Package ‘ChIPseeker’

March 27, 2024

Type Package

Title ChIPseeker for ChIP peak Annotation, Comparison, and Visualization

Version 1.38.0

Maintainer Guangchuang Yu <guangchuangyu@gmail.com>

Description This package implements functions to retrieve the nearest genes around the peak, annotate genomic region of the peak, statistical methods for estimate the significance of overlap among ChIP peak data sets, and incorporate GEO database for user to compare the own dataset with those deposited in database. The comparison can be used to infer cooperative regulation and thus can be used to generate hypotheses. Several visualization functions are implemented to summarize the coverage of the peak experiment, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance to TSS, and overlap of peaks or genes.

Depends R (>= 3.5.0)

Imports AnnotationDbi, BiocGenerics, boot, enrichplot, IRanges, GenomeInfoDb, GenomicRanges, GenomicFeatures, ggplot2, gplots, graphics, grDevices, gtools, methods, plotrix, dplyr, parallel, magrittr, rtracklayer, S4Vectors, stats, TxDb.Hsapiens.UCSC.hg19.knownGene, utils, aplot, yulab.utils, tibble

Suggests clusterProfiler, ggimage, ggplotify, ggupset, ggVennDiagram, ReactomePA, org.Hs.eg.db, knitr, rmarkdown, testthat, prettydoc

Remotes GuangchuangYu/enrichplot

BugReports https://github.com/YuLab-SMU/ChIPseeker/issues

Encoding UTF-8

VignetteBuilder knitr

ByteCompile true
License Artistic-2.0
biocViews Annotation, ChIPSeq, Software, Visualization, MultipleComparison
RoxygenNote 7.2.3
git_url https://git.bioconductor.org/packages/ChIPseeker
git_branch RELEASE_3_18
git_last_commit 7da66e2
git_last_commit_date 2023-10-24
Repository Bioconductor 3.18
Date/Publication 2024-03-27
Author Guangchuang Yu [aut, cre] (<https://orcid.org/0000-0002-6485-8781>),
 Ming Li [ctb],
 Qianwen Wang [ctb],
 Yun Yan [ctb],
 Hervé Pagès [ctb],
 Michael Kluge [ctb],
 Thomas Schwarzl [ctb],
 Zhougeng Xu [ctb]

R topics documented:

ChIPseeker-package ... 4
annotatePeak ... 4
as.data.frame.csAnno .. 5
as.GRanges ... 7
check_upstream_and_downstream 8
combine_csAnno .. 9
covplot ... 9
csAnno-class .. 10
downloadGEObedFiles ... 11
downloadGSMbedFiles .. 11
dropAnno .. 12
enrichAnnoOverlap .. 12
enrichPeakOverlap ... 13
getAnnoStat ... 14
getBioRegion ... 14
getGeneAnno .. 15
getGenomicAnnotation ... 16
getGEOgenomeVersion .. 17
getGEOInfo .. 17
getGEOspecies .. 18
getNearestFeatureIndicesAndDistances 18
getPromoters .. 19
getSampleFiles ... 20
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getTagMatrix</code></td>
</tr>
<tr>
<td><code>getTagMatrix.binning.internal</code></td>
</tr>
<tr>
<td><code>getTagMatrix.internal</code></td>
</tr>
<tr>
<td><code>getTagMatrix2</code></td>
</tr>
<tr>
<td><code>getTagMatrix2.binning.internal</code></td>
</tr>
<tr>
<td><code>getTagMatrix2.internal</code></td>
</tr>
<tr>
<td><code>info</code></td>
</tr>
<tr>
<td><code>makeBioRegionFromGranges</code></td>
</tr>
<tr>
<td><code>overlap</code></td>
</tr>
<tr>
<td><code>peakHeatmap</code></td>
</tr>
<tr>
<td><code>peakHeatmap_multiple_Sets</code></td>
</tr>
<tr>
<td><code>peak_Profile_Heatmap</code></td>
</tr>
<tr>
<td><code>plotAnnoBar</code></td>
</tr>
<tr>
<td><code>plotAnnoBar.data.frame</code></td>
</tr>
<tr>
<td><code>plotAnnoPie</code></td>
</tr>
<tr>
<td><code>plotAnnoPie.csAnno</code></td>
</tr>
<tr>
<td><code>plotAvgProf</code></td>
</tr>
<tr>
<td><code>plotAvgProf.binning</code></td>
</tr>
<tr>
<td><code>plotAvgProf2</code></td>
</tr>
<tr>
<td><code>plotDistToTSS</code></td>
</tr>
<tr>
<td><code>plotDistToTSS.data.frame</code></td>
</tr>
<tr>
<td><code>plotMultiProf</code></td>
</tr>
<tr>
<td><code>plotMultiProf.binning</code></td>
</tr>
<tr>
<td><code>plotMultiProf.binning.internal</code></td>
</tr>
<tr>
<td><code>plotMultiProf.normal</code></td>
</tr>
<tr>
<td><code>plotMultiProf.normal.internal</code></td>
</tr>
<tr>
<td><code>plotPeakProf</code></td>
</tr>
<tr>
<td><code>plotPeakProf2</code></td>
</tr>
<tr>
<td><code>plotPeakProf_MultiWindows</code></td>
</tr>
<tr>
<td><code>readPeakFile</code></td>
</tr>
<tr>
<td><code>reexports</code></td>
</tr>
<tr>
<td><code>seq2gene</code></td>
</tr>
<tr>
<td><code>show</code></td>
</tr>
<tr>
<td><code>shuffle</code></td>
</tr>
<tr>
<td><code>tagHeatmap</code></td>
</tr>
<tr>
<td><code>upsetplot</code></td>
</tr>
<tr>
<td><code>vennpie</code></td>
</tr>
<tr>
<td><code>vennplot</code></td>
</tr>
<tr>
<td><code>vennplot.peakfile</code></td>
</tr>
</tbody>
</table>

Index 59
ChIPseeker-package

ChIP-SEQ Annotation, Visualization and Comparison

Description
This package is designed for chip-seq data analysis

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>ChIPseeker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.5.1</td>
</tr>
<tr>
<td>Date</td>
<td>27-04-2015</td>
</tr>
<tr>
<td>biocViews</td>
<td>ChIPSeq, Annotation, Software</td>
</tr>
<tr>
<td>Depends</td>
<td></td>
</tr>
<tr>
<td>Imports</td>
<td>methods, ggplot2</td>
</tr>
<tr>
<td>Suggests</td>
<td>clusterProfiler, GOSemSim</td>
</tr>
<tr>
<td>License</td>
<td>Artistic-2.0</td>
</tr>
</tbody>
</table>

Author(s)
Guangchuang Yu
Maintainer: Guangchuang Yu <guangchuangyu@gmail.com>

Description
capture name of variable

Usage

.(..., .env = parent.frame())

