Package ‘BioNAR’

January 26, 2024

Title Biological Network Analysis in R

Version 1.4.1

Description the R package BioNAR, developed to step by step analysis of PPI network. The aim is to quantify and rank each protein’s simultaneous impact into multiple complexes based on network topology and clustering. Package also enables estimating of co-occurrence of diseases across the network and specific clusters pointing towards shared/common mechanisms.

License Artistic-2.0

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends R (>= 3.5.0), igraph (>= 1.6.0), poweRlaw, latex2exp, RSpecTra, Rdpack

Imports stringr, viridis, clusterCons, fgsea, grid, methods,
 AnnotationDbi, dplyr, GO.db, org.Hs.eg.db, rSpectral, WGCNA,
 ggplot2, ggrepel, minpack.lm, cowplot, data.table, scales,
 stats, Matrix

RdMacros Rdpack

Suggests knitr, BiocStyle, magick, rmarkdown, igraphdata, testthat (>= 3.0.0), vdiffr, devtools, pander, plotly, randomcoloR

Config/testthat/edition 3

VignetteBuilder knitr

BugReports https://github.com/lptolik/BioNAR/issues/

biocViews Software, GraphAndNetwork, Network

LazyData true

git_url https://git.bioconductor.org/packages/BioNAR

git_branch RELEASE_3_18

git_last_commit d368a3e

git_last_commit_date 2023-12-20
Repository Bioconductor 3.18
Date/Publication 2024-01-26
Author Colin Mclean [aut],
 Anatoly Sorokin [aut, cre],
 Oksana Sorokina [aut],
 J. Douglas Armstrong [aut, fnd],
 T. Ian Simpson [ctb, fnd]
Maintainer Anatoly Sorokin <lptolik@gmail.com>

R topics documented:

addEdgeAtts .. 4
annotateGeneNames 4
annotateGoBP ... 5
annotateGoCC ... 6
annotateGoMF ... 7
annotateGOont .. 8
annotateInterpro .. 9
annotatePresynaptic 9
annotateSCHanno ... 10
annotateTopOntoOVG 11
annotateVertex .. 12
applpMatrixToGraph 13
BioNAR ... 14
buildConsensusMatrix 14
buildNetwork .. 15
calcAllClustering 16
calcBridgeness .. 17
calcCentrality .. 18
calcCentralityExternalDistances 19
calcCentralityInternalDistances 20
calcClustering .. 21
calcDiseasePairs .. 22
calcEntropy .. 23
calcMembership .. 24
calcReclusterMatrix 25
calcSparsness ... 26
clusteringSummary 27
clusterORA .. 28
degreeBinnedGDAs 29
diseasome .. 30
escapeAnnotation ... 31
evalCentralitySignificance 32
findLCC .. 33
fitDegree .. 33
fitSigmoid ... 35
flatfile.go.BP.csv 35
R topics documented:

- flatfile.go.CC.csv .. 36
- flatfile.go.MF.csv .. 36
- flatfile_human_gene2HDO.csv ... 36
- getAnnotationList ... 37
- getAnnotationVertexList .. 38
- getBridgeness .. 39
- getCentralityMatrix .. 40
- getClustering .. 41
- getClusterSubgraphByID ... 42
- getCommunityGraph .. 43
- getDiseases ... 43
- getDType ... 44
- getDYNAMO .. 45
- getEntropy .. 46
- getEntropyRate .. 47
- getGNP ... 48
- getGraphCentralityECDF ... 49
- getIDs ... 49
- getPA ... 50
- getRandomGraphCentrality .. 51
- getRobustness ... 52
- gofs ... 53
- law-class .. 54
- layoutByCluster .. 54
- layoutByRecluster ... 55
- makeConsensusMatrix .. 55
- metlMatrix .. 57
- normModularity ... 57
- permute .. 59
- plotBridgeness .. 59
- plotEntropy .. 61
- plotRatio ... 62
- plotSigmoid .. 63
- PPI_Presynaptic.csv .. 63
- PPI_Presynaptic.gml .. 64
- prepareGDA .. 64
- PresynAn.csv .. 65
- recluster ... 65
- removeVertexTerm .. 66
- runPermDisease .. 66
- sampleDegBinnedGDA .. 68
- sampleGraphClust ... 69
- SCH_flatfile.csv ... 70
- summaryStats .. 70
- unescapeAnnotation .. 71
- zeroNA ... 71

Index 73
addEdgeAtts

Copy edge attributes from one graph to another

Description

Copy edge attributes from one graph to another

Usage

```r
addEdgeAtts(GG, gg)
```

Arguments

- **GG**: igraph object, source of attributes
- **gg**: igraph object, attributes recipient

Value

annotated version of gg igraph object

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
GG <- igraph::read.graph(file, format="gml")
LCC(GG)
LCC <- addEdgeAtts(GG, LCC)
edge_attr_names(LCC)
```

annotateGeneNames

Annotate Human Gene Names

Description

For the protein-protein interaction (PPI) or disease gene interaction (DGN) graphs that have EntrezID as a vertex name this function extract standard name from `org.Hs.eg.db` and annotate vertices.

Usage

