Package ‘BioNAR’

May 29, 2024

Title Biological Network Analysis in R
Version 1.6.0
Description the R package BioNAR, developed to step by step analysis of PPI network. The aim is to quantify and rank each protein’s simultaneous impact into multiple complexes based on network topology and clustering. Package also enables estimating of co-occurrence of diseases across the network and specific clusters pointing towards shared/common mechanisms.
License Artistic-2.0
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Depends R (>= 3.5.0), igraph (>= 2.0.1.1), poweRlaw, latex2exp, RSpectra, Rdpack
Imports stringr, viridis, clusterCons, fgsea, grid, methods, AnnotationDbi, dplyr, GO.db, org.Hs.eg.db (>= 3.19.1), rSpectral, WGCNA, ggplot2, ggrepel, minpack.lm, cowplot, data.table, scales, stats, Matrix
RdMacros Rdpack
Suggests knitr, BiocStyle, magick, rmarkdown, igraphdata, testthat (>= 3.0.0), vdiffr, devtools, pander, plotly, randomcoloR
Config/testthat/edition 3
VignetteBuilder knitr
BugReports https://github.com/lptolik/BioNAR/issues/
biocViews Software, GraphAndNetwork, Network
LazyData true
git_url https://git.bioconductor.org/packages/BioNAR
git_branch RELEASE_3_19
git_last_commit 61ee6e62
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-29
Author Colin Mclean [aut],
Anatoly Sorokin [aut, cre],
Oksana Sorokina [aut],
J. Douglas Armstrong [aut, fnd],
T. Ian Simpson [ctb, fnd]
Maintainer Anatoly Sorokin <lptolik@gmail.com>

Contents

addEdgeAtts 4
annotateGeneNames 4
annotateGoBP 5
annotateGoCC 6
annotateGoMF 7
annotateGOont 8
annotateInterpro 9
annotatePresynaptic 9
annotateSCHanno 10
annotateTopOntoOVG 11
annotateVertex 12
applpMatrixToGraph 13
BioNAR 14
buildConsensusMatrix 15
buildNetwork 15
calcAllClustering 16
calcBridgeness 17
calcCentrality 18
calcCentralityExternalDistances 19
calcCentralityInternalDistances 20
calcClustering 21
calcDiseasePairs 22
calcEntropy 23
calcMembership 24
calcReclusterMatrix 25
calcSparsness 26
clusteringSummary 27
clusterORA 28
degreeBinnedGDAs 29
diseasome 30
escapeAnnotation 31
evalCentralitySignificance 32
findLCC 33
fitDegree 33
fitSigmoid 35
flatfile.go.BP.csv 36
annotateGeneNames

addEdgeAtts
Copy edge attributes from one graph to another

Description
Copy edge attributes from one graph to another

Usage
```r
addEdgeAtts(GG, gg)
```

Arguments
- **GG**: igraph object, source of attributes
- **gg**: igraph object, attributes recipient

Value
annotated version of gg igraph object

Examples
```r
code
```

annotateGeneNames

Annotate Human Gene Names

Description
For the protein-protein interaction (PPI) or disease gene interaction (DGN) graphs that have En
trezID as a vertex name this function extract standard name from org.Hs.eg.db and annotate ver-
tices.

Usage
```r
annotateGeneNames(gg, orgDB = org.Hs.eg.db, keytype = "ENTREZID")
```

Arguments
- **gg**: igraph object to annotate
- **orgDB**: ordDB object, by default human is assumed from org.Hs.eg.db
- **keytype**: type of IDs stored in the name vertex attribute, by default ENTREZID is assumed.
Details

If vertex name attrubite stores not EntrezID or network is build not from human genes, other OrgDb-class object could be provided in orgDB and one of keytypes from that object that correspond to the nature of the vertex name attrubite could be provided in the keytype attribute.

If for some vertices name attrubite does not match keys with particular keytypes in the orgDB object, empty string is added as GeneName.

Value

igraph object with new vertex attribute GeneName

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
agg<-annotateGeneNames(gg)
# due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273')
paste(V(agg)$GeneName[idx], 'GRPEL1')
```

annotateGoBP

Add GO BP annotation to the graph vertices

Description

The function loads an annotation data matrix called annoF, which contains three columns; the first containing gene Entrez IDs, the second gene GO BP ID terms, the third gene GO BP description terms. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the vertices attributes GO_BP_ID and GO_BP.

Usage

```r
annotateGoBP(gg, annoF, idatt = "name")
```

Arguments

- `gg`: graph to update
- `annoF`: annotation matrix in Pair form
- `idatt`: optional name of the vertex attribute to map to the annotation data.frame first column

Value

annotated igraph object

See Also

getAnnotationVertexList
Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
sfile<system.file("extdata", "flatfile.go.BP.csv", package = "BioNAR")
goBP <- read.table(sfile, sep="\t", skip=1, header=FALSE, strip.white=TRUE, quote="")
sgg <- annotateGoBP(gg, goBP)
```

```r
annotateGoCC(gg, goBP)
```

Description

The function loads an annotation data matrix called `annoF`, which contains three columns; the first containing gene Entrez IDs, the second gene GO ID terms, the third gene GO CC description terms. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the vertices attributes `GO_CC_ID` and `GO_CC`.

Usage

`annotateGoCC(gg, annoF, idatt = "name")`

Arguments

- `gg`: graph to update
- `annoF`: annotation matrix in Pair form
- `idatt`: optional name of the vertex attribute to map to the annotation data.frame first column

Value

annotated igraph object

See Also

`getAnnotationVertexList`

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
sfile<system.file("extdata", "flatfile.go.CC.csv", package = "BioNAR")
goCC <- read.table(sfile, sep="\t", skip=1, header=FALSE, strip.white=TRUE, quote="")
sgg <- annotateGoCC(gg, goCC)
```
annotateGoMF
Add GO MF annotation to the graph vertices

Description

The function loads an annotation data matrix called annoF, which contains three columns; the first containing gene Entrez IDs, the second gene GO MF ID terms, the third gene GO MF description terms. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the vertices attributes GO_MF_ID and GO_MF.

Usage

annotateGoMF(gg, annoF, idatt = "name")

Arguments

gg
graph to update

annoF
annotation matrix in Pair form

idatt
optional name of the vertex attribute to map to the annotation data.frame first column

Value

annotated igraph object

See Also

getAnnotationVertexList

Examples

file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
sfile<system.file("extdata", "flatfile.go.MF.csv", package = "BioNAR")
goMF <- read.table(sfile, sep="\t", skip=1, header=FALSE, strip.white=TRUE, quote="")
sgg <- annotateGoMF(gg, goMF)
Annotate nodes with GO terms

Description

For the protein-protein interaction (PPI) or disease gene interaction (DGN) graphs that have EntrezID as a vertex name this function extract GeneOntolgy annotation from orgDB, which should be OrgDb-class, split them into three ontology group (MF,BP,CC) and annotate vertices with .

Usage

annotateGOont(gg, orgDB = org.Hs.eg.db, keytype = "ENTREZID", idatt = "name")

Arguments

- **gg**: igraph object to annotate
- **orgDB**: ordDB object, by default human is assumed from org.Hs.eg.db
- **keytype**: type of IDs stored in the name vertex attribute, by default ENTREZID is assumed.
- **idatt**: optional name of the vertex attributes that contains IDs matching the keytype

Details

If vertex name attrubite stores not EntrezID or network is build not from human genes, other OrgDb-class object could be provided in orgDB and one of keytypes from that object that correspond to the nature of the vertex name attrubite could be provided in the keytype attribute.

If for some vertices name attrubite does not match keys with particular keytypes in the orgDB object, empty string is added as GeneName.

Value

igraph object with new vertex attribute GeneName

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
ggGO <- annotateGOont(gg)
```
annotateInterpro Add InterPro Family and Domain annotation to the graph vertices

Description
Function takes data from annoF matrix and add them to attributes InterPro_Family for term and InterPro_Family_ID for IDs.

Usage
annotateInterpro(gg, annoF, annoD, idatt = "name")

Arguments
- gg: graph to update
- annoF: family annotation matrix in Pair form
- annoD: domain annotation matrix in Pair form
- idatt: optional name of the vertex attributes that contains Entrez IDs

Details
Function takes data from annoD matrix and add them to attributes InterPro_Domain for term and InterPro_Domain_ID for IDs.

Value
annotated igraph object

See Also
getAnnotationVertexList

annotatePresynaptic Add presynaptic functional groups

Description
Function takes from anno matrix manually curated presynaptic genes functional annotation derived from Boyken at al. (2013) doi:10.1016/j.neuron.2013.02.027 and add them to attributes PRESYNAPTIC.

Usage
annotatePresynaptic(gg, anno, idatt = "name")
annotateSCHanno

Arguments

- **gg**: graph to update
- **anno**: annotation matrix in Pair form
- **idatt**: optional name of the vertex attributes that contains Entrez IDs

Value

annotated igraph object

See Also

getAnnotationVertexList

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
sfile<-system.file("extdata", "PresynAn.csv", package = "BioNAR")
pres <- read.csv(sfile,skip=1,header=FALSE,strip.white=TRUE,quote="")
gg <- annotatePresynaptic(gg, pres)
```

Description

The function loads an annotation data matrix of functional groups for schizopherina risk genes (1) called anno, which contains three columns; the first containing gene Entrez IDs, the second gene functional group ID terms, the third gene functional group description terms. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the SCHanno vertices attribute.

Usage

```r
annotateSCHanno(gg, anno, idatt = "name")
```

Arguments

- **gg**: igraph object to annotate
- **anno**: annotation matrix in Pair form
- **idatt**: optional name of the vertex attributes that contains Entrez IDs
annotateTopOntoOVG

Details

References:

Value

annotated igraph object

See Also

getAnnotationVertexList

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
afile<system.file("extdata", "SCH_flatfile.csv", package = "BioNAR")
dis <- read.table(afile, sep="\t", skip=1, header=FALSE, strip.white=TRUE, quote="")
agg<-annotateSCHanno(gg, dis)
```

annotateTopOntoOVG
Annotate graph with disease terms

Description

The function loads a human disease annotation matrix called dis, which contains three columns; the first containing gene Entrez IDs, the second gene Human Disease Ontology (HDO) ID terms, the third gene HDO description terms. For human protein-protein interaction (PPI) or disease-gene networks (DGN) that have human Entrez IDs for the igraph vertex name attribute. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the vertices attributes TopOnto_OVG_HDO_ID and TopOnto_OVG.