Arguments

... expression
.env environment

Value

expression
annotatePeak

Examples

```r
x <- 1
eval(.x[[1]])
```

Description

Annotate peaks

Usage

```r
annotatePeak(
  peak,
  tssRegion = c(-3000, 3000),
  TxDB = NULL,
  level = "transcript",
  assignGenomicAnnotation = TRUE,
  genomicAnnotationPriority = c("Promoter", "5UTR", "3UTR", "Exon", "Intron",
                               "Downstream", "Intergenic"),
  annoDb = NULL,
  addFlankGeneInfo = FALSE,
  flankDistance = 5000,
  sameStrand = FALSE,
  ignoreOverlap = FALSE,
  ignoreUpstream = FALSE,
  ignoreDownstream = FALSE,
  overlap = "TSS",
  verbose = TRUE,
  columns = c("ENTREZID", "ENSEMBL", "SYMBOL", "GENENAME")
)
```

Arguments

- `peak`: peak file or GRanges object
- `tssRegion`: Region Range of TSS
- `TxDB`: TxDB or EnsDb annotation object
- `level`: one of transcript and gene
- `assignGenomicAnnotation`: logical, assign peak genomic annotation or not
- `genomicAnnotationPriority`: genomic annotation priority
- `annoDb`: annotation package
- `addFlankGeneInfo`: Boolean, add flank gene information
- `flankDistance`: integer, distance for adding gene information
- `sameStrand`: Boolean, same strand for TSS
- `ignoreOverlap`: Boolean, ignore overlap with TSS
- `ignoreUpstream`: Boolean, ignore upstream region
- `ignoreDownstream`: Boolean, ignore downstream region
- `overlap`: character, overlap with TSS
- `verbose`: Boolean, verbose output
- `columns`: character vector, column names for annotation
annotatePeak

addFlankGeneInfo
 logical, add flanking gene information from the peaks

flankDistance
 distance of flanking sequence

sameStrand
 logical, whether find nearest/overlap gene in the same strand

ignoreOverlap
 logical, whether ignore overlap of TSS with peak

ignoreUpstream
 logical, if True only annotate gene at the 3’ of the peak.

ignoreDownstream
 logical, if True only annotate gene at the 5’ of the peak.

overlap
 one of 'TSS' or 'all', if overlap="all", then gene overlap with peak will be reported as nearest gene, no matter the overlap is at TSS region or not.

verbose
 print message or not

columns
 names of columns to be obtained from database

Value

data.frame or GRanges object with columns of:
all columns provided by input.

annotation: genomic feature of the peak, for instance if the peak is located in 5’UTR, it will annotated by 5’UTR. Possible annotation is Promoter-TSS, Exon, 5’ UTR, 3’ UTR, Intron, and Inter-genic.
geneChr: Chromosome of the nearest gene
geneStart: gene start
geneEnd: gene end
geneLength: gene length
geneStrand: gene strand
geneId: entrezgene ID
distanceToTSS: distance from peak to gene TSS
if annoDb is provided, extra column will be included:
ENSEMBL: ensembl ID of the nearest gene
SYMBOL: gene symbol
GENENAME: full gene name

Author(s)

G Yu

See Also

plotAnnoBar plotAnnoPie plotDistToTSS
Examples

```r
## Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, tssRegion=c(-3000, 3000), TxDb=txdb)
peakAnno
## End(Not run)
```

Description

convert csAnno object to data.frame

Usage

```r
## S3 method for class 'csAnno'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

- `x`: csAnno object
- `row.names`: row names
- `optional`: should be omitted.
- `...`: additional parameters

Value

data.frame

Author(s)

Guangchuang Yu https://guangchuangyu.github.io
as.GRanges
as.GRanges

Description
convert csAnno object to GRanges

Usage
as.GRanges(x)

Arguments
- `x` csAnno object

Value
GRanges object

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

check_upstream_and_downstream

check upstream and downstream parameter

Description
check_upstream_and_downstream

Usage
check_upstream_and_downstream(upstream, downstream)

Arguments
- `upstream` upstream
- `downstream` downstream
Description
Combine csAnno Object

Usage
combine_csAnno(x, ...)

Arguments
x csAnno object
... csAnno objects

Details
https://github.com/YuLab-SMU/ChIPseeker/issues/157

Value
csAnno object

covplot

Description
plot peak coverage

Usage
covplot(
 peak,
 weightCol = NULL,
 xlab = "Chromosome Size (bp)",
 ylab = "",
 title = "ChIP Peaks over Chromosomes",
 chrs = NULL,
 xlim = NULL,
 lower = 1,
 fill_color = NULL
)
Arguments

- `peak` peak file or GRanges object
- `weightCol` weight column of peak
- `xlab` xlab
- `ylab` ylab
- `title` title
- `chrs` selected chromosomes to plot, all chromosomes by default
- `xlim` ranges to plot, default is whole chromosome
- `lower` lower cutoff of coverage signal
- `fill_color` specify the color for the plot. Order matters

Value

- ggplot2 object

Author(s)

- G Yu

csAnno-class

Class "csAnno" This class represents the output of ChIPseeker Annotation

Description

Class "csAnno" This class represents the output of ChIPseeker Annotation

Slots

- `anno` annotation
- `tssRegion` TSS region
- `level` transcript or gene
- `hasGenomicAnnotation` logical
- `detailGenomicAnnotation` Genomic Annotation in detail
- `annoStat` annotation statistics
- `peakNum` number of peaks

Author(s)

- Guangchuang Yu https://guangchuangyu.github.io

See Also

- `annotatePeak`
downloadGEObedFiles

Description

download all BED files of a particular genome version

Usage

downloadGEObedFiles(genome, destDir = getwd())

Arguments

- **genome** genome version
- **destDir** destination folder

Author(s)

G Yu

downloadGSMbedFiles

Description

download BED supplementary files of a list of GSM accession numbers

Usage

downloadGSMbedFiles(GSM, destDir = getwd())

Arguments

- **GSM** GSM accession numbers
- **destDir** destination folder

Author(s)

G Yu
dropAnno

Description

dropAnno

Usage

```r
dropAnno(csAnno, distanceToTSS_cutoff = 10000)
```

Arguments

- `csAnno`: output of `annotatePeak`
- `distanceToTSS_cutoff`: distance to TSS cutoff

Details

drop annotation exceeding `distanceToTSS_cutoff`

Value

csAnno object

Author(s)

Guangchuang Yu

enrichAnnoOverlap

Description

Calculate overlap significant of ChIP experiments based on their nearest gene annotation

Usage