```r
annotateGeneNames(gg, orgDB = org.Hs.eg.db, keytype = "ENTREZID")
```

Arguments

- **gg**: igraph object to annotate
- **orgDB**: ordDB object, by default human is assumed from `org.Hs.eg.db`
- **keytype**: type of IDs stored in the name vertex attribute, by default ENTREZID is assumed.
Details

If vertex name attribube stores not EntrezID or network is build not from human genes, other OrgDb-class object could be provided in orgDB and one of keytypes from that object that correspond to the nature of the vertex name attribube could be provided in the keytype attribute.

If for some vertices name attribube does not match keys with particular keytypes in the orgDB object, empty string is added as GeneName.

Value

igraph object with new vertex attribute GeneName

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read.graph(file, format="gml")
agg<.annotateGeneNames(gg)
```

Description

The function loads an annotation data matrix called annoF, which contains three columns; the first containing gene Entrez IDs, the second gene GO BP ID terms, the third gene GO BP description terms. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the vertices attributes GO_BP_ID and GO_BP.

Usage

```r
annotateGoBP(gg, annoF, idatt = "name")
```

Arguments

- `gg`: graph to update
- `annoF`: annotation matrix in Pair form
- `idatt`: optional name of the vertex attribute to map to the annotation data.frame first column

Value

annotated igraph object

See Also

getAnnotationVertexList
annotateGoCC

Add GO CC annotation to the graph vertices

Description

The function loads an annotation data matrix called annoF, which contains three columns: the first containing gene Entrez IDs, the second gene GO ID terms, the third gene GO CC description terms. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the vertices attributes GO_CC_ID and GO_CC.

Usage

annotateGoCC(gg, annoF, idatt = "name")

Arguments

- **gg**: graph to update
- **annoF**: annotation matrix in Pair form
- **idatt**: optional name of the vertex attribute to map to the annotation data.frame first column

Value

annotated igraph object

See Also

getAnnotationVertexList

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read.graph(file, format="gml")
sfile<system.file("extdata", "flatfile.go.BP.csv", package = "BioNAR")
goBP <- read.table(sfile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")
sgg <- annotateGoBP(gg, goBP)
```

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
sgg <- igraph::read.graph(file, format="gml")
sfile<system.file("extdata", "flatfile.go.CC.csv", package = "BioNAR")
goCC <- read.table(sfile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")
sgg <- annotateGoCC(gg, goCC)
```
annotateGoMF

Add GO MF annotation to the graph vertices

Description

The function loads an annotation data matrix called *annoF*, which contains three columns: the first containing gene Entrez IDs, the second gene GO MF ID terms, the third gene GO MF description terms. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the vertices attributes `GO_MF_ID` and `GO_MF`.

Usage

```r
annotateGoMF(gg, annoF, idatt = "name")
```

Arguments

- `gg`: graph to update
- `annoF`: annotation matrix in Pair form
- `idatt`: optional name of the vertex attribute to map to the annotation data.frame first column

Value

annotated igraph object

See Also

`getAnnotationVertexList`

Examples

```r
gg <- annotateGoMF(gg, goMF)
```
annotateGOont

Annotate nodes with GO terms

Description

For the protein-protein interaction (PPI) or disease gene interaction (DGN) graphs that have EntrezID as a vertex name this function extract GeneOntolgy annotation from orgDB, which should be *OrgDb-class*, split them into three ontology group (MF,BP,CC) and annotate vertices with .

Usage

```r
annotateGOont(gg, orgDB = org.Hs.eg.db, keytype = "ENTREZID", idatt = "name")
```

Arguments

- **gg**: igraph object to annotate
- **orgDB**: ordDB object, by default human is assumed from `org.Hs.eg.db`
- **keytype**: type of IDs stored in the name vertex attribute, by default ENTREZID is assumed.
- **idatt**: optional name of the vertex attributes that contains IDs matching the keytype

Details

If vertex name attribute stores not EntrezID or network is build not from human genes, other *OrgDb-class* object could be provided in orgDB and one of `keytypes` from that object that correspond to the nature of the vertex name attribute could be provided in the keytype attribute.

If for some vertices name attribute does not match keys with particular `keytypes` in the orgDB object, empty string is added as GeneName.

Value

igraph object with new vertex attribute GeneName

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph:::read.graph(file, format="gml")
ggGO <- annotateGOont(gg)
```
annotateInterpro

Add InterPro Family and Domain annotation to the graph vertices

Description

Function takes data from annoF matrix and add them to attributes InterPro_Family for term and InterPro_Family_ID for IDs.

Usage

```r
annotateInterpro(gg, annoF, annoD, idatt = "name")
```

Arguments

- `gg`: graph to update
- `annoF`: family annotation matrix in Pair form
- `annoD`: domain annotation matrix in Pair form
- `idatt`: optional name of the vertex attributes that contains Entrez IDs

Details

Function takes data from annoD matrix and add them to attributes InterPro_Domain for term and InterPro_Domain_ID for IDs.

Value

annotated igraph object

See Also

getAnnotationVertexList

annotatePresynaptic

Add presynaptic functional groups

Description

Function takes from anno matrix manually curated presynaptic genes functional annotation derived from Boyken at al. (2013) doi:10.1016/j.neuron.2013.02.027 and add them to attributes PRESYNAPTIC.

Usage

```r
annotatePresynaptic(gg, anno, idatt = "name")
```
annotateSCHanno

Arguments

- **gg**: graph to update
- **anno**: annotation matrix in Pair form
- **idatt**: optional name of the vertex attributes that contains Entrez IDs

Value

annotated igraph object

See Also

getAnnotationVertexList

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read.graph(file, format="gml")
sfile<-system.file("extdata", "PresynAn.csv", package = "BioNAR")
pres <- read.csv(sfile,skip=1,header=FALSE,strip.white=TRUE,quote="")
gg <- annotatePresynaptic(gg, pres)
```

Description

The function loads an annotation data matrix of functional groups for schizopherina risk genes (1) called anno, which contains three columns; the first containing gene Entrez IDs, the second gene functional group ID terms, the third gene functional group description terms. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the SCHanno vertices attribute.