Usage

```r
annotateTopOntoOVG(gg, dis, idatt = "name")
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gg</td>
<td>igraph object to annotate</td>
</tr>
<tr>
<td>dis</td>
<td>annotation matrix in Pairs form</td>
</tr>
<tr>
<td>idatt</td>
<td>optional name of the vertex attributes that contains Entrez IDs</td>
</tr>
</tbody>
</table>
annotateVertex

Value
annotated igraph object

See Also
getAnnotationVertexList

Examples

```r
closeMessage()   # Suppress messages
file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")

gg <- buildNetwork(tbl)
# read HDO data extracted from hxin/topOnto.HDO.db for synaptic network

afile<-system.file("extdata", "flatfile_human_gene2HDO.csv",

package = "BioNAR")
dis <- read.table(afile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")

tbl <- annotateTopOntoOVG(gg, dis)
```

annotateVertex

Generic annotation function

Description

Function to build and fill a vertex attribute given an igraph object. Where parameter 'name' is the new vertex attribute name and values are filled from a two column data.frame supplied to 'value' attribute. The first first containing vertex name IDs, and the second the vertex annotation value.

Usage

```r
annotateVertex(gg, name, values, idatt = "name")
```

Arguments

- **gg**: igraph object to annotate
- **name**: name of the attribute
- **values**: annotation data.frame
- **idatt**: optional name of the vertex attribute to map to the annotation data.frame first column

Details

As a first step all attributes with provided names will be removed.

Value

igraph object where vertex attribute name contains annotation terms separated by semicolon.
applpMatrixToGraph

See Also

getAnnotationVertexList

Examples

g1 <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]

m<-rbind(data.frame(ID=letters[1:10], terms=letters[1:10]),
data.frame(ID=letters[1:10], terms=LETTERS[1:10]))

g2<-annotateVertex(g1, name='cap', values=m)
V(g2)$cap

applpMatrixToGraph Add attributes to the vertex.

Description

This function suits more for updating calculated vertex properties rather than node annotation. For
the later case use annotateVertex.

Usage

applpMatrixToGraph(gg, m)

Arguments

gg igraph object
m matrix of values to be applied as vertex attributes. matrix should contains col-
umn "ID" to map value to the vertex.

Details

Unlike annotateVertex, which is able to collapse multiple annotation terms, this function assume
that vertex ID values are unique in the m matrix and corresponds to the name vertex attribute. If
graph has no name vertex attribute error will be raised.

Value

modified igraph object

See Also

annotateVertex
Examples

```r
g1 <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]
m <- cbind(ID=letters[1:10],capital=LETTERS[1:10])
g1 <- BioNAR::applyMatrixToGraph(g1, m)
V(g1)$capital
```

BioNAR

BioNAR: Biological Network Analysis in R

Description

The R package BioNAR, developed to step by step analysis of PPI network. The aim is to quantify and rank each protein’s simultaneous impact into multiple complexes based on network topology and clustering. Package also enables estimating of co-occurrence of diseases across the network and specific clusters pointing towards shared/common mechanisms.

Author(s)

Maintainer: Anatoly Sorokin <lptolik@gmail.com>

Authors:

- Colin Mclean <Colin.D.Mclean@ed.ac.uk>
- Oksana Sorokina <oksana.sorokina@ed.ac.uk>
- J. Douglas Armstrong <Douglas.Armstrong@ed.ac.uk> [funder]

Other contributors:

- T. Ian Simpson <Ian.Simpson@ed.ac.uk> [contributor, funder]

See Also

Useful links:

buildConsensusMatrix

Build a consensus matrix from list of resampled clustering matrices outputted from the function sampleGraphClust

Description

Build a consensus matrix from list of resampled clustering matrices outputted from the function sampleGraphClust.

Usage

buildConsensusMatrix(lcc)

Arguments

lcc list of membership matrices obtained from the sampleGraphClust

Details

Function build a consensus matrix from list of membership matrices, which are a three column matrix: the first column contains the vertex IDs of input network; the second column the vertex IDs of the subsampled network, or -1 if the vertex has been masked; the third column the cluster membership of subsampled network, or -1 if vertex has been masked. The randomised resampled membership matrices could be obtained from the function sampleGraphClust.

Value

consensus matrix of Nvert X Nvert

buildNetwork

Build network from data.table

Description

Wrapper for graph_from_data_frame function which will always return the largest connect component for a given network ff. The function will also annotated the edges in ff with PubMed data from kw if provided.

Usage

buildNetwork(ff, kw = NA, LCC = TRUE, simplify = TRUE)
calcAllClustering

Arguments

- **ff**: network structure data.frame with first two columns defining the network edge nodes
- **kw**: pmid keyword annotation data.frame. If NA no annotation will be added
- **LCC**: if TRUE only largest connected component is returned
- **simplify**: if TRUE loops and multiple edges will be removed

Value

igraph object of the largest connected component

Examples

```r
f<-data.frame(A=c('A', 'A', 'B', 'D'), B=c('B', 'C', 'C', 'E'))
gg<-buildNetwork(f)
V(gg)$name
calcAllClustering
```

Description

This function will call `calcClustering` for each clustering algorithm given in our predefined list. In the event no clustering could be performed, warnings will be issued and no new vertex attribute added to the graph.

Usage

`calcAllClustering(gg, weights = NULL)`

Arguments

- **gg**: graph for analysis
- **weights**: The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.

Value

new graph object with all membership results stored as a vertex attribute.
calcBridgeness

See Also

calcClustering

Examples

g1 <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]
g1<-calcAllClustering(g1)
clusteringSummary(g1)

calcBridgeness

Helper function that uses getBridgeness to calculate graph node bridgeness values for selected algorithm and consensus matrix and save them as a graph attribute BRIDGENESS.<alg> with <alg> replaced by the selected algorithm name.

Description

Helper function that uses getBridgeness to calculate graph node bridgeness values for selected algorithm and consensus matrix and save them as a graph attribute BRIDGENESS.<alg> with <alg> replaced by the selected algorithm name.

Usage

calcBridgeness(gg, alg, conmat)

Arguments

gg igraph object
alg clustering algorithm
conmat consensus matrix calculated with that algorithm

Value

graph with additional attributes to store Bridgeness value

See Also

calcBridgeness
Examples

```r
library(BioNAR)
karate <- make_graph("Zachary")
# We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS,letters)[1:vcount(karate)]
set.seed(100)
gg <- calcClustering(karate, 'louvain')
cnmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
gg<-calcBridgeness(gg, alg = 'louvain', cnmat)
hist(V(gg)$BRIDGENESS.louvain)
```

Description

Calculate the vertex centrality measures (degree, betweenness, closeness, semi-local, etc....) for each graph vertex and store each result as new vertex attribute in the graph.

Usage

```r
calcCentrality(gg, weights = NULL)
```

Arguments

- `gg`: igraph object
- `weights`: Possibly a numeric vector giving edge weights. If this is NULL and the graph has a weight edge attribute, then the attribute is used. If this is NA then no weights are used (even if the graph has a weight attribute).

Details

A wrapper function that first calls `getCentralityMatrix`, to calculate all vertex centrality measures, and then `applyMatrixToGraph` to store each centrality result as a new vertex attribute in the graph. The use of weights explained in details in `getCentralityMatrix`.

Value

modified igraph object

See Also

`getCentralityMatrix()`

Examples

