000,
  repel = TRUE
)
```

Arguments

- `df_samples` Data frame or tibble with proteins counts, cell condition, and group information
- `protein_names` A vector of column names of protein to use in the analysis
- `color_var` A column name
- `subsample_size` Subsample per color_var variable
- `repel` Repel labels
Value

cowplot object

Examples

set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
CytoGLMM::plot_prcomp(df,
 protein_names = protein_names,
 color_var = "condition")

print.cytoglm

Extract and print bootstrap GLM fit

Description

Extract and print bootstrap GLM fit

Usage

S3 method for class 'cytoglm'
print(x, ...)

Arguments

x A cytoglm class

... Other parameters

Value

NULL.

Examples

set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
glm_fit <- CytoGLMM::cytoglm(df,
 protein_names = protein_names,
 condition = "condition",
 group = "donor",
 num_boot = 10) # in practice >=1000

print(glm_fit)
print.cytoglmm

Description

Extract and print GLMM fit

Usage

```r
## S3 method for class 'cytoglmm'
print(x, ...)
```

Arguments

- `x`: A `cytoglmm` class
- `...`: Other parameters

Value

NULL.

Examples

```r
set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
glmm_fit <- CytoGLMM::cytoglmm(df,
                                protein_names = protein_names,
                                condition = "condition",
                                group = "donor")
print(glmm_fit)
```

remove_samples

Description

Remove samples based on low cell counts

Usage

```r
remove_samples(df_samples_subset, condition, group, unpaired, cell_n_min)
```
Arguments

df_samples_subset
Data frame or tibble with proteins counts, cell condition, and group information

category
The column name of the condition variable

group
The column name of the group variable

unpaired
true if unpaired samples were provided as input

cell_n_min
Remove samples that are below this cell counts threshold

Value

NULL.

summary.cytoglm
Extract and calculate p-values of bootstrap GLM fit

Description

Extract and calculate p-values of bootstrap GLM fit

Usage

S3 method for class 'cytoglm'
summary(object, method = "BH", ...)

Arguments

object
A cytoglm class

method
Multiple comparison adjustment method

...
Other parameters

Value

tibble data frame

Examples

set.seed(23)
df <- generate_data()
protein_names <- names(df)[3:12]
df <- dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
glm_fit <- CytoGLMM::cytoglm(df,
 protein_names = protein_names,
 condition = "condition",
 group = "donor",
 num_boot = 10) # in practice >=1000
summary(glm_fit)
summary.cytoglmm

Extract and calculate p-values of GLMM fit

Description

Extract and calculate p-values of GLMM fit

Usage

```r
## S3 method for class 'cytoglmm'
summary(object, method = "BH", ...)
```

Arguments

- `object`: A `cytoglmm` class
- `method`: Multiple comparison adjustment method
- `...`: Other parameters

Value

`tibble` data frame

Examples

```r
set.seed(23)
df = generate_data()
protein_names = names(df)[3:12]
df = dplyr::mutate_at(df, protein_names, function(x) asinh(x/5))
glmm_fit = CytoGLMM::cytoglmm(df,
                                  protein_names = protein_names,
                                  condition = "condition",
                                  group = "donor")
summary(glmm_fit)
```
Index

cowplot, 18–20

cyto_check, 9
cytoflexmix, 2
cytoglm, 4
cytoglmm, 5
cytogroup, 7
cytostab, 8

dflexmix, 3

generate_data, 10
ggplot2, 12–15, 17
glm, 7

glmm_moment, 10

is_unpaired, 11

mbest, 6, 11

pheatmap, 16
plot.cytoflexmix, 12
plot.cytoglm, 12
plot.cytoglmm, 13
plot.cytogroup, 14
plot.coef, 15
plot_heatmap, 15
plot.lda, 16
plot_mds, 17
plot_model_selection, 18
plot_prcomp, 19
print.cytoglm, 20
print.cytoglmm, 21

remove_samples, 21

summary.cytoglm, 22
summary.cytoglmm, 23

tibble, 10, 22, 23