Usage

```r
annotateSCHanno(gg, anno, idatt = "name")
```

Arguments

- **gg**: igraph object to annotate
- **anno**: annotation matrix in Pairs form
- **idatt**: optional name of the vertex attributes that contains Entrez IDs
annotateTopOntoOVG

Details

References:

Value

annotated igraph object

See Also

getAnnotationVertexList

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
afile<system.file("extdata", "SCH_flatfile.csv", package = "BioNAR")
dis <- read.table(afile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")
agg<-annotateSCHanno(gg, dis)
```

Description

The function loads a human disease annotation matrix called dis, which contains three columns; the first containing gene Entrez IDs, the second gene Human Disease Ontology (HDO) ID terms, the third gene HDO description terms. For human protein-protein interaction (PPI) or disease-gene networks (DGN) that have human Entrez IDs for the igraph vertex name attribute. The function then performs a many-to-one mapping of each matrix row to a network vertex using matching Entrez IDs, filling the vertices attributes TopOnto_OVG_HDO_ID and TopOnto_OVG.

Usage

```r
annotateTopOntoOVG(gg, dis, idatt = "name")
```

Arguments

- **gg**: igraph object to annotate
- **dis**: annotation matrix in Pairs form
- **idatt**: optional name of the vertex attributes that contains Entrez IDs
annotateVertex

Generic annotation function

Description

Function to build and fill a vertex attribute given an igraph object. Where parameter 'name' is the new vertex attribute name and values are filled from a two column data.frame supplied to 'value' attribute. The first first containing vertex name IDs, and the second the vertex annotation value.

Usage

annotateVertex(gg, name, values, idatt = "name")

Arguments

gg igraph object to annotate
name name of the attribute
values annotation data.frame
idatt optional name of the vertex attribute to map to the annotation data.frame first column

Details

As a first step all attributes with provided names will be removed.

Value

igraph object where vertex attribute name contains annotation terms separated by semicolon.

Examples

file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
ag <- buildNetwork(tbl)
read HDO data extracted from hxin/topOnto.HDO.db for synaptic network
afile<-system.file("extdata", "flatfile_human_gene2HDO.csv",
package = "BioNAR")
dis <- read.table(afile, sep="\t", skip=1, header=FALSE,
strip.white=TRUE, quote="")
agg<-annotateTopOntoOVG(gg, dis)

annotateVertex

igraph object
applpMatrixToGraph

See Also

getAnnotationVertexList

Examples

g1 <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]
m<-rbind(data.frame(ID=letters[1:10], terms=letters[1:10]),
data.frame(ID=letters[1:10], terms=LETTERS[1:10]))
g2<-annotateVertex(g1, name='cap', values=m)
V(g2)$cap

applpMatrixToGraph Add attributes to the vertex.

Description

This function suits more for updating calculated vertex properties rather than node annotation. For the later case use annotateVertex.

Usage

applpMatrixToGraph(gg, m)

Arguments

gg igraph object
m matrix of values to be applied as vertex attributes. matrix should contains column "ID" to map value to the vertex.

Details

Unlike annotateVertex, which is able to collapse multiple annotation terms, this function assume that vertex ID values are unique in the m matrix.

Value

modified igraph object

See Also

annotateVertex

Examples

g1 <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]
m<-cbind(ID=letters[1:10], capital=LETTERS[1:10])
g1<-BioNAR::applpMatrixToGraph(g1,m)
V(g1)$capital
Description

The R package BioNAR, developed to step by step analysis of PPI network. The aim is to quantify and rank each protein's simultaneous impact into multiple complexes based on network topology and clustering. Package also enables estimating of co-occurrence of diseases across the network and specific clusters pointing towards shared/common mechanisms.

Author(s)

Maintainer: Anatoly Sorokin <lptolik@gmail.com>
Authors:
- Colin Mclean <Colin.D.Mclean@ed.ac.uk>
- Oksana Sorokina <oksana.sorokina@ed.ac.uk>
- J. Douglas Armstrong <Douglas.Armstrong@ed.ac.uk> [funder]

Other contributors:
- T. Ian Simpson <Ian.Simpson@ed.ac.uk> [contributor, funder]

See Also

Useful links:
- Report bugs at https://github.com/lptolik/BioNAR/issues/

buildConsensusMatrix

Build a consensus matrix from list of resampled clustering matrices outputted from the function sampleGraphClust

Usage

buildConsensusMatrix(lcc)

Arguments

lcc list of membership matrices obtained from the sampleGraphClust
Details
Function build a consensus matrix from list of membership matrices, which are a three column matrix: the first column contains the vertex IDs of input network; the second column the vertex IDs of the subsampled network, or -1 if the vertex has been masked; the third column the cluster membership of subsampled network, or -1 if vertex has been masked. The randomised resampled membership matrices could be obtained from the function `sampleGraphClust`.

Value
consensus matrix of Nvert X Nvert

buildNetwork
Build network from data.table

Description
Wrapper for `graph_from_data_frame` function which will always return the largest connected component for a given network `ff`. The function will also annotated the edges in `ff` with PubMed data from `kw` if provided.

Usage
buildNetwork(ff, kw = NA, LCC = TRUE, simplify = TRUE)

Arguments
ff network structure data.frame with first two columns defining the network edge nodes
kw pmid keyword annotation data.frame. If NA no annotation will be added
LCC if TRUE only largest connected component is returned
simplify if TRUE loops and multiple edges will be removed

Value
igraph object of the largest connected component

Examples
f<-data.frame(A=c('A', 'A', 'B', 'D'), B=c('B', 'C', 'C', 'E'))
gg<-buildNetwork(f)
V(gg)$name
calcAllClustering

Calculate memberships for all clustering algorithms and store them on the graph vertices.

Description

This function will call calcClustering for each clustering algorithm given in our predefined list. In the event no clustering could be performed, warnings will be issued and no new vertex attribute added to the graph.

Usage

calcAllClustering(gg, weights = NULL)

Arguments

- **gg**: graph for analysis
- **weights**: The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a 'weight' edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a 'weight' edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.

Value

new graph object with all membership results stored as a vertex attribute.

See Also

calcClustering

Examples

g1 <- make_star(10, mode="undirected")
V(g1)$name <- letters[1:10]
g1 <- calcAllClustering(g1)
calcClustering(g1)
clusteringSummary(g1)
calcBridgeness

Helper function that uses `getBridgeness` to calculate graph node bridgeness values for selected algorithm and consensus matrix and save them as a graph attribute BRIDGENESS.<alg> with <alg> replaced by the selected algorithm name.

Description

Helper function that uses `getBridgeness` to calculate graph node bridgeness values for selected algorithm and consensus matrix and save them as a graph attribute BRIDGENESS.<alg>, with <alg> replaced by the selected algorithm name.

Usage

`calcBridgeness(gg, alg, conmat)`

Arguments

- **gg**: igraph object
- **alg**: clustering algorithm
- **conmat**: consensus matrix calculated with that algorithm

Value

Graph with additional attributes to store Bridgeness value

See Also

`getBridgeness`

Examples