```r
data(karate, package='igraphdata')
ggm<--calcCentrality(karate)
V(ggm)$DEG
```
calcCentralityExternalDistances

Function to calculate a distance matrix between a list of permuted vertex centrality matrices and a unperturbed reference matrix.

Description

Function to calculate a distance matrix between a list of permuted vertex centrality matrices and a unperturbed reference matrix.

Usage

calcCentralityExternalDistances(m, l, keepOrder = FALSE, dist = "euclidean")

Arguments

m reference matrix, for example centrality obtained by invocation getCentralityMatrix
l list of permuted matrix, for example centrality obtained by invocation getRandomGraphCentrality
keepOrder if FALSE values will be sorted
dist methods available from dist function

Value

matrix with seven columns containing distances between each element of l and reference matrix m

See Also

getRandomGraphCentrality
getCentralityMatrix
calcCentralityInternalDistances

Examples

data(karate, package='igraphdata')
m<-getCentralityMatrix(karate)
gnp<-list()
for(i in 1:10){
 gnp[[i]]<-getRandomGraphCentrality(karate,type = 'gnp')
}
gnpEDist<-calcCentralityExternalDistances(m,gnp)
summary(gnpEDist)
calcCentralityInternalDistances

Function calculates a set of distance metrics between each vertex pair given a list of vertex centrality matrices.

Description

Function calculates a set of distance metrics between each vertex pair given a list of vertex centrality matrices.

Usage

calcCentralityInternalDistances(l, keepOrder = FALSE, dist = "euclidean")

Arguments

- **l**: list of matrices, for example centrality obtained by invocation `getRandomGraphCentrality`
- **keepOrder**: if FALSE values will be sorted before distance calculations
- **dist**: methods available from `dist` function

Value

matrix with seven columns containing distances between all pairs of l elements.

See Also

- `getRandomGraphCentrality`
- `getCentralityMatrix`
- `calcCentralityExternalDistances`

Examples

data(karate, package='igraphdata')
m<-getCentralityMatrix(karate)
gnp<-list()
for(i in 1:10){
 gnp[[i]]<-getRandomGraphCentrality(karate, type = 'gnp')
}
gnpIDist<-calcCentralityInternalDistances(gnp)
summary(gnpIDist)
calcClustering

Calculate community membership for given clustering algorithm and store the results as new vertex attributes in the graph.

Description

When applying resampling the clustering results of a clustering algorithm applied to a graph can differ due to the stochastic nature of the resampling algorithm. To allow reproducible downstream analysis clustering results are stored as vertex attributes in the graph. This function call getClustering and stores community membership as new vertex attribute in the graph, and Modularity as a new graph attribute prefix with the alg name.

Usage

calcClustering(gg, alg, weights = NULL)

Arguments

- **gg**: igraph object to cluster
- **alg**: algorithm to apply
- **weights**: The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.

Details

NOTE: getClustering verifies algorithm names with match.arg so correct membership will be calculated, but name of the attribute is taken from alg argument, so it is possible that vertex attribute name won’t exactly match name of the algorithm from link(getClustering).

Value

modified igraph object with calculated membership stored as a vertex attribute and modularity as a graph attribute

See Also

getClustering
calcDiseasePairs

Calculate each disease-disease pair overlap given a list of disease terms.

disease_separation – Ndisease × Ndisease matrix of separations
gene_disease_separation – Ngenes × Ndisease+2 matrix of gene-disease separation
disease_localisation – matrix with diseases in rows and number of genes (N), average and standard deviation of gene-disease separation in columns

Examples

karate <- make_graph("Zachary")
We need vertex ID in the 'name' attribute of the vertex
V(karate)$name <- c(LETTERS, letters)[1:vcount(karate)]
g <- calcClustering(karate, 'louvain')
vertex_attr_names(g)
graph_attr(g, 'louvain')

disease_separation = NULL
permute = c("none", "random", "binned")
calcDiseasePairs(g, name, diseases, permute)

Description

Calculate each disease-disease pair overlap (or separation) on a given PPI network model, based on analysis described in Menche et al. 2015

Usage

calcDiseasePairs(
 g, name, diseases = NULL, permute = c("none", "random", "binned"))

Arguments

 g: interactome network as igraph object
 name: name of the attribute that stores disease annotation
 diseases: list of diseases to match
 permute: type of permutations. none – no permutation is applied, random – annotation is randomly shuffled, binned – annotation is shuffled in a way to preserve node degree-annotation relationship by degreeBinnedGDAs.

Value

list with three matrices:

- disease_separation – Ndisease × Ndisease matrix of separations
- gene_disease_separation – Ngenes × Ndisease+2 matrix of gene-disease separation
- disease_localisation – matrix with diseases in rows and number of genes (N), average and standard deviation of gene-disease separation in columns

References

calcEntropy

See Also
degreeBinnedGDAs
sampleDegBinnedGDA

Examples

file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
agg <- annotateGeneNames(gg)
due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273')
paste(V(agg)$GeneName[idx], 'GRPEL1')
p <- calcDiseasePairs(
 agg,
 name = "TopOntoOVGHDOID",
 diseases = c("DOID:10652", "DOID:3312", "DOID:12849"),
 permute = "n"
)
p$disease_separation

calcEntropy

Calculate the graph entropy for each perturbed vertex, and save the results as new vertex attributes in the graph.

Description

This function calculate the graph entropy for each perturbed vertex by calling getEntropy, and save the results as new vertex attributes SR_UP and SR_DOWN in the graph.

Usage

calcEntropy(gg, maxSr = NULL, exVal = NULL)

Arguments

gg igraph object
maxSr the maximum entropy rate $maxSR$, if NULL getEntropyRate will be called.
exVal expression values boundaries. Two columns are expected: xx and lambda. If NULL default values $c(2,14)$ and $c(-14,14)$ will be used for xx and lambda respectively.

Details

According to Teschendorf et al., 2010, network entropy measure quantifies the degree of randomness in the local pattern information flux around single genes. For instance, in metastatic cancer this measure was found significantly higher than in non-metastatic and helped to identify genes and entire pathways involved on metastasis. However, for the assessment of scale-free structure we do not actually require gene expression data as it based solely on the network topology.
Value

graph with SR_UP and SR_DOWN vertex attributes storing the graph entropy values with over- or under-expressing each vertex.

See Also

ggetEntropy()

Other Entropy Functions: getEntropy(), getEntropyRate(), plotEntropy()

Examples

file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
gg<-annotateGeneNames(gg)
due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(gg)$name == '80273')
paste(V(gg)$GeneName[idx], 'GRPEL1')
gg<- calcEntropy(gg)

calcMembership

Calculate cluster memberships for the graph.

Description

Calculates the clustering membership for each of the 10 clustering algorithms defined in function getClustering

Usage

calcMembership(
 gg,
 weights = NULL
)

Arguments

<table>
<thead>
<tr>
<th>Arg</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gg</td>
<td>igraph object to cluster</td>
</tr>
<tr>
<td>alg</td>
<td>algorithm name</td>
</tr>
<tr>
<td>weights</td>
<td>The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If it is NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph has a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.</td>
</tr>
</tbody>
</table>
calcReclusterMatrix

Value
data.frame with columns names and membership

See Also
getClustering

Examples
karate <- make_graph("Zachary")
We need vertex ID in the 'name' attribute of the vertex
V(karate)$name <- c(LETTERS, letters)[1:vcount(karate)]
m <- calcMembership(karate, 'lec')
head(m)

calcReclusterMatrix Hierarchical graph clustering

Description
This function takes in a gg and initial vertex community membership values mem as returned by calcMembership, and then performs a reclustering of the graph given the clustering algorithm alg to those clusters of size greater than CnMAX

Usage
calcReclusterMatrix(
 gg,
 mem,
 alg,
 CnMAX = 10,
 weights = NULL,
 keepSplit = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gg</td>
<td>graph to cluster</td>
</tr>
<tr>
<td>mem</td>
<td>data.frame with previous level clustering results</td>
</tr>
<tr>
<td>alg</td>
<td>algorithm to apply</td>
</tr>
<tr>
<td>CnMAX</td>
<td>maximus size of the cluster in mem that will not be processed</td>
</tr>
<tr>
<td>weights</td>
<td>The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a 'weight' edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a 'weight' edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.</td>
</tr>
</tbody>
</table>
calcSparsness

keepSplit logical, whether to keep previous membership in the output matrix

Value

remembership matrix, that contains vertex ID membership and result of reclustering

Examples

data(karate, package = 'igraphdata')
alg <- 'louvain'
mem <- calcMembership(karate, alg = alg)
remem <- calcReclusterMatrix(karate, mem, alg, 10)

calcSparsness(gg)

Description

For a simple unweighted, undirected graph G(N,E). Network sparseness is defined as the ratio of the actual number of graph edges (E) to the maximum number of edges possible in a graph with same number of vertices (N): E/binom(N,2)

Usage

calcSparsness(gg)

Arguments

gg graph to evaluate

Value

sparsness value

Examples

file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep = "\t")
gg <- buildNetwork(tbl)
calcSparsness(gg)
clusteringSummary

Matrix of cluster characteristics

Description

Function to calculate basic summary statistics after apply clustering algorithm:

- N – number of vertices in the graph `vcount`
- mod – clustering modularity `modularity`, the ratio of edges found within communities to the number of edges found between communities, relative to a randomised model
- C – number of clusters
- Cn1 – number of singletones (clusters of size 1)
- Cn100 – number of clusters containing more than 100 nodes
- mu – the ratio of edges found within communities to the number of edges found between communities
- Min. C – minimum of the cluster size
- 1st Qu. C – first quartile of the cluster size
- Median C – median of the cluster size
- Mean C – average cluster size
- 3rd Qu. C – third quartile of the cluster size
- Max. C – maximum of the cluster size

Usage

```r
clusteringSummary(
  gg,
  att = c("lec", "wt", "fc", "infomap", "louvain", "sgG1", "sgG2", "sgG5", "spectral")
)
```

Arguments

- `gg` graph to analyse
- `att` vector of attribute names that contains membership data

Value

matrix of clustering characteristics

Examples

```r
data(karate, package='igraphdata')
g <- calcAllClustering(karate)
clusteringSummary(g)
```
Description

Calculate the cluster enrichment of a graph given a clustering algorithm `alg` and vertex annotation attribute 'name'. Function generates an enrichment table, one row for each cluster, containing: size of the cluster (C_n), number of annotated vertices in the graph F_n (F_n), number of annotated vertices in the cluster μ (μ), odds ratio (OR) and its 95% Confidence interval $[CI_l, CI_u]$ (CI_l and CI_u), two fold enrichment values F_e (F_e) and F_c (F_c). We also provide the list of vertices from the cluster that contribute to the annotation term, p.value of enrichment (pval) and depletion (palt) using the Hypergeometric test, adjusted p.values using Benjamini and Yekutieli correction (BY).

Usage

```
clusterORA(g, alg, name, vid = "name", alpha = 1, col = COLLAPSE)
```

Arguments

- `g` graph to get annotation from
- `alg` cluster algorithm and membership attribute name
- `name` annotation attribute name
- `vid` attribute to be used as a vertex ID
- `alpha` probability threshold
- `col` list separation character in attribute, by default is ;

Details

Given the enrichment results, we can calculate the log of the Odds Ratio (OR) as:

$$\ln(OR) = \ln\left(\frac{\mu(N - F_n + \mu - C_n)}{(C_n - \mu)(F_n - \mu)}\right)$$

and it’s upper and lower 95% Confidence Interval:

$$CI(\ln(OR)) = \ln(OR) \pm 1.96 \sqrt{\frac{1}{\mu} + \frac{1}{C_n - \mu} + \frac{1}{F_n - \mu} + \frac{1}{N - F_n + \mu - C_n}}$$

Using the odds ratio allows us to distinguish functionally enriched communities relative to functionally depleted communities.

Two types of fold enrichment values calculated as follow:

$$F_e = \left(\frac{F_n}{\mu}\right)$$

$$F_c = \left(\frac{\mu}{C_n}\right)$$
Value

A table with overrepresentation results. Each row corresponds to a tested annotation in particular cluster. The columns are the following:

- **alg** – name of the clustering algorithm;
- **cl** – cluster ID;
- **Fl** – name of the enriched term;
- **N** – number vertices in the network;
- **Fn** – number of vertices in the graph annotated by term Fl (F_n);
- **Cu** – size of the cluster;
- **Mu** – number of vertices in the cluster annotated by term Fl (μ);
- **OR** – odds ratio;
- **CI_l** – odds ratio 95% confidence interval lower bound (CI_l);
- **CI_u** – odds ratio 95% confidence interval upper bound(CI_u);
- **Fe** – fold enrichment F_e;
- **Fc** – fold enrichment F_c;
- **pval** – an enrichment p-value from hypergeometric test;
- **padj** – a BY-adjusted p-value;
- **palt** – an depletion p-value from hypergeometric test;
- **paltadj** – a BY-adjusted depletion p-value;
- **overlapGenes** – vector with overlapping genes.

Examples