```r
enrichAnnoOverlap(
    queryPeak, targetPeak, TxDb = NULL, pAdjustMethod = "BH", chainFile = NULL, distanceToTSS_cutoff = NULL
)
```
Arguments

queryPeak query bed file
targetPeak target bed file(s) or folder containing bed files
TxDb TxDb
pAdjustMethod pvalue adjustment method
chainFile chain file for liftOver
distanceToTSS_cutoff
 restrict nearest gene annotation by distance cutoff

Value

data.frame

Author(s)

G Yu

description

calculate overlap significant of ChIP experiments based on the genome coordinations

Usage

enrichPeakOverlap(
 queryPeak,
 targetPeak,
 TxDb = NULL,
 pAdjustMethod = "BH",
 nShuffle = 1000,
 chainFile = NULL,
 pool = TRUE,
 mc.cores = detectCores() - 1,
 verbose = TRUE
)

Arguments

queryPeak query bed file or GRanges object
targetPeak target bed file(s) or folder that containing bed files or a list of GRanges objects
TxDb TxDb
pAdjustMethod pvalue adjustment method
getBioRegion

rShuffle shuffle numbers
chainFile chain file for liftOver
pool logical, whether pool target peaks
mc.cores number of cores, see mclapply
verbose logical

Value

data.frame

Author(s)

G Yu

getAnnoStat getAnnoStat

Description

getting status of annotation

Usage

getAnnoStat(x)

Arguments

x csAnno object

getBioRegion getBioRegion

Description

prepare a bioregion of selected feature

Usage

getBioRegion(
 TxDB = NULL,
 upstream = 1000,
 downstream = 1000,
 by = "gene",
 type = "start_site"
)
getGeneAnno

Arguments

TxDb: TxDb
upstream: upstream from start site or end site
downstream: downstream from start site or end site
by: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
type: one of "start_site", "end_site", "body"

Details

this function combined previous functions getPromoters(), getBioRegion() and getGeneBody() in order to solve the following issues.

(1) https://github.com/GuangchuangYu/ChIPseeker/issues/16
(2) https://github.com/GuangchuangYu/ChIPseeker/issues/87

The getBioRegion() function can prevoid a region of interest from txdb object. There are three kinds of regions, start_site, end_site and body.

We take transcript region to expain the differences of these three regions. tx: chr1 1000 1400.
body region refers to the 1000-1400bp.
start_site region with upstream = 100, downstream = 100 refers to 900-1100bp.
end_site region with upstream = 100, downstream = 100 refers to 1300-1500bp.

Value

GRanges object

Author(s)

Guangchuang Yu, Ming L

Description

get gene annotation, symbol, gene name etc.

Usage

getGeneAnno(annoDb, geneID, type, columns)

Arguments

annoDb: annotation package
geneID: query geneID
type: gene ID type
columns: names of columns to be obtained from database
getGenomicAnnotation

Value

data.frame

Author(s)

G Yu

getGenomicAnnotation **getGenomicAnnotation**

Description

get Genomic Annotation of peaks

Usage

```r
getGenomicAnnotation(
  peaks, distance, 
  tssRegion = c(-3000, 3000), 
  TxDb, level, 
  genomicAnnotationPriority, 
  sameStrand = FALSE
)
```

Arguments

- `peaks`: peaks in GRanges object
- `distance`: distance of peak to TSS
- `tssRegion`: tssRegion, default is -3kb to +3kb
- `TxDb`: TxDb object
- `level`: one of gene or transcript
- `genomicAnnotationPriority`: genomic Annotation Priority
- `sameStrand`: whether annotate gene in same strand

Value

character vector

Author(s)

G Yu
getGEOgenoemVersion

Description
get genome version statistics collecting from GEO ChIPseq data

Usage
getGEOgenoemVersion()

Value
data.frame

Author(s)
G Yu

getGEOInfo

Description
get subset of GEO information by genome version keyword

Usage
getGEOInfo(genome, simplify = TRUE)

Arguments
- genome: genome version
- simplify: simplify result or not

Value
data.frame

Author(s)
G Yu
getGEOspecies

Description
accessing species statistics collecting from GEO database

Usage
getGEOspecies()

Value
data.frame

Author(s)
G Yu

getNearestFeatureIndicesAndDistances

Description
get index of features that closest to peak and calculate distance

Usage
getNearestFeatureIndicesAndDistances(
 peaks,
 features,
 sameStrand = FALSE,
 ignoreOverlap = FALSE,
 ignoreUpstream = FALSE,
 ignoreDownstream = FALSE,
 overlap = "TSS"
)

Arguments

- **peaks**: peak in GRanges
- **features**: features in GRanges
- **sameStrand**: logical, whether find nearest gene in the same strand
- **ignoreOverlap**: logical, whether ignore overlap of TSS with peak
- **ignoreUpstream**: logical, if True only annotate gene at the 3' of the peak.
- **ignoreDownstream**: logical, if True only annotate gene at the 5' of the peak.
- **overlap**: one of "TSS" or "all"

Value

list

Author(s)

G Yu

getPromoters

Description

prepare the promoter regions

Usage

```r
getPromoters(TxDb = NULL, upstream = 1000, downstream = 1000, by = "gene")
```

Arguments

- **TxDb**: TxDb
- **upstream**: upstream from TSS site
- **downstream**: downstream from TSS site
- **by**: one of gene or transcript

Value

GRanges object
getSampleFiles

Description
get filenames of sample files

Usage
getSampleFiles()

Value
list of file names

Author(s)
G Yu

getTagMatrix

Description
calculate the tag matrix

Usage
getTagMatrix(
 peak,
 upstream,
 downstream,
 windows,
 type,
 by,
 TxDb = NULL,
 weightCol = NULL,
 nbin = NULL,
 verbose = TRUE,
 ignore_strand = FALSE
)
getTagMatrix

Arguments

- **peak**
 - peak peak file or GRanges object

- **upstream**
 - the distance of upstream extension

- **downstream**
 - the distance of downstream extension

- **windows**
 - a collection of region

- **type**
 - one of "start_site", "end_site", "body"

- **by**
 - one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', or specified by users

- **TxDb**
 - TxDb or self-made granges object, served as txdb

- **weightCol**
 - column name of weight, default is NULL

- **nbin**
 - the amount of nbines

- **verbose**
 - print message or not

- **ignore_strand**
 - ignore the strand information or not

Details

getTagMatrix() function can produce the matrix for visualization. peak stands for the peak file. window stands for a collection of regions that users want to look into. Users can use window to capture the peak of interest. There are two ways to input window.

The first way is that users can use getPromoters()/getBioRegion()/makeBioRegionFromGranges() to get window and put it into getTagMatrix().

The second way is that users can use getTagMatrix() to call getPromoters()/getBioRegion()/makeBioRegionFromGranges(). In this way, users do not need to input window parameter but they need to input txdb.

txdb is a set of packages contained annotation of regions of different genomes. Users can get the regions of interest through specific functions. These specific functions are built in getPromoters()/getBioRegion(). Many regions can not be gain through txdb, like insulator and enhancer regions. Users can provide these regions in the form of granges object. These self-made granges object will be passed to txdb parameter and they will be passed to makeBioRegionFromGranges() to produce the window. In a word, txdb parameter is a reference information. Users can pass txdb object or self-made granges into it.

Details see getPromoters, getBioRegion and makeBioRegionFromGranges

upstream and downstream parameter have different usages:

1. window parameter is provided,
 - if type == 'body', upstream and downstream can use to extend the flank of body region.
 - if type == 'start_site'/ 'end_site', upstream and downstream do not play a role in getTagMatrix() function.

2. window parameter is missing,
 - if type == 'body', upstream and downstream can use to extend the flank of body region.
 - if type == 'start_site'/ 'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight vaule. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.
getTagMatrix.binning.internal

describe the tagMatrix by binning the idea was derived from the function of deeptools https://deeptools.readthedocs.io/en/develop/content/tools/computeMatrix.html

usage
getTagMatrix.binning.internal(
 peak,
 weightCol = NULL,
 windows,
 nbin = 800,
 upstream = NULL,
 downstream = NULL,
 ignore_strand = FALSE
)

Arguments

peak peak peak file or GRanges object
weightCol weightCol column name of weight, default is NULL
windows windows a collection of region with equal or not equal size, eg. promoter region, gene region.
nbin the amount of nbines needed to be splited and it should not be more than min_body_length
upstream rel object, NULL or actual number
downstream rel object, NULL or actual number
ignore_strand ignore the strand information or not

value
tagMatrix
getTagMatrix.internal

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculate the tag matrix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getTagMatrix.internal(peak, weightCol = NULL, windows, ignore_strand = FALSE)</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>peak</code></td>
</tr>
<tr>
<td><code>weightCol</code></td>
</tr>
<tr>
<td><code>windows</code></td>
</tr>
<tr>
<td><code>ignore_strand</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tagMatrix</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G Yu</td>
</tr>
</tbody>
</table>

getTagMatrix2

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nested function for <code>getTagMatrix()</code> to deal with multiple windows</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>getTagMatrix2(peak, upstream, downstream, windows_name, type, by, TxDB = NULL, weightCol = NULL, nbin = NULL)</code></td>
</tr>
</tbody>
</table>
verbatim = TRUE,
ignore_strand = FALSE)

Arguments

peak peak peak file or GRanges object
upstream the distance of upstream extension
downstream the distance of downstream extension
windows_name the names of windows
type one of "start_site", "end_site", "body"
by one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', or specified by users
TxDb TxDb or self-made granges object, served as txdb
weightCol column name of weight, default is NULL
nbin the amount of nbines
verbose print message or not
ignore_strand ignore the strand information or not

Details

This is an internal function.

Value

tagMatrix

description

getTagMatrix2.binning.internal

internal function

Description

internal function

Usage

getTagMatrix2.binning.internal(
 peak,
 weightCol = NULL,
 windows,
 windows_name,
 nbin = 800,
 upstream = NULL,
 downstream = NULL,
 ignore_strand = FALSE
)
Arguments

- **peak**: peak peak file or GRanges object
- **weightCol**: column name of weight, default is NULL
- **windows**: a collection of region
- **windows_name**: the name of windows
- **nbin**: the amount of nbines
- **upstream**: the distance of upstream extension
- **downstream**: the distance of downstream extension
- **ignore_strand**: ignore the strand information or not

description

getTagMatrix2.internal

Usage