```r
library(BioNAR)
data(karate, package='igraphdata')
set.seed(100)
gg <- calcClustering(karate, 'louvain')
cnmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
gg<-calcBridgeness(gg, alg = 'louvain', cnmat)
hist(V(gg)$BRIDGENESS.louvain)
```
calcCentrality

Calculate the vertex centrality measures

Description

Calculate the vertex centrality measures (degree, betweenness, closeness, semi-local, etc....) for each graph vertex and store each result as new vertex attribute in the graph.

Usage

```r
calcCentrality(gg, weights = NULL)
```

Arguments

- **gg**: igraph object
- **weights**: Possibly a numeric vector giving edge weights. If this is NULL and the graph has a weight edge attribute, then the attribute is used. If this is NA then no weights are used (even if the graph has a weight attribute).

Details

A wrapper function that first calls `getCentralityMatrix`, to calculate all vertex centrality measures, and then `applpMatrixToGraph` to store each centrality result as a new vertex attribute in the graph. The use of weights explained in details in `getCentralityMatrix`.

Value

modified igraph object

See Also

`getCentralityMatrix()`

Examples

```r
data(karate, package='igraphdata')
ggm<-calcCentrality(karate)
V(ggm)$DEG
```
Function to calculate a distance matrix between a list of permuted vertex centrality matrices and a unperturbed reference matrix.

Usage

```
calcCentralityExternalDistances(m, l, keepOrder = FALSE, dist = "euclidean")
```

Arguments

- `m`: reference matrix, for example centrality obtained by invocation `getCentralityMatrix`
- `l`: list of permuted matrix, for example centrality obtained by invocation `getRandomGraphCentrality`
- `keepOrder`: if FALSE values will be sorted
- `dist`: methods available from dist function

Value

matrix with seven columns containing distances between each element of `l` and reference matrix `m`

See Also

- `getRandomGraphCentrality`
- `getCentralityMatrix`
- `calcCentralityInternalDistances`

Examples