```r
options("show.error.messages"=TRUE)
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
g <- igraph::read_graph(file, format="gml")
anL<-getAnnotationVertexList(g, 'TopOntoOVGHDOID')
res<-clusterORA(g, alg='louvain', name='TopOntoOVGHDOID', vid='name')
andf<-unique(data.frame(ID=vertex_attr(g, 'TopOntoOVGHDOID'), Term=vertex_attr(g, 'TopOntoOVG')))  
rr<-merge(andf, res, by.y='FL', by.x='ID')
rr[order(rr$cl), ]
```

degreeBinnedGDAs
Prepare mapping for degree-aware annotation shuffling.

Description

Function to randomly shuffle vertex annotation terms, whilst preserving the vertex degree originally found with that annotation term.
Usage
degreeBinnedGDAs(gg, GDA, dtype)

Arguments
gg graph to analyse
GDA vertex annotations returned by prepareGDA
dtype list of unique annotation terms to analyze

Value
mapping matrix between vertices, vertex-degree groups and annotation terms.

See Also
prepareGDA
defense
getAnnotationList
sampleDegBinnedGDA

Examples
options("show.error.messages"=TRUE)
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
agg<-annotateGeneNames(gg)
due to error in org.Hs.eg.db we have to manually check annotation of one node
dx <- which(V(agg)$name == "80273")
paste(V(agg)$GeneName[idx], "GRPEL1")
gda<-prepareGDA(agg, "TopOntoOVGD01D")
m<-degreeBinnedGDAs(agg, gda, getAnnotationList(gda))
c(dim(m), vcount(agg), length(getAnnotationList(gda)))
head(m)

diseasome

Barabasi's Diseasome Network

Description
In the paper Goh.t al. (2007) doi:10.1073/pnas.0701361104 Barabasi with colleagues published Diseasome: a network of disorders and disease genes linked by known disorder–gene associations. We extract definition of the genes, disorders and interactions from papers supplementary materials and store it as graph object.

Usage
diseasome
Format

A bipartite graph as `graph` object.

Vertex attributes: ‘name’ for the node ID, ‘Name’ for the human readable node name, ‘Disorder.class’, ‘Type’ for the human readable node type, ‘label’ and ‘shape’ for plotting the graph, ‘type’ the node type for bipartite `graph` representation.

Details

Diseasome is a bipartite graph that have nodes of two types gene and disease and links are allowed only between nodes of different types. It could be projected to Human Disease Network (HDN) and Disease Gene Network (DGN).

Source

Description

In situations when a given list of annotation ID terms may not be well formatted, and therefore not be interoperated as unique. For example, given a list of HDO IDs: HDO:14, HDO:143, HDO:1433, and HDO:14330, a grep for the term HDO:14 could return: HDO:143, HDO:1433, HDO:14330. To avoid this all terms should be enclosed in escape characters, which unlikely to find within annotation itself.

Usage

```r
escapeAnnotation(annVec, col = COLLAPSE, esc = ESC)
```

Arguments

<table>
<thead>
<tr>
<th>arg</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>annVec</td>
<td>vector of annotation strings</td>
</tr>
<tr>
<td>col</td>
<td>term list separator character</td>
</tr>
<tr>
<td>esc</td>
<td>escape character</td>
</tr>
</tbody>
</table>

Details

NOTE: spaces are treated as regular characters, no trimming is applied before or after escaping.

Value

vector of annotation strings with elements escaped
See Also
unescapeAnnotation

Examples

annVec<-apply(matrix(letters, ncol=13), 2, paste, collapse=';')
cbind(annVec, escapeAnnotation(annVec, ';', ' | '))

evalCentralitySignificance

Compare distance distributions of internal and external distances

Description
Function to compare two distance distributions using the Kolmogorov-Smirnov test. Where the first distance distribution is generated internally and calculates the distance between random graph centralities. The second distance distribution is generated externally, and measures the distance between random and the original graph centralities.

Usage
evalCentralitySignificance(dmi, dme)

Arguments

dmi
distribution of internal distances between random graph centralities
dme
distribution of external distances between random and original graph centralities

Value
list of lists for each centrality value in the input matrix three element list is created where ks contains Kolmogorov-Smirnov test result from class ks.test; pval contains Kolmogorov-Smirnov test pvalue; and dt contains input distribution.

See Also
ks.test

Examples
data(karate,package='igraphdata')
m<-getCentralityMatrix(karate)
gnp<-list()
for(i in 1:10){
 gnp[i]<-getRandomGraphCentrality(karate,type = 'gnp')
}
gnpIDist<-calcCentralityInternalDistances(gnp)
gnpEDist<-calcCentralityExternalDistances(m,gnp)
findLCC <- evalCentralitySignificance(gnpIDist, gnpEDist)
sapply(simSig, function(.x) .xksp.value)

findLCC

Find Largest Connected Component of the graph

Description

Find Largest Connected Component of the graph

Usage

```r
findLCC(GG)
```

Arguments

- `GG` igraph object to analyze

Value

igraph representation LCC

Examples

```r
g1 <- make_star(10, mode="undirected") %du% make_ring(7) %du% make_ring(5)
lcc <- findLCC(g1)
summary(lcc)
```

fitDegree

Fit Power Law to degree distribution.

Description

Fit a Powerlaw distribution to graph’s degree distribution using the R “PoweRlaw” package (version 0.50.0) (Gillespie, 2015)
Usage

fitDegree(
 DEG,
 Nsim = 100,
 plot = FALSE,
 DATAleg = "Fit power-law",
 threads = 4,
 WIDTH = 480,
 HEIGHT = 480,
 legpos = "bottomleft",
 showErr = TRUE
)

Arguments

DEG degree distribution
Nsim number of bootstrap iterations
plot logical, do you want plot to be drawn
DATAleg legend string for degree data
threads number of parallel computational threads
WIDTH width of the plot in ptx
HEIGHT heigth of the plot in ptx
legpos position of the legend @seealso legend
showErr logical, do you want error on the plot legend

Value

an object of class law-class with results of fitting

Examples

##No: of bootstrap iterations use nsim > 100 for reliable result
nsim <- 10

##Legend Titles
Legend <- "Presynaptic PPI"

file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
pFit <- fitDegree(as.vector(igraph::degree(graph=gg)),
 DATAleg=Legend,threads=1, Nsim=nsim)
fitSigmoid

Fit Fold-enrichment distribution to sigmoid function

Description

This function calculates fit of the Fold-Enrichment distribution to the sigmoid function with the levels of noise specified in SDV for all clustering algorithms, which have non-zero SUM3$'Psig&ORsig'$ in the enrichment table summary results. The function returns the list in which each element contains result for one of the noise level.

Usage

```r
fitSigmoid(stat, SDv = c(0, 0.05, 0.1, 0.5))
```

Arguments

- **stat** enrichment results obtained from `summaryStats`
- **SDv** vector of noise SD values

Details

Results are represented as a list with five elements:

- gridplot that allow comparison of fitting for different clustering algorithms;
- plots the list of individual plots from gridplot;
- fitInfo the data.frame that contains results of fitting, such as message, number of iterations and exit code;
- parInfo values and standard deviations for all sigmoid parameters;
- ks table of Kolmogorov-Smirnov test p-values.

Grid plot is designed in a way to be viewed in the device at least 12 inches in width and 12 inches in height.

Value

list of fitted functions tables and plots

See Also

`summaryStats()`
<table>
<thead>
<tr>
<th>flatfile.go.BP.csv</th>
<th>Annotation from Gene Ontology Biological Process (GO_BP)</th>
</tr>
</thead>
</table>

Description

Annotation, downloaded from Gene Ontology for Biological Process domain. The table has columns: the first containing gene functional group ID terms, the second gene functional group description terms, the third - Human gene Entrez IDs; in csv format

See Also

annotateGoBP

<table>
<thead>
<tr>
<th>flatfile.go.CC.csv</th>
<th>Annotation from Gene Ontology Cellular Compartment (GO_CC)</th>
</tr>
</thead>
</table>

Description

Annotation, downloaded from Gene Ontology for Cellular Compartment domain. The table has columns: the first containing gene functional group ID terms, the second gene functional group description terms, the third - Human gene Entrez IDs; in csv format

See Also

annotateGoCC

<table>
<thead>
<tr>
<th>flatfile.go.MF.csv</th>
<th>Annotation from Gene Ontology Molecular Function (GO_MF)</th>
</tr>
</thead>
</table>

Description

Annotation, downloaded from Gene Ontology for Molecular Function domain. The table has columns: the first containing gene functional group ID terms, the second gene functional group description terms, the third - Human gene Entrez IDs; in csv format

See Also

annotateGoMF
Human Gene Disease Associations (GDA)

Description
Annotation derived from Human Disease Ontology database (HDO). The table contains three columns; the first containing gene Entrez IDs, the second gene Human Disease Ontology (HDO) ID terms, the third gene HDO description terms; in csv format

See Also
annotateTopOntoOGV

getAnnotationList Extract unique values from annotations.

Description
It is not uncommon to find both duplicated vertex annotation terms, and vertices annotated with multiple terms, in a given annotation list. This function creates a vector of unique annotation terms for each vertex given an input annotation list.

Usage
getAnnotationList(
 annVec,
 col = COLLAPSE,
 sort = c("none", "string", "frequency")
)

Arguments
annVec vector of annotation strings
col list separator character
sort how to sort the result list

Value
vector of unique annotation terms

See Also
getAnnotationVertexList
Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
annVec<-V(gg)$TopOntoOVG
al<-getAnnotationList(annVec)
al
```

getAnnotationVertexList

Return vertex list for each term in annotation attribute

Description

For different purposes annotation of graph vertices could be represented in three forms:

- **Pairs** dataframe with vertex ID and annotation terms
- **Vertex Annotation** list named with vertex ID and containing terms annotating each vertex
- **Annotation Vertices** list named with term and containing vertex IDs

Usage

```r
getAnnotationVertexList(g, name, vid = "name", col = COLLAPSE)
```

Arguments

- **g** graph to get annotation from
- **name** annotation attribute name
- **vid** attribute to be used as a vertex ID
- **col** list separation character in attribute, by default is `;`

Details

This function takes Vertex Annotation from vertex attribute and convert it to Annotation Vertices form.