```r
getTagMatrix2.internal(
  peak,
  weightCol = NULL,
  windows,
  windows_name,
  ignore_strand = FALSE
)
```

Arguments

- **peak**: peak peak file or GRanges object
- **weightCol**: column name of weight, default is NULL
- **windows**: a collection of region
- **windows_name**: the name of windows
- **ignore_strand**: ignore the strand information or not

info

Information Datasets

Description

ucsc genome version, precalculated data and gsm information
Description

make windows from granges object

Usage

```r
makeBioRegionFromGranges(gr, by, type, upstream = 1000, downstream = 1000)
```

Arguments

- `gr` a grange object contain region of interest
- `by` specify be users, e.g. gene, insulator, enhancer
- `type` one of "start_site", "end_site", "body"
- `upstream` upstream from start site or end site, can be NULL if the type == 'body'
- `downstream` downstream from start site or end site, can be NULL if the type == 'body'

Details

`makeBioRegionFromGranges()` function can make bioregion from granges object.

The differences between `makeBioRegionFromGranges()` and `getBioRegion()` is that `getBioRegion()` get the region object from txdb object but `makeBioRegionFromGranges()` get the region from the granges object provided by users. For example, txdb object do not contain insulator or enhancer regions. Users can provide these regions through self-made granges object.

There are three kinds of regions, start_site, end_site and body.

We take enhancer region to explain the differences of these three regions. enhancer: chr1 1000 - 1400.

- body region refers to the 1000-1400bp.
- start_site region with upstream = 100, downstream = 100 refers to 900-1100bp.
- end_site region with upstream = 100, downstream = 100 refers to 1300-1500bp.

In `makeBioRegionFromGranges()`, upstream and downstream can be NULL if the type == 'body'. by should be specified by users and can not be omitted. by parameter will be used to made labels.

type should also be specified.

https://github.com/YuLab-SMU/ChIPseeker/issues/189

Value

GRanges object
Description

calculate the overlap matrix, which is useful for vennplot

Usage

```r
overlap(Sets)
```

Arguments

- `Sets`: a list of objects

Value

data.frame

Author(s)

G Yu

peakHeatmap

Description

plot the heatmap of peaks

Usage

```r
peakHeatmap(
    peak,
    weightCol = NULL,
    TxDb = NULL,
    upstream = 1000,
    downstream = 1000,
    xlab = "",
    ylab = "",
    title = NULL,
    palette = NULL,
    verbose = TRUE,
    by = "gene",
    type = "start_site",
    nbin = NULL,
)```
ignore_strand = FALSE,
windows,
ncol = NULL,
nrow = NULL
)

Arguments

peak file or GRanges object
weightCol column name of weight
TxDb TxDB object
upstream upstream position
downstream downstream position
xlab xlab
ylab ylab
title title
palette palette to be filled in, details see scale_colour_brewer
verbose print message or not
by one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
type one of "start_site", "end_site", "body"
nbin the amount of nbines
ignore_strand ignore the strand information or not
windows a collection of region
ncol the ncol of plotting a list of peak
nrow the nrow of plotting a list of peak

Value

figure

Author(s)

G Yu
peakHeatmap_multiple_Sets

Description

plot the heatmap of peaks align to a sets of regions

Usage

peakHeatmap_multiple_Sets(
  peak,
  weightCol = NULL,
  TxDb = NULL,
  upstream = 1000,
  downstream = 1000,
  xlab = "",
  ylab = "",
  title = NULL,
  palette = NULL,
  verbose = TRUE,
  by = "gene",
  type = "start_site",
  nbin = NULL,
  ignore_strand = FALSE,
  windows_name = NULL,
  ncol = NULL,
  nrow = NULL,
  facet_label_text_size = 12
)

Arguments

peak peak file or GRanges object
weightCol column name of weight
TxDb TxDB object
upstream upstream position
downstream downstream position
xlab xlab
ylab ylab
title title
palette palette to be filled in, details see scale_colour_brewer
verbose print message or not
peak_Profile_Heatmap

- **type**: one of "start_site", "end_site", "body"
- **nbin**: the amount of nbines
- **ignore_strand**: ignore the strand information or not
- **windows_name**: the name for each window, which will also be showed in the picture as labels
- **ncol**: the ncol of plotting a list of peak
- **nrow**: the nrow of plotting a list of peak
- **facet_label_text_size**: the size of facet label text

**Value**

- figure

**Description**

plot peak heatmap and profile in a picture

**Usage**

```r
peak_Profile_Heatmap(
 peak,
 weightCol = NULL,
 TxDb = NULL,
 upstream = 1000,
 downstream = 1000,
 xlab = "",
 ylab = "",
 title = NULL,
 palette = NULL,
 verbose = TRUE,
 by = "gene",
 type = "start_site",
 nbin = NULL,
 ignore_strand = FALSE,
 windows_name = NULL,
 ncol = NULL,
 nrow = NULL,
 facet_label_text_size = 12,
 conf,
 facet = "row",
 free_y = TRUE,
 height_proportion = 4
)
```
**Arguments**