```
data(karate, package='igraphdata')
m<-getCentralityMatrix(karate)
gnp<-list()
for(i in 1:10){
  gnp[[i]]<-getRandomGraphCentrality(karate, type = 'gnp')
}
gnpEDist<-calcCentralityExternalDistances(m, gnp)
summary(gnpEDist)
```
calcCentralityInternalDistances

Function calculates a set of distance metrics between each vertex pair given a list of vertex centrality matrices.

Usage

calcCentralityInternalDistances(l, keepOrder = FALSE, dist = "euclidean")

Arguments

l
 list of matrices, for example centrality obtained by invocation getRandomGraphCentrality

keepOrder
 if FALSE values will be sorted before distance calculations

dist
 methods available from dist function

Value

matrix with seven columns containing distances between all pairs of l elements.

See Also

g getRandomGraphCentrality

getCentralityMatrix
calcCentralityExternalDistances

Examples

data(karate, package='igraphdata')
m<-getCentralityMatrix(karate)
gnp<-list()
for(i in 1:10){
 gnp[i]<-getRandomGraphCentrality(karate, type = 'gnp')
}
gnpIDist<-calcCentralityInternalDistances(gnp)
summary(gnpIDist)
calcClustering

Calculate community membership for given clustering algorithm and store the results as new vertex attributes in the graph.

Description

When applying resampling the clustering results of a clustering algorithm applied to a graph can differ due to the stochastic nature of the resampling algorithm. To allow reproducible downstream analysis clustering results are stored as vertex attributes in the graph. This function call getClustering and stores community membership as new vertex attribute in the graph, and Modularity as a new graph attribute prefix with the alg name.

Usage

calcClustering(gg, alg, weights = NULL)

Arguments

gg igraph object to cluster
alg algorithm to apply
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.

Details

NOTE: getClustering verifies algorithm names with match.arg so correct membership will be calculated, but name of the attribute is taken from alg argument, so it is possible that vertex attribute name won’t exactly match name of the algorithm from link(getClustering).

Value

modified igraph object with calculated membership stored as a vertex attribute and modularity as a graph attribute

See Also

getClustering
Examples

data(karate, package='igraphdata')
g<-calcClustering(karate, 'louvain')
vertex_attr_names(g)
graph_attr(g, 'louvain')

calcDiseasePairs

Description

Calculate each disease-disease pair overlap (or separation) on a given PPI network model, based on
analysis described in Menche et al. 2015

Usage

calcDiseasePairs(
 gg, name,
 diseases = NULL,
 permute = c("none", "random", "binned")
)

Arguments

gg interactome network as igraph object
name name of the attribute that stores disease annotation
diseases list of diseases to match
permute type of permutations. none -- no permutation is applied, random -- annotation
is randomly shuffled, binned -- annotation is shuffled in a way to preserve node
degree-annotation relationship by degreeBinnedGDAs.

Value

list with three matrices:
 • disease_separation – Ndisease X Ndisease matrix of separations
 • gene_disease_separation – Ngenes X Ndisease+2 matrix of gene-disease separation
 • disease_localisation – matrix with diseases in rows and number of genes (N), average and
 standard deviation of gene-disease separation in columns

References

Menche, J. et al. Uncovering disease-disease relationships through the incomplete interactome.
calcEntropy

See Also
degreeBinnedGDAs
sampleDegBinnedGDA

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read.graph(file, format="gml")
agg<-annotateGeneNames(gg)
p <- calcDiseasePairs(
   agg,
   name = "TopOntoVGHDID",
   diseases = c("DOID:10652", "DOID:3312", "DOID:12849"),
   permute = "n"
)
p$disease_separation
```

calcEntropy

Calculate the graph entropy for each perturbed vertex, and save the results as new vertex attributes in the graph.

Description

This function calculates the graph entropy for each perturbed vertex by calling `getEntropy`, and save the results as new vertex attributes SR_UP and SR_DOWN in the graph.

Usage

```r
calcEntropy(gg, maxSr = NULL, exVal = NULL)
```

Arguments

- `gg`
 igraph object
- `maxSr`
 the maximum entropy rate `maxSR`, if NULL `getEntropyRate` will be called.
- `exVal`
 expression values boundaries. Two columns are expected: `xx` and `lambda`. If NULL default values `c(2,14)` and `c(-14,14)` will be used for `xx` and `lambda` respectively.

Details

According to Teschendorf et al., 2010, network entropy measure quantifies the degree of randomness in the local pattern information flux around single genes. For instance, in metastatic cancer this measure was found significantly higher than in non-metastatic and helped to identify genes and entire pathways involved on metastasis. However, for the assessment of scale-free structure we do not actually require gene expression data as it based solely on the network topology.
Value

graph with SR_UP and SR_DOWN vertex attributes storing the graph entropy values with over- or under-expressing each vertex.

See Also

gEntrophy()

Other Entropy Functions: getEntropyRate(), getEntropy(), plotEntropy()

Examples

file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
gg<-annotateGeneNames(gg)
gg<- calcEntropy(gg)

calcMembership

Calculate cluster memberships for the graph.

Description

Calculates the clustering membership for each of the 10 clustering algorithms defined in function getClustering

Usage

calcMembership(
 gg,
 weights = NULL
)

Arguments

gg igraph object to cluster
alg algorithm name
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If it is NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph has a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.
Value

data.frame with columns names and membership

See Also

calcMembership

Examples

data(karate, package='igraphdata')
m<-calcMembership(karate, 'lec')
head(m)

calcReclusterMatrix Hierarchical graph clustering

Description

This function takes in a gg and initial vertex community membership values mem as returned by calcMembership, and then performs a reclustering of the graph given the clustering algorithm alg to those clusters of size greater than CnMAX.