Value

named list with annotation in Annotation Vertices form

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
avl<-getAnnotationVertexList(gg, 'TopOntoOVGHOID')
head(avl)
```
getBridgeness

Calculate bridginess from consensus matrix

Description

Bridginess takes into account a vertices shared community membership together with its local neighbourhood. It was proposed in Nepusz et al., 2008 [doi:10.1103/PhysRevE.77.016107](https://doi.org/10.1103/PhysRevE.77.016107).

Usage

```r
getBridgeness(gg, alg, conmat)
```

Arguments

- `gg`: igraph object
- `alg`: clustering algorithm
- `conmat`: consensus matrix calculated with that algorithm

Details

Function assumes clustering already been performed by the clustering algorithm, and its membership values stored in vertex attributes. If clustering algorithm vertex `alg` attribute is not found an error will be issued.

Value

data.frame with first column contains vertex ID, if GeneName attribute assigned to the vertices its value will be stored as a second column, the last column contains bridginess values for the

Examples

```r
library(BioNAR)
karate <- make_graph("Zachary")
# We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS,letters)[1:vcount(karate)]
go <- calcClustering(karate, 'louvain')
conmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
br<-getBridgeness(gg, alg = 'louvain', cnmat)
```
getCentralityMatrix

Description

Calculate centrality measures for graph nodes.

Usage

```r
getCentralityMatrix(gg, weights = NULL)
```

Arguments

- `gg`: igraph object
- `weights`: Possibly a numeric vector giving edge weights. If this is NULL and the graph has a weight edge attribute, then the attribute is used. If this is NA then no weights are used (even if the graph has a weight attribute).

Details

The edge attribute `weights` treated differently by different functions calculating centrality measures. For example, `betweenness` use weights as an edge length, while in `page.rank` "an edge with a larger weight is more likely to be selected by the surfer", which infer the opposite meaning. Taking into account that all methods in `getClustering` treat edge weights in the same way as `page.rank`, we calculate the distance=1/weights as edge weights for BET, dBET, mnSP, and sdSP values. So we treat weights in the package consistently as the strength and closiness of vertices, rather the distance between them.

Value

data.frame with following columns:

- ID - vertex ID
- DEG - degree
- iDEG - in-degree (directed graph only)
- oDEG - out-degree (directed graph only)
- BET - betweenness for undirected graph
- dBET - betweenness when directionality is taken into account (directed graph only)
- CC - clustering coefficient
- SL - semilocal centrality
- mnSP - mean shortest path
- PR - page rank for undirected graph
- dPR - page rank when directionality is taken into account (directed graph only)
- sdSP - standard deviation of the shortest path
getClustering

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\\t")
gg <- buildNetwork(tbl)
m<-getCentralityMatrix(gg)
```

Description

Wrapper function for calculation of clustering for predefined set of ten algorithms:

- **lec** – leading eigenvector community (version of `cluster_leading_eigen`), directed graph will be converted to undirected by `as.undirected` with mode collapse;
- **wt** – walktrap community `cluster_walktrap`;
- **fc** – fastgreedy community `cluster_fast_greedy`, directed graph will be converted to undirected by `as.undirected` with mode collapse;
- **infomap** – infomap community `cluster_infomap`;
- **louvain** – cluster_louvain `cluster_louvain`, directed graph will be converted to undirected by `as.undirected` with mode collapse;
- **sgG1** – spin-glass model and simulated annealing clustering (version of `cluster_spinglass` with spins=500 and gamma=1);
- **sgG2** – spin-glass model and simulated annealing clustering (version of `cluster_spinglass` with spins=500 and gamma=2);
- **sgG5** – spin-glass model and simulated annealing clustering (version of `cluster_spinglass` with spins=500 and gamma=7);
- **spectral** – spectral modularity clustering `spectral_igraph_communities`;

Usage

```r
getClustering(
  gg,
  weights = NULL
)
```

Arguments

- `gg` igraph object to cluster
- `alg` clustering algorithm name
weights

The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.

Details

graph suppose to be undirected. If algorithm failed warning will be issued and function returned NULL.
Algorithm names are verified with `match.arg`.

Value

`communities` object or NULL if algorithm failed.

Examples

data(karate, package='igraphdata')
c<-getClustering(karate, 'lec')
c$modularity

getClusterSubgraphByID

Return induced subgraph for cluster

Description

Function reads in a graph gg, vertex cluster membership vector mem, and returns an induced subgraph given a cluster membership number 'clID'.

Usage

getClusterSubgraphByID(clID, gg, mem)

Arguments

c1lID cluster ID to extract

gg graph to analyze

mem membership vector

Value

induced subgraph as igraph object
getCommunityGraph

Create new graph with communities as nodes.

Description

The idea based upon this StackOverflow answer

Usage

getCommunityGraph(gg, membership)

Arguments

- **gg**
 - graph to convert
- **membership**
 - participation list for new graph

Value

- community graph

Examples

```r
data(karate, package='igraphdata')
alg<-'louvain'
c<-getClustering(karate, alg = alg)
getCommunityGraph(karate, calcMembership(karate, alg = alg))
```

getDiseases

Get HDO disease IDs

Description

Return vector of HDO disease IDs for synaptic PPI analysis.

Usage

getDiseases()
getDType

Value

vector of disease IDs of interest

See Also

getDType

Examples

getDiseases()

getDType

Get DiseaseTypes

Description

Return vector of disease abbreviations for synaptic PPI analysis.

Usage

getDType()

Value

vector of disease abbreviations for synaptic PPI analysis.

See Also

getDiseases

Examples

getDType()
getDYNAMO

Calculate DYNAMO sensitivity matrix.

Description

This function calculates sensitivity matrix that represents perturbation patterns defined by topology and edge weights of the network. If weights are signed value sensitivity matrix is able to reproduce not only activation but inhibition relationships in the network.

Usage

getDYNAMO(g, attr = NULL, vid = "name", alpha = 0.9)

Arguments

g igraph object
attr NULL or the name of edge attribute containing numerical weight values
vid name of the vertex attribute to be used as row and column names
alpha parameter characterizing the propagation strength, default value 0.9 taken from Santolini paper.

Details

Algorithm proposed in:

Value

sparse sensitivity matrix defined by the network topology and edge values

Examples

data(karate, package='igraphdata')
upgrade_graph(karate)
d<-getDYNAMO(karate,attr='weight')
df<-metlMatrix(d)
head(df)
getEntropy

Calculates vertex perturbation graph entropy.

Description

According to Teschendorf et al., 2010, network entropy measure quantifies the degree of randomness in the local pattern information flux around single genes. For instance, in metastatic cancer this measure was found significantly higher than in non-metastatic and helped to identify genes and entire pathways involved on metastasis. However, for the assessment of scale-free structure we do not actually require gene expression data as it based solely on the network topology.

Usage

getEntropy(gg, maxSr = NULL, exVal = NULL)

Arguments

- **gg**: igraph object
- **maxSr**: the maximum entropy rate \(maxSR \), if NULL getEntropyRate will be called.
- **exVal**: expression values boundaries. Two columns are expected: \(xx \) and \(\lambda \). If NULL default values \(c(2,14) \) and \(c(-14,14) \) will be used for \(xx \) and \(\lambda \) respectively.

Details

In this function, following procedure described in (Teschendorf et al., 2015), all vertexes are artificially assigned a uniform weight then sequentially perturbed with the global entropy rate (SR) after each protein’s perturbation being calculated and plotted against the log of the protein’s degree. In case of scale-free or approximate scale-free topologies, we see a clear bi-modal response between over-weighted vertices and their degree and an opposing bi-phasic response in under-weighted vertices and their degrees.

Value

matrix containing for each Gene:
- Entrez ID,
- Name,
- Degree,
- UP – Graph Entropy values when gene is expressed up,
- DOWN – Graph Entropy values when gene is expressed down.

Note

Entropy is calculated with respect to GeneName property, if there is no such vertex attribute in the graph vertex name will be copied to the GeneName attribute. If any NA is found in GeneNames error will be thrown.
getEntropyRate

See Also
Other Entropy Functions: calcEntropy(), getEntropyRate(), plotEntropy()

Examples

```rile <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
ng <- buildNetwork(tbl)
ng<-annotateGeneNames(ng)
any(is.na(V(ng)$GeneName))
# due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(ng)$name == '80273')
paste(V(ng)$GeneName[idx], 'GRPEL1')
e<- getEntropy(ng)
```

Description

This function calculates the maximum entropy rate \(\text{maxSR} (\maxSr) \) and initial entropy rate \(\text{SR}_0 (\SRo) \) given a connected network.

Usage

`getEntropyRate(ng)`

Arguments

- `ng` igraph object

Details

The maximum entropy rate being calculated from the network’s adjacency matrix:

\[
\text{maxSR} = \sum_{i,j} p_{ij} = \frac{A_{ij} \nu_j}{\lambda \nu_i}
\]

where \(\nu \) and \(\lambda \) are the leading eigenvector and eigenvalue of the network adjacency matrix \(A \) respectively.