- `peak`: peak file or GRanges object
- `weightCol`: column name of weight
- `TxDb`: TxDb object
- `upstream`: upstream position
- `downstream`: downstream position
- `xlab`: xlab
- `ylab`: ylab
- `title`: title
- `palette`: palette to be filled in, details see `scale_colour_brewer`
- `verbose`: print message or not
- `by`: one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'
- `type`: one of "start_site", "end_site", "body"
- `nbin`: the amount of nbines
- `ignore_strand`: ignore the strand information or not
- `windows_name`: the name for each window, which will also be showed in the picture as labels
- `ncol`: the ncol of plotting a list of peak
- `nrow`: the nrow of plotting a list of peak
- `facet_label_text_size`: the size of facet label text
- `conf`: confidence interval
- `facet`: one of 'none', 'row' and 'column'
- `free_y`: if TRUE, y will be scaled by AvgProf
- `height_proportion`: the proportion of profiling picture and heatmap

---

**Description**

plotAnnoBar method for csAnno instance
plotAnnoBar.data.frame

Usage

plotAnnoBar(
  x,
  xlab = "", 
  ylab = "Percentage(\%)",
  title = "Feature Distribution",
  ...
)

## S4 method for signature 'list'
plotAnnoBar(
  x,
  xlab = "", 
  ylab = "Percentage(\%)",
  title = "Feature Distribution",
  ...
)

plotAnnoBar(x, xlab="", ylab='Percentage(%),title="Feature Distribution", ...)

Arguments

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>csAnno instance</td>
</tr>
<tr>
<td>xlab</td>
<td>xlab</td>
</tr>
<tr>
<td>ylab</td>
<td>ylab</td>
</tr>
<tr>
<td>title</td>
<td>title</td>
</tr>
<tr>
<td>...</td>
<td>additional parameter</td>
</tr>
</tbody>
</table>

Value

plot

Author(s)

Guangchuang Yu [https://guangchuangyu.github.io](https://guangchuangyu.github.io)

Description

plot feature distribution based on their chromosome region
Usage

plotAnnoBar.data.frame(
  anno.df,
  xlab = "",
  ylab = "Percentage(%)",
  title = "Feature Distribution",
  categoryColumn
)

Arguments

  anno.df  annotation stats
    xlab     xlab
    ylab     ylab
      title   plot title
categoryColumn category column

Details

  plot chromosome region features

Value

  bar plot that summarize genomic features of peaks

Author(s)

  Guangchuang Yu https://yulab-smu.top

See Also

  annotatePeak plotAnnoPie

Description

  plotAnnoPie method for csAnno instance
plotAnnoPie.csAnno

Usage

plotAnnoPie(
  x,
  ndigit = 2,
  cex = 0.9,
  col = NA,
  legend.position = "rightside",
  pie3D = FALSE,
  radius = 0.8,
  ...
)

plotAnnoPie(x, ndigit=2, cex=0.9, col=NA, legend.position="rightside", pie3D=FALSE, radius=0.8, ...)

Arguments

  x            csAnno instance
  ndigit       number of digit to round
  cex           label cex
  col           color
  legend.position      topright or other.
  pie3D         plot in 3D or not
  radius        radius of the pie
  ...           extra parameter

Value

plot

Author(s)

Guangchuang Yu [https://guangchuangyu.github.io](https://guangchuangyu.github.io)

Description

pieplot from peak genomic annotation
Usage

plotAnnoPie.csAnno(
  x,
  ndigit = 2,
  cex = 0.8,
  col = NA,
  legend.position = "rightside",
  pie3D = FALSE,
  radius = 0.8,
  ...
)

Arguments

x          csAnno object
ndigit     number of digit to round
cex         label cex
col         color
legend.position
topleft or other.
pie3D       plot in 3D or not
radius      radius of Pie
...         extra parameter

Value

pie plot of peak genomic feature annotation

Author(s)

Guangchuang Yu https://yulab-smu.top

See Also

annotatePeak plotAnnoBar

Examples

## Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="chipseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotAnnoPie(peakAnno)

## End(Not run)
plotAvgProf

Description
plot the profile of peaks

Usage
plotAvgProf(
tagMatrix,
xlim,
xlab = "Genomic Region (5'-->3')",
ylab = "Peak Count Frequency",
conf,
facet = "none",
free_y = TRUE,
origin_label = "TSS",
verbose = TRUE,
...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tagMatrix</td>
<td>tagMatrix or a list of tagMatrix</td>
</tr>
<tr>
<td>xlim</td>
<td>xlim</td>
</tr>
<tr>
<td>xlab</td>
<td>x label</td>
</tr>
<tr>
<td>ylab</td>
<td>y label</td>
</tr>
<tr>
<td>conf</td>
<td>confidence interval</td>
</tr>
<tr>
<td>facet</td>
<td>one of 'none', 'row' and 'column'</td>
</tr>
<tr>
<td>free_y</td>
<td>if TRUE, y will be scaled by AvgProf</td>
</tr>
<tr>
<td>origin_label</td>
<td>label of the center</td>
</tr>
<tr>
<td>verbose</td>
<td>print message or not</td>
</tr>
<tr>
<td>...</td>
<td>additional parameter</td>
</tr>
</tbody>
</table>

Value

ggplot object

Author(s)
G Yu; Y Yan
Description

plot the profile of peaks by binning

Usage

`plotAvgProf.binning(
  tagMatrix,
  xlab = "Genomic Region (5'-->3')",
  ylab = "Peak Count Frequency",
  conf,
  facet = "none",
  free_y = TRUE,
  upstream = NULL,
  downstream = NULL,
  label,
  ...
)
``

Arguments

- `tagMatrix`: tagMatrix or a list of tagMatrix
- `xlab`: x label
- `ylab`: y label
- `conf`: confidence interval
- `facet`: one of 'none', 'row' and 'column'
- `free_y`: if TRUE, y will be scaled
- `upstream`: rel object reflects the percentage of flank extension, e.g rel(0.2) integer reflects the actual length of flank extension or TSS region NULL reflects the gene body with no extension
- `downstream`: rel object reflects the percentage of flank extension, e.g rel(0.2) integer reflects the actual length of flank extension or TSS region NULL reflects the gene body with no extension
- `label`: label
- `...`: additional parameter

Value

`ggplot` object
Description

plot the profile of peaks that align to flank sequences of TSS

Usage

```r
plotAvgProf2(
 peak,
 weightCol = NULL,
 TxDb = NULL,
 upstream = 1000,
 downstream = 1000,
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 conf,
 facet = "none",
 free_y = TRUE,
 verbose = TRUE,
 ignore_strand = FALSE,
 ...
)
```

Arguments

- **peak**: peak file or GRanges object
- **weightCol**: column name of weight
- **TxDb**: TxDb object
- **upstream**: upstream position
- **downstream**: downstream position
- **xlab**: xlab
- **ylab**: ylab
- **conf**: confidence interval
- **facet**: one of 'none', 'row' and 'column'
- **free_y**: if TRUE, y will be scaled by AvgProf
- **verbose**: print message or not
- **ignore_strand**: ignore the strand information or not
- **...**: additional parameter

Details

This function is the old function of plotPeakProf2. It can only plot the start site region of gene.
Value

ggplot object

Author(s)

G Yu, Ming L

plotDistToTSS
plotDistToTSS method generics

Description

plotDistToTSS method for csAnno instance

Usage

plotDistToTSS(
  x,
  distanceColumn = "distanceToTSS",
  xlab = "",
  ylab = "Binding sites (%) (5'->3')",
  title = "Distribution of transcription factor-binding loci relative to TSS",
  ...
)

## S4 method for signature 'list'
plotDistToTSS(
  x,
  distanceColumn = "distanceToTSS",
  xlab = "",
  ylab = "Binding sites (%) (5'->3')",
  title = "Distribution of transcription factor-binding loci relative to TSS",
  ...
)

plotDistToTSS(x,distanceColumn="distanceToTSS", xlab="", ylab="Binding sites (%) (5'->3')", title="Distribution of transcription factor-binding loci relative to TSS",...)