Usage

calcReclusterMatrix(
 gg,
 mem,
 alg,
 CnMAX = 10,
 weights = NULL,
 keepSplit = FALSE
)

Arguments

gg graph to cluster
mem data.frame with previous level clustering results
alg algorithm to apply
CnMAX maximus size of the cluster in mem that will not be processed
weights The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.
keepSplit logical, wether to keep previous membership in the output matrix
Value

remembership matrix, that contains vertex ID membership and result of reclustering

Examples

data(karate, package='igraphdata')
alg<-'louvain'
mem<-calcMembership(karate, alg = alg)
remem<-calcReclusterMatrix(karate, mem, alg, 10)

calcSparsness(gg)

Arguments

gg graph to evaluate

Value

sparsness value

Examples

file <- system.file("extdata","PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
calcSparsness(gg)
clusteringSummary

Matrix of cluster characteristics

Description

Function to calculate basic summary statistics after apply clustering algorithm:

- N – number of vertices in the graph `vcount`
- mod – clustering modularity `modularity`, the ratio of edges found within communities to the number of edges found between communities, relative to a randomised model
- C – number of clusters
- Cn1 – number of singletones (clusters of size 1)
- Cn100 – number of clusters containing more than 100 nodes
- mu – the ratio of edges found within communities to the number of edges found between communities
- Min. C – minimum of the cluster size
- 1st Qu. C – first quartile of the cluster size
- Median C – median of the cluster size
- Mean C – average cluster size
- 3rd Qu. C – third quartile of the cluster size
- Max. C – maximum of the cluster size

Usage

```r
clusteringSummary(
  gg,
  att = c("lec", "wt", "fc", "infomap", "louvain", "sgG1", "sgG2", "sgG5", "spectral")
)
```

Arguments

- `gg` graph to analyse
- `att` vector of attribute names that contains membership data

Value

matrix of clustering characteristics

Examples

```r
data(karate, package='igraphdata')
g <- calcAllClustering(karate)
clusteringSummary(g)
```
clusterORA

Description

Calculate the cluster enrichment of a graph given a clustering algorithm `alg` and vertex annotation attribute 'name'. Function generates an enrichment table, one row for each cluster, containing: size of the cluster (C_n), number of annotated vertices in the graph (F_n), number of annotated vertices in the cluster (μ), odds ratio (OR) and its 95% Confidence interval $[\text{CI}_l, \text{CI}_u]$ (CI_l and CI_u), two fold enrichment values F_e (Fe) and F_c (Fc). We also provide the list of vertices from the cluster that contribute to the annotation term, p.value of enrichment (pval) and depletion (palt) using the Hypergeometric test, adjusted p.values using Benjamini and Yekutieli correction (BY).

Usage

```r
calculateORA(g, alg, name, vid = "name", alpha = 1, col = COLLAPSE)
```

Arguments

- `g`: graph to get annotation from
- `alg`: cluster algorithm and membership attribute name
- `name`: annotation attribute name
- `vid`: attribute to be used as a vertex ID
- `alpha`: probability threshold
- `col`: list separation character in attribute, by default is `;`

Details

Given the enrichment results, we can calculate the log of the Odds Ratio (OR) as:

$$\ln(\text{OR}) = \ln\left(\frac{\mu(N - F_n + \mu - C_n)}{(C_n - \mu)(F_n - \mu)}\right)$$

and its upper and lower 95% Confidence Interval:

$$\text{CI}(\ln(\text{OR})) = \ln(\text{OR}) \pm 1.96\sqrt{\frac{1}{\mu} + \frac{1}{C_n - \mu} + \frac{1}{F_n - \mu} + \frac{1}{N - F_n + \mu - C_n}}$$

Using the odds ratio allows us to distinguish functionally enriched communities relative to functionally depleted communities.

Two types of fold enrichment values calculated as follow:

$$F_e = \left(\frac{F_n}{C_n}\right)$$

$$F_c = \left(\frac{C_n}{\mu}\right)$$
Value

A table with overrepresentation results. Each row corresponds to a tested annotation in particular cluster. The columns are the following:

- **alg** – name of the clustering algorithm;
- **cl** – cluster ID;
- **Fl** – name of the enriched term;
- **N** – number vertices in the network;
- **Fn** – number of vertices in the graph annotated by term Fl \((F_n) \);
- **Cu** – size of the cluster;
- **Mu** – number of vertices in the cluster annotated by term Fl \((\mu) \);
- **OR** – odds ratio;
- **CIl** – odds ratio 95% confidence interval lower bound \((CIL) \);
- **CIu** – odds ratio 95% confidence interval upper bound \((CIU) \);
- **Fe** – fold enrichment \(F_e \);
- **Fc** – fold enrichment \(F_c \);
- **pval** – an enrichment p-value from hypergeometric test;
- **padj** – a BY-adjusted p-value;
- **palt** – an depletion p-value from hypergeometric test;
- **paltadj** – a BY-adjusted depletion p-value;
- **overlapGenes** – vector with overlapping genes.

Examples

```r
options("show.error.messages"=TRUE)
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
g <- igraph::read.graph(file, format="gml")
anL<-getAnnotationVertexList(g, 'TopOntoOVGHDID')
res<-clusterORA(g, alg='louvain', name='TopOntoOVGHDID', vid='name')
andf<-unique(data.frame(ID=get.vertex.attribute(g, 'TopOntoOVGHDID'),
Term=get.vertex.attribute(g, 'TopOntoOVGHDID')))
rr<-merge(andf, res, by.y='FL', by.x='ID')
rr[order(rr$cl), ]
```

degreeBinnedGDAs

Prepare mapping for degree-aware annotation shuffling.