The initial configuration occurs when the entropy for each node is maximal. This can be calculated by setting the expression value for each gene/node in the network to be the same, and thus the maximal node entropy is dependent only on the node’s degree \(k \):

\[
\text{SR}_0 = \frac{1}{Nk} \sum_j k_j \log k_i
\]

where \(N \) here is the number of nodes and \(\bar{k} \) the average node degree found in the network.
getGNP

Value

list with values of maxSr and SRo

See Also

Other Entropy Functions: calcEntropy(), getEntropy(), plotEntropy()

Examples

karate <- make_graph("Zachary")
We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS,letters)[1:vcount(karate)]
ent <- getEntropyRate(karate)

data(karate, package='igraphdata')
vcount(karate)
ecount(karate)
rg<- getGNP(karate)
vcount(rg)
ecount(rg)
getGraphCentralityECDF

Convert centrality matrix into ECDF

Description

Convert centrality matrix into ECDF

Usage

getGraphCentralityECDF(m)

Arguments

m centrality matrix from getCentralityMatrix invocation.

Value

list of several ecdf objects, corresponding to values in centrality matrix from getCentralityMatrix invocation.

See Also

gCENTRalityMatrix

Examples

file <- system.file(“extdata”, “PPI_Presynaptic.csv”, package = “BioNAR”)
tbl <- read.csv(file, sep=”\t”)

gg <- buildNetwork(tbl)
m<-getCentralityMatrix(gg)
ecdfL<-getGraphCentralityECDF(m)

getIDs

Utility function to get vertex ids from vertex attributes The function obtain attribute values and check duplicates in it. It fails if any duplicate found.

Description

Utility function to get vertex ids from vertex attributes The function obtain attribute values and check duplicates in it. It fails if any duplicate found.

Usage

getIDs(gg, idatt)
Arguments

\texttt{gg} \hspace{1em} \text{graph} \\
\texttt{idatt} \hspace{1em} \text{attribute name}

Value

\text{idatt attribute values}

\begin{center}
\begin{tabular}{ll}
\textbf{getPA} & \textit{Generate random graph from reference} \\
\end{tabular}
\end{center}

Description

The function generates random Barabasi-Albert graph (\texttt{sample_pa}) with the same vertex number as in the reference graph \texttt{gg} and the power specified by parameter \texttt{pwr}. If \texttt{pwr} is missing, we are trying to estimate \texttt{pwr} from the reference graph \texttt{gg}.

Usage

\texttt{getPA(gg, pwr, \ldots)}

Arguments

\texttt{gg} \hspace{1em} \text{reference graph} \\
\texttt{pwr} \hspace{1em} \text{the power parameter for the sample_pa} \\
\ldots \hspace{1em} \text{additional parameters to be passed to the sample_pa}

Value

\text{new instance of the random graph.}

Examples

\texttt{data(karate,package='igraphdata')} \\
\texttt{vcount(karate)} \\
\texttt{ecount(karate)} \\
\texttt{rg<- getPA(karate,pwr=1.25)} \\
\texttt{vcount(rg)} \\
\texttt{ecount(rg)}
getRandomGraphCentrality

Centrality measures for random graphs induced by input one

Description

Generate a random graph that mimics the properties of the input graph and calls getCentralityMatrix to calculate all available vertex centrality measures. There are four different types of random graph to generate.

Usage

getRandomGraphCentrality(
 gg,
 type = c("gnp", "pa", "cgnp", "rw"),
 power = NULL,
 weights = NULL,
 ...
)

Arguments

- **gg**: template graph to mimic
- **type**: type of random graph to generate:
 - gnp – G(n,p) Erdos-Renyi model (sample_gnp)
 - pa – Barabasi-Albert model (sample_pa)
 - cgnp – new random graph from a given graph by randomly adding/removing edges (sample_correlated_gnp)
 - rw – new random graph from a given graph by rewiring 25% of edges preserving the degree distribution sample_gnp, sample_correlated_gnp, and sample_pa
- **power**: optional argument of the power of the preferential attachment to be passed to sample_pa. If power is NULL the power of the preferential attachment will be estimated from fitDegree function.
- **weights**: Possibly a numeric vector giving edge weights. If this is NULL and the graph has a weight edge attribute, then the attribute is used. If this is NA then no weights are used (even if the graph has a weight attribute).
- **...**: other parameters passed to random graph generation functions

Value

matrix of random graph vertices centrality measure.

See Also

gGetCentralityMatrix() for explanation of the use of weights.
Examples

data(karate, package='igraphdata')
m<-getRandomGraphCentrality(karate, 'pa', threads=1)
to avoid repetitive costly computation of PowerLaw fit
power parameter could be send explicitly:
pFit <- fitDegree(as.vector(igraph::degree(graph=karate)),
 Nsim=10, plot=FALSE, threads=1)
pwr <- slot(pFit, 'alpha')
m<-getRandomGraphCentrality(karate, 'pa', power=pwr)
lpa<-lapply(1:5, getRandomGraphCentrality, gg=karate, type='pa',
 power=pwr, weights = NULL)

getRobustness

Calculate cluster robustness from consensus matrix

Description

This function takes as argument a network (gg), the name of a clustering algorithm (alg) which can be found in the network, and a consensus matrix (conmat) generated from the clustering network. The function uses the consensus matrix to generate a measure of cluster robustness \(C_{rob} \) for each cluster \(C \) using the R function `clrob`. Briefly, this is done by summing elements of the consensus matrix that are found in the same cluster, and dividing this by the total number of entries in the matrix:

\[
C_{rob} = \frac{2}{C_n(C_n-1)} \sum_{i,j \in I_C} conmat_{i,j}
\]

where \(I_C \) – indices of vertices of the cluster \(C \), \(C_n \) is the number of nodes found inside the cluster \(C \).

Usage

getRobustness(gg, alg, conmat)

Arguments

- gg: igraph object
- alg: clustering algorithm
- conmat: consensus matrix

Value

data.frame that for each cluster \(C \) shows
- its size \(C_n \) (\(C_n \)),
- robustness \(C_{rob} \) (\(C_{rob} \)) and
- robustness scaled to range between 0 and 1 (\(C_{robScaled} \)).
See Also

Other Robustness functions: makeConsensusMatrix()

Examples

```r
karate <- make_graph("Zachary")
# We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS, letters)[1:vcount(karate)]
alg<-'louvain'
gg<-calcClustering(karate, alg = alg)
conmat<-makeConsensusMatrix(gg, N=100, mask = 10, alg = alg, type = 2)
clrob<-getRobustness(gg, alg = alg, conmat)
clrob
```

gofs

Goodness of fit KS test

Description

This is internal function and do not suppose to be called by user.

Usage

```r
gofs(x, rate, model, sigma2 = NULL, countDATA = TRUE)
```

Arguments

- `x` steps along the Fe
- `rate` parameters of the sigmoid
- `model` fitted model
- `sigma2` noise strength
- `countDATA` should points to be counted

Value

list of `ks.test` values for each value in `rate`
law-class

Result of PawerLaw fit

Description

Result of PawerLaw fit

Slots

- `fit displ-class` result of power law fit.
- `p` numeric.
- `alpha` numeric degree of power-law.
- `SDxmin` numeric bootstrap sd of Xmin.
- `SDalpha` numeric bootstrap sd of alpha.

layoutByCluster

Calculate layout based upon membership

Description

Function to split graph into clusters and layout each cluster independently.

Usage

`layoutByCluster(gg, mem, layout = layout_with_kk)`

Arguments

- `gg` graph to layout
- `mem` membership data.frame from `calcMembership`
- `layout` algorithm to use for layout

Value

Layout in a form of 2D matrix.

See Also

`igraph::layout_`

Examples

```r
data(karate, package='igraphdata')
alg<-'louvain'
mem<-'calcMembership(karate,alg = alg)
lay<-'layoutByCluster(karate,mem)
#plot(karate,layout=lay)```
layoutByRecluster  

**Calculate two-level layout from recluster matrix**

**Description**

Takes results of recluster and apply layoutByCluster to each

**Usage**

```
layoutByRecluster(gg, remem, layout = layout_with_kk)
```

**Arguments**

- `gg`: graph to layout
- `remem`: recluster result obtained by `calcReclusterMatrix` invocation
- `layout`: one of the layout algorithms from `layout_`

**Value**

Layout in a form of 2D matrix.

**Examples**

```
data(karate, package='igraphdata')
alg<-'louvain'
mem<-calcMembership(karate,alg = alg)
remem<-calcReclusterMatrix(karate,mem,alg,10)
lay<-layoutByRecluster(karate,remem)
#plot(karate,layout=lay)
```

makeConsensusMatrix  

**Function to make random resampling consensus matrix in memory**

**Description**

Function to make random resampling consensus matrix in memory

**Usage**

```
makeConsensusMatrix(
 gg,
 N = 500,
 mask = 20,
 alg,
 type,
 weights = NULL,
)```

Arguments

- **gg**: graph to perturb
- **N**: number of perturbation steps
- **mask**: percentage of elements to perturb
- **alg**: clustering alg.
- **type**: edges (1) or nodes (2) to mask
- **weights**: The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a 'weight' edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a 'weight' edge attribute, but you don't want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.
- **reclust**: logical to decide whether to invoke reclustering via `recluster`
- **Cnmax**: maximum size of the cluster in `mem` that will not be processed if reclustering is invoked

Details

Function to assess the robustness of network clustering. A randomisation study is performed apply the same clustering algorithm to N perturbed networks, and which returns the consensus matrix where each vertex pair is assigned the probability of belong to the same cluster. The inputted network is perturbed by randomly removing a mask percentage of edges (type=1) or vertices (type=2) from the network before clustering.

Value

Consensus matrix of Nvert X Nvert

See Also

Other Robustness functions: `getRobustness()`

Examples

```r
karate <- make_graph("Zachary")
# We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS,letters)[1:vcount(karate)]
alg<-'louvain'
gg<-calcClustering(karate, alg = alg)
conmat<-makeConsensusMatrix(gg, N=100, mask = 10, alg = alg, type = 2)
dim(conmat)
```
metlMatrix

Convert sparse matrix into triplet data.frame.

Description

For very large graphs handling adjacency-like matrices is difficult due to its sparse nature. This function convert sparse matrix into triplet data.frame with row and column indices and names, and cell value.

Usage

```r
metlMatrix(sparceM)
```

Arguments

sparceM
sparse matrix to convert into triplet data.frame

Value

data.frame with three columns:

- i – row index;
- j – column index;
- x – cell value;
- Rname – i-th row name;
- Cname – j-th column name.