Arguments

  x     csAnno instance
  distanceColumn  distance column name
  xlab     xlab
  ylab     ylab
  title    title
  ...    additional parameter
Value
plot

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

Description
plot feature distribution based on the distances to the TSS

Usage
plotDistToTSS.data.frame(
  peakDist,
  distanceColumn = "distanceToTSS",
  xlab = "",
  ylab = "Binding sites (%) (5'->3')",
  title = "Distribution of transcription factor-binding loci relative to TSS",
  categoryColumn
)

Arguments
  peakDist  peak annotation
  distanceColumn  column name of the distance from peak to nearest gene
  xlab  x label
  ylab  y lable
  title  figure title
  categoryColumn  category column

Value
bar plot that summarize distance from peak to TSS of the nearest gene.

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

See Also
annotatePeak
Examples

```r
Not run:
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peakAnno <- annotatePeak(peakfile, TxDb=txdb)
plotDistToTSS(peakAnno)

End(Not run)
```

Description

internal function for plotPeakProf_MultiWindows

Usage

```r
plotMultiProf(
tagMatrix,
conf,
xlab = "Genomic Region (5'->3')",
ylab = "Peak Count Frequency",
facet = "none",
free_y = TRUE,
...)
```

Arguments

- `tagMatrix` : tagMatrix
- `conf` : confidence interval
- `xlab` : xlab
- `ylab` : ylab
- `facet` : one of 'none', 'row' and 'column'
- `free_y` : if TRUE, y will be scaled by AvgProf
- `...` : additional parameter
plotMultiProf.binning  

Description

internal function

Usage

plotMultiProf.binning(
tagMatrix,
xlab = "Genomic Region (5'->3')",
ylab = "Peak Count Frequency",
conf,
facet = "none",
free_y = TRUE,
upstream = NULL,
downstream = NULL,
label,
...
)

Arguments

tagMatrix  tagMatrix
xlab  xlab
ylab  ylab
conf  confidence interval
facet  one of 'none', 'row' and 'column'
free_y  if TRUE, y will be scaled by AvgProf
upstream  the upstream extension
downstream  the downstream extension
label  the label of the center
...  additional parameter
plotMultiProf.binning.internal

*internal function*

**Description**

internal function

**Usage**

```r
plotMultiProf.binning.internal(
 tagMatrix,
 conf,
 xlab = "Genomic Region (5'-->3')",
 ylab = "Peak Count Frequency",
 facet = "none",
 free_y = TRUE,
 upstream = NULL,
 downstream = NULL,
 label,
 ...
)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tagMatrix</td>
<td>tagMatrix</td>
</tr>
<tr>
<td>conf</td>
<td>confidence interval</td>
</tr>
<tr>
<td>xlab</td>
<td>xlab</td>
</tr>
<tr>
<td>ylab</td>
<td>ylab</td>
</tr>
<tr>
<td>facet</td>
<td>one of 'none', 'row' and 'column'</td>
</tr>
<tr>
<td>free_y</td>
<td>if TRUE, y will be scaled by AvgProf</td>
</tr>
<tr>
<td>upstream</td>
<td>the upstream extension</td>
</tr>
<tr>
<td>downstream</td>
<td>the downstream extension</td>
</tr>
<tr>
<td>label</td>
<td>the label of the center</td>
</tr>
<tr>
<td>...</td>
<td>additional parameter</td>
</tr>
</tbody>
</table>
plotMultiProf.normal  internal function

Description

internal function

Usage

plotMultiProf.normal(
  tagMatrix,
  xlim,
  xlab = "Genomic Region (5'-->3')",
  ylab = "Peak Count Frequency",
  conf,
  facet = "none",
  free_y = TRUE,
  origin_label = "TSS",
  verbose = TRUE,
  ...
)

Arguments

  tagMatrix   tagMatrix
  xlim        xlim
  xlab        xlab
  ylab        ylab
  conf        confidence interval
  facet        one of 'none', 'row' and 'column'
  free_y      if TRUE, y will be scaled by AvgProf
  origin_label the label of the center
  verbose     print message or not
  ...         additional parameter
plotMultiProf.normal.internal

internal function

Description

internal function

Usage

plotMultiProf.normal.internal(
  tagMatrix,
  conf,
  xlim = c(-3000, 3000),
  xlab = "Genomic Region (5'->3')",
  ylab = "Peak Count Frequency",
  facet = "row",
  free_y = TRUE,
  origin_label,
  ...
)

Arguments

tagMatrix  tagMatrix
conf        confidence interval
xlim        xlim
xlab        xlab
ylab        ylab
facet       one of 'none', 'row' and 'column'
free_y      if TRUE, y will be scaled by AvgProf
origin_label the label of the center
...          additional parameter

Description

plot the profile of peaks 'plotPeakProf_MultiWindows()' is almost the same as 'plotPeakProf2()', having the main difference of accepting two or more granges objects. Accepting more granges objects can help compare the same peaks in different windows.
Usage

plotPeakProf(
  tagMatrix = NULL,
  peak,
  upstream,
  downstream,
  conf,
  by,
  type,
  windows_name = NULL,
  weightCol = NULL,
  TxDB = NULL,
  xlab = "Genomic Region (5'\rightarrow3')",
  ylab = "Peak Count Frequency",
  facet = "row",
  free_y = TRUE,
  verbose = TRUE,
  nbin = NULL,
  ignore_strand = FALSE,
  ...
)

Arguments

tagMatrix tagMatrix or a list of tagMatrix
peak peak file or GRanges object
upstream upstream position
downstream downstream position
conf confidence interval
by feature of interest
type one of "start_site", "end_site", "body"
windows_name the name for each window, which will also be showed in the picture as labels
weightCol column name of weight
TxDB TxDB object or self-made granges objects
xlab xlab
ylab ylab
facet one of 'none', 'row' and 'column'
free_y if TRUE, y will be scaled by AvgProf
verbose print message or not
nbin the amount of bins
ignore_strand ignore the strand information or not
... additional parameter
**Details**

**TxDb** parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to **TxDb** object by the features of interest.

(1) if users use **txdb**, by can be one of ‘gene’, ‘transcript’, ‘exon’, ‘intron’, ‘3UTR’, ‘5UTR’, ‘UTR’. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

**type** means the property of the region. one of the "start site", "end site" and "body".

**upstream** and **downstream** parameter have different usages:

(1) if type == 'body', upstream and downstream can use to extend the flank of body region.

(2) if type == 'start_site'/"end_site", upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

**weightCol** refers to column in peak file. This column acts as a weight value. Details see [https://github.com/YuLab-SMU/ChIPseeker/issues/15](https://github.com/YuLab-SMU/ChIPseeker/issues/15)

**nbin** refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.

There are two ways input a list of window.

(1) Users can input a list of self-made granges objects

(2) Users can input a list of by and only one type. In this way, plotPeakProf_MultiWindows() can made a list of window from txdb object based on by and type.

**Warning:**

(1) All of these window should be the same type. It means users can only compare a list of "start site"/"end site"/"body region" with the same upstream and downstream.

(2) So it will be only one type and several by.

(3) Users can make window by txdb object or self-made granges object. Users can only choose one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR' or 'UTR' in the way of using txdb object. User can input any by in the way of using self-made granges object.

(4) Users can mingle the by designed for the two ways. plotPeakProf_MultiWindows can accept the hybrid by. But the above rules should be followed.

[https://github.com/YuLab-SMU/ChIPseeker/issues/189](https://github.com/YuLab-SMU/ChIPseeker/issues/189)

**Value**

**ggplot** object
plotPeakProf2

---

**Description**

plot the profile of peaks automatically

**Usage**