Description

Function to randomly shuffle vertex annotation terms, whilst preserving the vertex degree originally found with that annotation term.
Usage

degreeBinnedGDAs(gg, GDA, dtype)

Arguments

gg graph to analyse
GDA vertex annotations returned by prepareGDA
dtype list of unique annotation terms to analyze

Value

mapping matrix between vertices, vertex-degree groups and annotation terms.

See Also

prepareGDA
getAnnotationList
sampleDegBinnedGDA

Examples

options("show.error.messages"=TRUE)
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read.graph(file, format="gml")
agg<-annotateGeneNames(gg)
gda<-prepareGDA(agg, 'TopOntoOVOGHDOID')
m<-degreeBinnedGDAs(agg, gda, getAnnotationList(gda))
c(dim(m), vcount(agg), length(getAnnotationList(gda)))
head(m)

diseasome

Barabasi’s Diseasome Network

Description

In the paper Goh.t al. (2007) doi:10.1073/pnas.0701361104 Barabasi with colleagues published Diseasome: a network of disorders and disease genes linked by known disorder–gene associations. We extract definition of the genes, disorders and interactions from papers supplementary materials and store it as graph object.

Usage

diseasome
Format

A bipartite graph as `graph` object.

Vertex attributes: ‘name’ for the node ID, ‘Name’ for the human readable node name, ‘Disor-
der.class’, ‘Type’ for the human readable node type, ‘label’ and ‘shape’ for plotting the graph, ‘type’ the node type for bipartite `graph` representation.

Details

Diseasesome is a bipartite graph that have nodes of two types gene and disease and links are allowed only between nodes of different types. It could be projected to Human Disease Network (HDN) and Disease Gene Network (DGN).

Source

escapeAnnotation

```
Escapes elements of list in annotation.
```

Description

In situations when a given list of annotation ID terms may not be well formatted, and therefore not be interoperated as unique. For example, given a list of HDO IDs: HDO:14, HDO:143, HDO:1433, and HDO:14330, a grep for the term HDO:14 could return: HDO:143, HDO:1433, HDO:14330. To avoid this all terms should be enclosed in escape characters, which unlikely to find within annotation itself.

Usage

```
escapeAnnotation(annVec, col = COLLAPSE, esc = ESC)
```

Arguments

- `annVec` vector of annotation strings
- `col` term list separator character
- `esc` escape character

Details

NOTE: spaces are treated as regular characters, no trimming is applied before or after escaping.

Value

vector of annotation strings with elements escaped
evalCentralitySignificance

Compare distance distributions of internal and external distances

Description

Function to compare two distance distributions using the Kolmogorov-Smirnov test. Where the first distance distribution is generated internally and calculates the distance between random graph centralities. The second distance distribution is generated externally, and measures the distance between random and the original graph centralities.

Usage

evalCentralitySignificance(dmi, dme)

Arguments

dmi distribution of internal distances between random graph centralities
dme distribution of external distances between random and original graph centralities

Value

list of lists for each centrality value in the input matrix three element list is created where ks contains Kolmogorov-Smirnov test result from class ks.test; pval contains Kolmogorov-Smirnov test pvalue; and dt contains input distribution.

See Also

ks.test

Examples

data(karate, package='igraphdata')
m<-getCentralityMatrix(karate)
gnp<-list()
for(i in 1:10){
 gnp[i]<-getRandomGraphCentrality(karate, type = 'gnp')
}
gnpIDist<-calcCentralityInternalDistances(gnp)
gnpEDist<-calcCentralityExternalDistances(m, gnp)
findLCC

Find Largest Connected Component of the graph

Description

Find Largest Connected Component of the graph

Usage

findLCC(GG)

Arguments

GG igraph object to analyze

Value

igraph representation LCC

Examples

g1 <- make_star(10, mode="undirected") %du% make_ring(7) %du% make_ring(5)
lcc<--findLCC(g1)
summary(lcc)

fitDegree

Fit Power Law to degree distribution.

Description

Fit a Powerlaw distribution to graph’s degree distribution using the R “PoweRlaw” package (version 0.50.0) (Gillespie, 2015)
Usage

\texttt{fitDegree(}
 \texttt{ DEG},
 Nsim = 100,
 plot = FALSE,
 DATAleg = \texttt{"Fit power-law"},
 threads = 4,
 WIDTH = 480,
 HEIGHT = 480,
 legpos = \texttt{"bottomleft"},
 showErr = TRUE
\texttt{)}

Arguments

\texttt{DEG} \hspace{1cm} \text{degree distribution}
\texttt{Nsim} \hspace{1cm} \text{number of bootstrap iterations}
\texttt{plot} \hspace{1cm} \text{logical, do you want plot to be drawn}
\texttt{DATAleg} \hspace{1cm} \text{legend string for degree data}
\texttt{threads} \hspace{1cm} \text{number of parallel computational threads}
\texttt{WIDTH} \hspace{1cm} \text{width of the plot in ptx}
\texttt{HEIGHT} \hspace{1cm} \text{height of the plot in ptx}
\texttt{legpos} \hspace{1cm} \text{position of the legend \texttt{@seealsolegend}}
\texttt{showErr} \hspace{1cm} \text{logical, do you want error on the plot legend}