Examples

```r
data(karate, package='igraphdata')
upgrade_graph(karate)
Ws <- as_adjacency_matrix(karate,type='both',attr='weight',sparse = TRUE)
mdf<-metlMatrix(Ws)
head(mdf)
```

normModularity

Calculates the normalised network modularity value.

Description

Function to compare network Modularity of input network with networks of different size and connectivity.
normModularity

Usage

normModularity(
 gg,
 alg = c("lec", "wt", "fc", "infomap", "louvain", "sgG1", "sgG2", "sgG5"),
 Nint = 1000,
 weights = NULL
)

Arguments

gg graph object to analyze
alg clustering algorithm
Nint number of iterations
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.

Details

Used the normalised network modularity value Q_m based on the previous studies by Parter et al., 2007, Takemoto, 2012, Takemoto, 2013, Takemoto and Borjigin, 2011, which was defined as:

$$Q_m = \frac{Q_{real} - Q_{rand}}{Q_{max} - Q_{rand}}$$

Where Q_{real} is the network modularity of a real-world signalling network and, Q_{rand} is the average network modularity value obtained from 10,000 randomised networks constructed from its real-world network. Q_{max} was estimated as: $1 - 1/M$, where M is the number of modules in the real network.

Randomised networks were generated from a real-world network using the edge-rewiring algorithm (Maslov and Sneppen, 2002).

Value

normalized modularity value

References

Examples

```r
col <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)

nm <- normModularity(gg, alg='louvain', Nint=10)
```

permute

Randomly shuffle annotations

Description

This function is a convinience wrapper to `sample` with `replace=FALSE`.

Usage

```r
permute(GNS, N)
```

Arguments

- **GNS**: annotation list to take data from
- **N**: size of the sample

Value

random list of GNS values

Examples

```r
permute(LETTERS, 15)
```

plotBridgeness

Plot Bridgeness values

Description

Semi-local centrality measure (Chen et al., 2011) lies between 0 and 1 indicating whether protein is important globally or locally. By plotting Bridgeness against semi-local centrality we can categorises the influence each protein found in our network has on the overall network structure:

- Region 1, proteins having a 'global' rather than 'local' influence in the network (also been called bottle-neck bridges, connector or kinless hubs, 0<SI<0.5; 0.5<BR<1).
- Region 2, proteins having 'global' and 'local' influence, 0.5<SI<1, 0.5<BR<1).
- Region 3, proteins centred within the community they belong to, but also communicating with a few other specific communities, 0<SI<0.5; 0.1<BR<0.5).
- Region 4, proteins with 'local' impact, primarily within one or two communities, 0.5<SI<1, 0<BR<0.5).
Usage

plotBridgeness(
 gg,
 alg,
 VIPs,
 Xatt = "SL",
 Xlab = "Semilocal Centrality (SL)",
 Ylab = "Bridgeness (B)",
 bsize = 3,
 spsize = 7,
 MainDivSize = 0.8,
 xmin = 0,
 xmax = 1,
 ymin = 0,
 ymax = 1,
 baseColor = "royalblue2",
 SPColor = "royalblue2"
)

Arguments

- **gg**: igraph object with bridgeness values stored as attributes, after call to `calcBridgeness`
- **alg**: clustering algorithm that was used to calculate bridgeness values
- **VIPs**: list of 'special' genes to be marked on the plot
- **Xatt**: name of the attribute that stores values to be used as X-axis values. By default SL for semi-local centrality
- **Xlab**: label for the X-axis
- **Ylab**: label for the Y-axis
- **bsize**: point size for genes
- **spsize**: point size for 'special' genes
- **MainDivSize**: size of the line for the region separation lines
- **xmin**: low limit for X-axis
- **xmax**: upper limit for X-axis
- **ymin**: low limit for Y-axis
- **ymax**: upper limit for Y-axis
- **baseColor**: basic color for genes
- **SPColor**: colour highlighting any 'special' genes

Value

- **ggplot** object with plot
Examples

karate <- make_graph("Zachary")
We need vertex ID in the 'name' attribute of the vertex
V(karate)$name<-c(LETTERS,letters)[1:vcount(karate)]
set.seed(100)
gg <- calcClustering(karate, 'louvain')
gg <- calcCentrality(gg)
cnmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
gg<-calcBridgeness(gg, alg = 'louvain', cnmat)
plotBridgeness(gg,alg = 'louvain',VIPs=c("Mr Hi","John A"))

plotEntropy

Plot graph entropy values versus vertex degree for each perturbed vertex value.

Description

Following procedure described in (Teschendorff et al., 2015), all vertexes are artificially assigned a uniform weight then sequentially perturbed with the global entropy rate (SRprime) after each protein’s perturbation being calculated by getEntropy function.

Usage

plotEntropy(SRprime, subTIT = "Entropy", SRo = NULL, maxSr = NULL)

Arguments

SRprime results of getEntropy invocation
subTIT entropy axis label
SRo initial entropy rate SR_0, results of getEntropyRate invocation
maxSr the maximum entropy rate $maxSR$, results of getEntropyRate invocation

Details

This function plot SRprime against the log of the protein’s degree. In case of scale-free or approximate scale-free topologies, we see a clear bi-modal response between over-weighted vertices and their degree and an opposing bi-phasic response in under-weighted vertices and their degrees.

If maxSr or SRo is set to their default value NULL getEntropyRate will be called and returned values will be used in the following calculations. As maxSr is required for SRprime calculation by getEntropy using explicit values could save some time in the case of large network.

Value

ggplot2 object with diagram
See Also

getEntropy()

Other Entropy Functions: calcEntropy(), getEntropy(), getEntropyRate()

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
gg<-annotateGeneNames(gg)
# due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(gg)$name == '80273')
paste(V(gg)$GeneName[idx], 'GRPEL1')
ent <- getEntropyRate(gg)
SRprime <- getEntropy(gg, maxSr = NULL)
plotEntropy(SRprime, subTIT = "Entropy", SRO = ent$SRO, maxSr = ent$maxSr)
```

plotRatio

Plot fraction of enriched communities

Description

Plot fraction of enriched communities

Usage

```r
plotRatio(
  x,
  desc = "",
  anno = "",
  LEGtextSize = 1.5,
  LEGlineSize = 4,
  type = NULL
)
```

Arguments

- `x`: enrichment statistics
- `desc`: plot subtitle
- `anno`: name of annotation used
- `LEGtextSize`: size of the text
- `LEGlineSize`: width of the line
- `type`: type of the plot

Value

`ggplot` object
plotSigmoid

Plot results of the sigmoid fit

Description

Plot results of the sigmoid fit

Usage

plotSigmoid(x, rates, model, alg = '', pv = 0)

Arguments

x steps along the Fe
rates parameters of the sigmoid
model fitted model
alg name of the clustering algorithm
pv Kolmogorov-Smirnov test’s p-value

Value

ggplot object with sigmoid fit plot

PPI_Presynaptic.csv

Table of protein protein interactions for presynaptic compartment

Description

Protein-protein interactions (PPIS) for presynaptic compartment, extracted from Synaptome.db, in a csv form. Columns A and B correspond to Entrez IDs for interacting proteins A and B (node names); column We contains the edge weights, if available.

See Also

buildNetwork
PPI_Presynaptic.gml

PPI graph for presynaptic compartment

Description

Protein-protein interactions (PPIS) for presynaptic compartment, extracted from Synaptome.db, and saved in a graph format. Graph contains node attributes, such as names (Entrez IDs), Gene Names, disease association (TopOntoOVG, TopOntoOVGHDID), annotation with schizophrenia-related genes (Schanno (v/c), function annotation from GO (GOBPID, GOBP, GOMFID, GOMF, GOC-CID, GOCC), centrality measures (DEG - degree, BET - betweenness, CC - clustering coefficient, SL - semilocal centrality, mmSP - mean shortest path, PR - page rank, sdSP - standard deviation of the shortest path), and clustering memberships for 8 clustering algorithms (lec, wt, fc, infomap, louvain, sgG1, sgG2, sgG5).

prepareGDA

Function to return vertex annotation from a graph in the Vertex Annotation form and format it for further analysis.

Description

Function to return vertex annotation from a graph in the Vertex Annotation form and format it for further analysis.

Usage

```r
prepareGDA(gg, name)
```

Arguments

- `gg`
 igraph object to take annotation from

- `name`
 name of the vertex attribute that contains annotation. If graph has no such vertex attribute an error is thrown.

Value

escaped annotation in Vertex Annotation form

See Also

- `getAnnotationVertexList`
- `escapeAnnotation`
Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
ge <- igraph::read_graph(file, format="gml")
agg<-annotateGeneNames(gg)
# due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273')
paste(V(agg)$GeneName[idx], 'GRPEL1')
gda<-prepareGDA(agg, 'TopOntoOVGHDOID')
gda<-prepareGDA(agg, 'TopOntoOVGHDOID')
head(gda)
```

Description

See Also

- `annotatePresynaptic`

recluster

Hierarchical graph clustering

Function reads in a graph `GG` with cluster membership stored in vertex attribute `ALGN`, and reapply the clustering algorithm `ALGN` to all clusters larger than `CnMAX`.

Usage

```r
recluster(GG, ALGN, CnMAX, weights = NULL)
```

Arguments

- `GG`: graph to cluster
- `ALGN`: algorithm to apply
- `CnMAX`: maximum size of the cluster in `mem` that will not be processed
- `weights`: The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.
removeVertexTerm

Value

remembership matrix, that contains vertex ID membership and result of reclustering

Examples

data(karate, package='igraphdata')
alg<-'louvain'
mem<-calcMembership(karate,alg = alg)
remem<-calcReclusterMatrix(karate,mem,alg,10)

removeVertexTerm

Remove vertex property.

Description

Remove vertex property.