```r
plotPeakProf2(
 peak,
 upstream,
 downstream,
 conf,
 by,
 type,
 weightCol = NULL,
 TxDb = NULL,
 xlab = "Genomic Region (5'->3')",
 ylab = "Peak Count Frequency",
 facet = "none",
 free_y = TRUE,
 verbose = TRUE,
 nbin = NULL,
 ignore_strand = FALSE,
 ...
)
```

**Arguments**

- **peak**: peak file or GRanges object
- **upstream**: upstream position
- **downstream**: downstream position
- **conf**: confidence interval
- **by**: e.g. 'gene', 'transcript', 'exon' or features of interest(e.g. "enhancer")
- **type**: one of "start_site", "end_site", "body"
- **weightCol**: column name of weight
- **TxDb**: TxDb object, or self-made granges object
- **xlab**: xlab
- **ylab**: ylab
- **facet**: one of 'none', 'row' and 'column'
- **free_y**: if TRUE, y will be scaled by AvgProf
- **verbose**: print message or not
plotPeakProf2

nbin the amount of nbines
ignore_strand ignore the strand information or not
...
additional parameter

Details

peak stands for the peak file.

by the features of interest.

(1) if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and downstream parameter have different usages:

(1) if type == 'body', upstream and downstream can use to extend the flank of body region.

(2) if type == 'start_site'/ 'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight vaule. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins, providing a binning method to get the tag matrix.

TxDb parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.

plotPeakProf2() is different from the plotPeakProf(). plotPeakProf2() do not need to provide window parameter, which means plotPeakProf2() will call relevent functions to make window automatically.

Value

ggplot object

Author(s)

G Yu, Ming Li
plotPeakProf_MultiWindows

Description

plot the profile of peaks in two or more windows

Usage

plotPeakProf_MultiWindows(
  peak,
  upstream,
  downstream,
  conf,
  by,
  type,
  windows_name = NULL,
  weightCol = NULL,
  TxDb = NULL,
  xlab = "Genomic Region (5'-3')",
  ylab = "Peak Count Frequency",
  facet = "row",
  free_y = TRUE,
  verbose = TRUE,
  nbin = NULL,
  ignore_strand = FALSE,
  ...
)

Arguments

peak      peak file or GRanges object
upstream  upstream position
downstream downstream position
conf      confidence interval
by        feature of interest
type      one of "start_site", "end_site", "body"
windows_name the name for each window, which will also be showed in the picture as labels
weightCol column name of weight
TxDb      TxDb object or self-made granges objects
xlab      xlab
ylab      ylab
facet     one of 'none', 'row' and 'column'
plotPeakProf_MultiWindows

free_y if TRUE, y will be scaled by AvgProf
verbose print message or not
nbin the amount of bines
ignore_strand ignore the strand information or not
... additional parameter

Details

This function comes from https://github.com/YuLab-SMU/ChIPseeker/issues/189 `plotPeakProf_MultiWindows()` is almost the same as `plotPeakProf2()`, having the main difference of accepting two or more granges objects. Accepting more granges objects can help compare the same peaks in different windows.

TxDb parameter can accept txdb object. But many regions can not be obtained by txdb object. In this case, Users can provide self-made granges served the same role as txdb object and pass to TxDb object.

by the features of interest.

(1) if users use txdb, by can be one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR', 'UTR'. These features can be obtained by functions from txdb object.

(2) if users use self-made granges object, by can be everything. Because this by will not pass to functions to get features, which is different from the case of using txdb object. This by is only used to made labels showed in picture.

type means the property of the region. one of the "start site", "end site" and "body".

upstream and downstream parameter have different usages:

(1) if type == 'body', upstream and downstream can use to extend the flank of body region.

(2) if type == 'start_site'/ 'end_site', upstream and downstream refer to the upstream and downstream of the start_site or the end_site.

weightCol refers to column in peak file. This column acts as a weight value. Details see https://github.com/YuLab-SMU/ChIPseeker/issues/15

nbin refers to the number of bins. getTagMatrix() provide a binning method to get the tag matrix.

There are two ways input a list of window.

(1) Users can input a list of self-made granges objects

(2) Users can input a list of by and only one type. In this way, plotPeakProf_MultiWindows() can made a list of window from txdb object based on by and type.

Warning:

(1) All of these window should be the same type. It means users can only compare a list of "start site"/"end site"/"body region" with the same upstream and downstream.

(2) So it will be only one type and several by.

(3) Users can make window by txdb object or self-made granges object. Users can only choose one of 'gene', 'transcript', 'exon', 'intron', '3UTR', '5UTR' or 'UTR' in the way of using txdb object. User can input any by in the way of using self-made granges object.

(4) Users can mingle the by designed for the two ways. plotPeakProf_MultiWindows can accpet the hybrid by. But the above rules should be followed.
Value

ggplot object

readPeakFile  readPeakFile

Description

read peak file and store in data.frame or GRanges object

Usage

readPeakFile(peakfile, as = "GRanges", ...)

Arguments

peakfile  peak file
as  output format, one of GRanges or data.frame
...  additional parameter

Value

peak information, in GRanges or data.frame object

Author(s)

G Yu

Examples

peakfile <- system.file("extdata", "sample_peaks.txt", package="ChIPseeker")
peak.gr <- readPeakFile(peakfile, as="GRanges")
peak.gr

reexports  Objects exported from other packages

Description

These objects are imported from other packages. Follow the links below to see their documentation.

GenomicRanges  GRangesList
ggplot2  rel
seq2gene

Description
annotate genomic regions to genes in many-to-many mapping

Usage
seq2gene(seq, tssRegion, flankDistance, TxDb, sameStrand = FALSE)

Arguments
seq genomic regions in GRanges object
tssRegion TSS region
flankDistance flanking search radius
TxDb TranscriptDb object
sameStrand logical whether find nearest/overlap gene in the same strand

Details
This function associates genomic regions with coding genes in a many-to-many mapping. It first maps genomic regions to host genes (either located in exon or intron), proximal genes (located in promoter regions) and flanking genes (located in upstream and downstream within user specified distance).

Value
gene vector

Author(s)
Guangchuang Yu

Examples
## Not run:
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
file <- getSampleFiles()[[1]] # a bed file
gr <- readPeakFile(file)
genes <- seq2gene(gr, tssRegion=c(-1000, 1000), flankDistance = 3000, TxDb)
## End(Not run)
show

Description
show method for csAnno instance

Usage
show(object)

Arguments
object A csAnno instance

Value
message

Author(s)
Guangchuang Yu https://guangchuangyu.github.io

shuffle

Description
shuffle the position of peak

Usage
shuffle(peak.gr, TxDb)

Arguments
peak.gr GRanges object
TxDb TxDb

Value
GRanges object

Author(s)
G Yu
**tagHeatmap**

---

**Description**

plot the heatmap of tagMatrix

**Usage**