Usage

removeVertexTerm(GG, NAME)

Arguments

GG igraph object
NAME name of the vertex property to remove

Value

igraph object with attribute removed

Examples

data(karate, package='igraphdata')
upgrade_graph(karate)
vertex_attr_names(karate)
m<-removeVertexTerm(karate, 'color')
vertex_attr_names(m)
runPermDisease

Calculate disease-disease pair overlaps on permuted network to estimate its statistical significance

Description

Function to calculate the disease-pair overlap characteristics of an inputted network, before applying Nperm permutations on the disease annotations of # type "random" or "binned" permute. From the permuted networks the function estimates the significance of disease overlap: p-value, Bonferoni-adjusted p-value, and q-value in the Disease_overlap_sig. The function also compares the average disease separation between inputted and permuted networks, and calculates its significance using the Wilcox test and store. Significance of disease-pair overlap and disease separation results are stored in the matrix Disease_location_sig.

Usage

```r
runPermDisease(
  gg,
  name,
  diseases = NULL,
  Nperm = 100,
  permute = c("random", "binned"),
  alpha = c(0.05, 0.01, 0.001)
)
```

Arguments

- `gg`: interactome network as igraph object
- `name`: name of the attribute that stores disease annotation
- `diseases`: list of diseases to match
- `Nperm`: number of permutations to apply
- `permute`: type of permutations. random – annotation is randomly shuffled, binned – annotation is shuffled in a way to preserve node degree-annotation relationship by degreeBinnedGDAs.
- `alpha`: statistical significance levels

Details

Run with care, as large number of permutations could require a lot of memory and be timeconsuming.

Value

A list of two matrices: Disease_overlap_sig gives statistics for each pair of disease, and Disease_location_sig gives intra-disease statistics.
sampleDegBinnedGDA

Function to randomly shuffle vertex annotation terms, whilst preserving the vertex degree originally found with that annotation term..

Description

Function to randomly shuffle vertex annotation terms, whilst preserving the vertex degree originally found with that annotation term..

Usage

sampleDegBinnedGDA(org.map, term)

Arguments

org.map degree-annotation mapping returned by degreeBinnedGDAs
term annotation term to shuffle

Value

vertex IDs to assign term in shuffled annotation

See Also

degreeBinnedGDAs

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read_graph(file, format="gml")
agg<-annotateGeneNames(gg)
# due to error in org.Hs.eg.db we have to manually check annotation of one node
idx <- which(V(agg)$name == '80273')
paste(V(agg)$GeneName[idx], 'GRPEL1')
r <- runPermDisease(
  agg,
  name = "TopOntoO VGHDOID",
  diseases = c("DOID:10652", "DOID:3312", "DOID:12849", "DOID:1826"),
  Nperm = 10,
  alpha = c(0.05, 0.01, 0.001))
r$Disease_location_sig
```
paste(V(agg)$GeneName[idx], 'GRPEL1')
gda<-prepareGDA(agg, 'TopOntoOvghdoID')
diseases<-getAnnotationList(gda)
m<-degreeBinnedGDAs(agg, gda, diseases)
sampleDegBinnedGDA(m, diseases[1])

sampleGraphClust
Perturb graph and calculate its clustering

Description

Function will mask a percentage of edges (type=1) or vertices (type=2) from the network, find the largest connected component of the masked network and cluster it. The clustering results are stored in a three column matrix: the first column contains the vertex IDs of input network; the second column the vertex IDs of the subsampled network, or -1 if the vertex has been masked; the third column the cluster membership of subsampled network, or -1 if vertex has been masked.

Usage

```r
sampleGraphClust(
  gg,
  mask = 20,
  alg,
  type,
  weights = NULL,
  reclust = FALSE,
  Cnmax = 10
)
```

Arguments

- `gg`: graph
- `mask`: percentage of elements to perturbe
- `alg`: clustering alg.
- `type`: edges=>1 or nodes=>2 to mask
- `weights`: The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.
- `reclust`: logical to decide whether to invoke reclustering via `recluster`
- `Cnmax`: maximum size of the cluster in `mem` that will not be processed if reclustering is invoked
Details

This is internal function and not supposed to be called by end user.

Value

list of Nx3 matrices

Examples

data(karate, package='igraphdata')
alg<-'louvain'
mem<-calcMembership(karate, alg = alg)
smpl<-BioNAR:::sampleGraphClust(karate, mask=10, alg, type=2)

SCH_flatfile.csv Schizopherina related synaptic gene functional annotation.

Description

Annotation, manually curated from an external file: Lips et al., (2012) doi:10.1038/mp.2011.117. The table has columns: the first containing gene Human Entrez IDs, the second gene functional group ID terms, the third gene functional group description terms; in csv format

See Also

annotateSCHanno

summaryStats Calculate summary statistics from enrichment table

Description

Calculate summary statistics from enrichment table

Usage

summaryStats(RES, ALPHA, usePadj = FALSE, FeMAX = 0, FcMAX = 0)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>enrichment results data.frame</td>
</tr>
<tr>
<td>ALPHA</td>
<td>p-value cut-off</td>
</tr>
<tr>
<td>usePadj</td>
<td>logical, whether to use plain or adjusted p-value</td>
</tr>
<tr>
<td>FeMAX</td>
<td>max of the FE</td>
</tr>
<tr>
<td>FcMAX</td>
<td>max of the FC</td>
</tr>
</tbody>
</table>
Unescape annotation strings

Description
Function to remove all escape characters from annotation strings (opposite to escapeAnnotation).

Usage
unescapeAnnotation(annVec, col = COLLAPSE, esc = ESC)

Arguments
- annVec: vector of annotation strings
- col: list separator character within annotation string
- esc: escape character

Details
NOTE: spaces are treated as regular characters, no trimming is applied before or after escaping.

Value
vector of annotation strings with removed escape characters

See Also
escapeAnnotation

Examples
annVec<-apply(matrix(letters, ncol=13), 2, paste, collapse=';')
escVec<-escapeAnnotation(annVec, ';', '|')
cbind(annVec, escVec, unescapeAnnotation(escVec, ';', '|'))
zeroNA

Auxiliary function to replace NAs with zeros.

Description

Auxiliary function to replace NAs with zeros.

Usage

zeroNA(x)

Arguments

x
matrix or vector to process

Value

matrix or vector with NAs replaced by zero.

Examples

x<-matrix(NA,nrow = 3,ncol = 3)
zeroNA(x)
Index

* diseasome
diseasome, 30

* file
 flatfile.go.BP.csv, 36
 flatfile.go.CC.csv, 36
 flatfile.go.MF.csv, 36
 flatfile_human_gene2HDO.csv, 37
 PPI_Presynaptic.csv, 63
 PPI_Presynaptic.gml, 64
 PresynAn.csv, 65
 SCH_flatfile.csv, 70

* graphs
diseasome, 30

* internal
 buildConsensusMatrix, 15

* list(Entropy Functions)
calcEntropy, 23
getEntropy, 46
getEntropyRate, 47
plotEntropy, 61

* list(Robustness functions)
 getRobustness, 52
 makeConsensusMatrix, 55

addEdgeAtts, 4
annotateGeneNames, 4
annotateGoBP, 5, 36
annotateGoCC, 6, 36
annotateGoMF, 7, 36
annotateGOont, 8
annotateInterpro, 9
annotatePresynaptic, 9, 65
annotateSCHanno, 10, 70
annotateTopOntoOVG, 11, 37
annotateVertex, 12, 13
applpMatrixToGraph, 13, 18
as.undirected, 41

betweenness, 40
BioNAR, 14

BioNAR-package (BioNAR), 14
buildConsensusMatrix, 15
buildNetwork, 15, 63
calcAllClustering, 16
calcBridgeness, 17, 60
calcCentrality, 18
calcCentralityExternalDistances, 19
calcCentralityInternalDistances, 20
calcClustering, 16, 21
calcDiseasePairs, 22
calcEntropy, 23, 47, 48, 62
calcMembership, 24, 54
calcReclusterMatrix, 25, 55
calcSparsness, 26
clrob, 52
cluster_fast_greedy, 41
cluster_infomap, 41
cluster_leading_eigen, 41
cluster_louvain, 41
cluster_spinglass, 41
cluster_walktrap, 41
clusteringSummary, 27
clusterORA, 28
communities, 42
degreeBinnedGDAs, 22, 29, 67, 68
diseasome, 30
dist, 20
escapeAnnotation, 31
evalCentralitySignificance, 32
findLCC, 33
fitDegree, 33, 51
fitSigmoid, 35
flatfile.go.BP.csv, 36
flatfile.go.CC.csv, 36
flatfile.go.MF.csv, 36
flatfile_human_gene2HDO.csv, 37
getAnnotationList, 37
getAnnotationVertexList, 38
getBridgeness, 17, 39
getCentralityMatrix, 18, 19, 40, 49, 51
getCentralityMatrix(), 18, 51
getClustering, 21, 24, 40, 41
getClusterSubgraphByID, 42
getCommunityGraph, 43
getDiseases, 43
getDType, 44
getDYNAMO, 45
getEntropy, 23, 24, 46, 48, 61, 62
getEntropy(), 24, 62
getEntropyRate, 24, 47, 47, 61, 62
getGNP, 48
getGraphCentralityECDF, 49
getIDs, 49
getPA, 50
getRandomGraphCentrality, 19, 20, 51
getRobustness, 52, 56
ggplot, 60, 63
gofs, 53
graph, 30, 31
graph_from_data_frame, 15
keys, 5, 8
keytypes, 5, 8
ks.test, 53
law-class, 54
layout, 55
layoutByCluster, 54
layoutByRecluster, 55
makeConsensusMatrix, 53, 55
match.arg, 21, 42
metlMatrix, 57
modularity, 27
normModularity, 57
org.Hs.eg.db, 4, 8
page_rank, 40
permute, 59
plotBridgeness, 59
plotEntropy, 24, 47, 48, 61
plotRatio, 62
plotSigmoid, 63
PPI_Presynaptic, 63
PPI_Presynaptic.csv, 64
prepareGDA, 30, 64
PresynAn.csv, 65
recluster, 56, 65, 69
removeVertexTerm, 66
runPermDisease, 67
sample, 59
sample_correlated_gnp, 51
sample_gnp, 48, 51
sample_pa, 50, 51
sampleDegBinnedGDA, 68
sampleGraphClust, 15, 69
SCH_flatfile.csv, 70
spectral_igraph_communities, 41
summaryStats, 35, 70
summaryStats(), 35
unescapeAnnotation, 71
vcount, 27
zeroNA, 72