```r
tagHeatmap(
tagMatrix,
 tagMatrix,
 xlab = "",
 ylab = "",
 title = NULL,
 palette = "RdBu",
 nrow = NULL,
 ncol = NULL
)
```

**Arguments**

- `tagMatrix`: tagMatrix or a list of tagMatrix
- `xlab`: xlab
- `ylab`: ylab
- `title`: title
- `palette`: palette to be filled in, details see `scale_colour_brewer`
- `nrow`: the nrow of plotting a list of peak
- `ncol`: the ncol of plotting a list of peak

**Value**

figure

**Author(s)**

G Yu
### upsetplot

**Description**
upsetplot method generics

**Usage**
upsetplot(x, ...)

**Arguments**
x A csAnno instance
...
additional parameter

**Value**
plot

**Author(s)**
Guangchuang Yu [https://guangchuangyu.github.io](https://guangchuangyu.github.io)

---

### vennpie

**Description**
vennpie method generics

**Usage**
vennpie(x, r = 0.2, cex = 1.2, ...)

**Arguments**
x A csAnno instance
r initial radius
cex value to adjust legend
...
additional parameter
**Description**

plot the overlap of a list of object

**Usage**

```
vennplot(Sets, by = "gplots", ...)
```

**Arguments**

- **Sets**: a list of object, can be vector or GRanges object
- **by**: one of gplots, ggVennDiagram or Vennerable
- **...**: extra parameters using ggVennDiagram. Details see `ggVennDiagram`

**Details**

There are two ways to plot, which users can specify through `by`.

The first way is to use `gplots` packages, by setting `by = gplots`. This method is default method. The venn plot produced through this way has no color.

The second way is to use `ggVennDiagram` packages, by setting `by = ggVennDiagram`. The venn plot produced through this way has colors which can be defined by users using ggplot2 grammar e.g.(`scale_fill_distiller()`). And users can specify any details, like digital number, text size and showing percentage or not, by inputting `...` extra parameters.

**Value**

venn plot that summarize the overlap of peaks from different experiments or gene annotation from different peak files.

**Author(s)**

G Yu
Examples

```r
example not run
require(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
peakfiles <- getSampleFiles()
peakAnnoList <- lapply(peakfiles, annotatePeak)
names(peakAnnoList) <- names(peakfiles)
genes= lapply(peakAnnoList, function(i) as.data.frame(i)$geneId)
vennplot(genes)
```

Description

vennplot for peak files

Usage

```r
vennplot.peakfile(files, labels = NULL)
```

Arguments

- `files` : peak files
- `labels` : labels for peak files

Value

- `figure`

Author(s)

G Yu
Index

* classes
  csAnno-class, 10
* datasets
  info, 25
* internal
  reexports, 52
* package
  ChIPseeker-package, 4
  , 4
annotatePeak, 5, 10, 33, 35, 40
as.data.frame.csAnno, 7
as.GRanges, 8
check_upstream_and_downstream, 8
ChIPseeker (ChIPseeker-package), 4
ChIPseeker-package, 4
combine_csAnno, 9
covplot, 9
csAnno-class, 10
downloadGEObedFiles, 11
downloadGSMbedFiles, 11
dropAnno, 12
enrichAnnoOverlap, 12
enrichPeakOverlap, 13
goingAnnoStat, 14
goingBioRegion, 14, 21
goingGeneAnno, 15
goingGenomicAnnotation, 16
goingGEOgenomeVersion, 17
goingGEOInfo, 17
goingGEOspecies, 18
goingNearestFeatureIndicesAndDistances, 18
goingPromoters, 19, 21
goingSampleFiles, 20
goingTagMatrix, 20
goingTagMatrix.binning.internal, 22
goingTagMatrix.internal, 23
goingTagMatrix2, 23
goingTagMatrix2.binning.internal, 24
goingTagMatrix2.internal, 25
ggVennDiagram, 57
GRangesList, 52
GRangesList (reexports), 52
gsminfo (info), 25
info, 25
makeBioRegionFromGranges, 21, 26
mclapply, 14
overlap, 27
peak_Profile_Heatmap, 30
peakHeatmap, 27
peakHeatmap_multiple_Sets, 29
plotAnnoBar, 6, 31, 35
plotAnnoBar, csAnno, ANY-method
  (plotAnnoBar), 31
plotAnnoBar, csAnno-method
  (csAnno-class), 10
plotAnnoBar, list-method (plotAnnoBar), 31
plotAnnoBar.data.frame, 32
plotAnnoPie, 6, 33, 33
plotAnnoPie, csAnno, ANY-method
  (plotAnnoPie), 33
plotAnnoPie, csAnno-method
  (csAnno-class), 10
plotAnnoPie.csAnno, 34
plotAvgProf, 36
plotAvgProf.binning, 37
plotAvgProf2, 38
plotDistToTSS, 6, 39
plotDistToTSS, csAnno, ANY-method
  (plotDistToTSS), 39
plotDistToTSS, csAnno-method
  (csAnno-class), 10
plotDistToTSS, list-method
  (plotDistToTSS), 39
plotDistToTSS.data.frame, 40
plotMultiProf, 41
plotMultiProf.binning, 42
plotMultiProf.binning.internal, 43
plotMultiProf.normal, 44
plotMultiProf.normal.internal, 45
plotPeakProf, 45
plotPeakProf2, 48
plotPeakProf_MultiWindows, 50

readPeakFile, 52
reexports, 52
rel, 52
rel (reexports), 52

scale_colour_brewer, 28, 29, 31, 55
seq2gene, 53
show, 54
show, csAnno, ANY-method (show), 54
show, csAnno-method (csAnno-class), 10
shuffle, 54
subset, csAnno-method (csAnno-class), 10

tagHeatmap, 55
tagMatrixList (info), 25

ucsc_release (info), 25
upsetplot, 56
upsetplot, csAnno-method (csAnno-class), 10

vennpie, 56
vennpie, csAnno-method (csAnno-class), 10
vennpplot, 57
vennpplot.peakfile, 58