Value

\text{an object of class \texttt{law-class} with results of fitting}

Examples

\texttt{##No: of bootstrap iterations use nsim > 100 for reliable result}
\texttt{nsim <- 10}

\texttt{##Legend Titles}
\texttt{Legend <- \texttt{"Presynaptic PPI"}}

\texttt{file <- system.file(\texttt{"extdata"}, \texttt{"PPI_Presynaptic.gml"}, package = \texttt{"BioNAR"})}
\texttt{gg <- igraph::read.graph(file, format="gml")}
\texttt{pFit <- fitDegree(as.vector(igraph::degree(graph=gg)),}
\texttt{ DATAleg=Legend,threads=1, Nsim=nsim)}
fitSigmoid

Description

This function calculates fit of the Fold-Enrichment distribution to the sigmoid function with the levels of noise specified in SDV and return the list in which each element contains result for one of the noise level.

Usage

fitSigmoid(stat, SDv = c(0, 0.05, 0.1, 0.5))

Arguments

stat enrichment results obtained from summaryStats
SDv vector of noise SD values

Details

Results are represented as a list with five elements:

- gridplot that allow comparison of fitting for different clustering algorithms;
- plots the list of individual plots from gridplot;
- fitInfo the data.frame that contains results of fitting, such as message, number of iterations and exit code;
- parInfo values and standard deviations for all sigmoid parameters;
- ks table of Kolmogorov-Smirnov test p-values.

Grid plot is designed in a way to be viewed in the device at least 12 inches in width and 12 inches in height.

Value

list of fitted functions tables and plots

flatfile.go.BP.csv Annotation from Gene Ontology Biological Process (GO_BP)

Description

Annotation, downloaded from Gene Ontology for Biological Process domain. The table has columns: the first containing gene gene functional group ID terms, the second gene functional group description terms, the third - Human gene Entrez IDs; in csv format

See Also

annotateGoBP
flatfile.go.CC.csv
Annotation from Gene Ontology Cellular Compartment (GO_CC)

Description

Annotation, downloaded from Gene Ontology for Cellular Compartment domain. The table has columns: the first containing gene gene functional group ID terms, the second gene functional group description terms, the third - Human gene Entrez IDs; in csv format

See Also

`annotateGoCC`

flatfile.go.MF.csv
Annotation from Gene Ontology Molecular Function (GO_MF)

Description

Annotation, downloaded from Gene Ontology for Molecular Function domain. The table has columns: the first containing gene gene functional group ID terms, the second gene functional group description terms, the third - Human gene Entrez IDs; in csv format

See Also

`annotateGoMF`

flatfile_human_gene2HDO.csv
Human Gene Disease Associations (GDA)

Description

Annotation derived from Human Disease Ontology database (HDO). The table contains three columns; the first containing gene Entrez IDs, the second gene Human Disease Ontology (HDO) ID terms, the third gene HDO description terms; in csv format

See Also

`annotateTopOntoOVG`
getAnnotationList

Extract unique values from annotations.

Description

It is not uncommon to find both duplicated vertex annotation terms, and vertices annotated with multiple terms, in a given annotation list. This function creates a vector of unique annotation terms for each vertex given an input annotation list.

Usage

getAnnotationList(
 annVec,
 col = COLLAPSE,
 sort = c("none", "string", "frequency")
)

Arguments

annVec vector of annotation strings
col list separator character
sort how to sort the result list

Value

vector of unique annotation terms

See Also

getAnnotationVertexList

Examples

file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read.graph(file, format="gml")
annVec<-V(gg)$TopOntoOVG
al<-getAnnotationList(annVec)
al
getAnnotationVertexList

Return vertex list for each term in annotation attribute

Description

For different purposes annotation of graph vertices could be represented in three forms:

- **Pairs** dataframe with vertex ID and annotation terms
- **Vertex Annotation** list named with vertex ID and containing terms annotating each vertex
- **Annotation Vertices** list named with term and containing vertex IDs

Usage

```r
getAnnotationVertexList(g, name, vid = "name", col = COLLAPSE)
```

Arguments

- `g` graph to get annotation from
- `name` annotation attribute name
- `vid` attribute to be used as a vertex ID
- `col` list separation character in attribute, by default is ;

Details

This function takes Vertex Annotation from vertex attribute and convert it to Annotation Vertices form.

Value

named list with annotation in Annotation Vertices form

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read.graph(file, format="gml")
avl<--getAnnotationVertexList(gg, 'TopOntoOVGHDOID')
head(avl)
```
getBridgeness

Calculate bridginess from consensus matrix

Description

Bridginess takes into account a vertices shared community membership together with its local neighbourhood. It was proposed in Nepus et al., 2008 doi:10.1103/PhysRevE.77.016107.

Usage

`getBridgeness(gg, alg, conmat)`

Arguments

- **gg**: igraph object
- **alg**: clustering algorithm
- **conmat**: consensus matrix calculated with that algorithm

Details

Function assumes clustering already been performed by the clustering algorithm, and its membership values stored in vertex attributes. If clustering algorithm vertex `alg` attribute is not found an error will be issued.

Value

data.frame with first column contains vertex ID, if GeneName attribute assigned to the vertices its value will be stored as a second column, the last column contains bridginess values for the

Examples

```r
library(BioNAR)
data(karate, package='igraphdata')
gg <- calcClustering(karate, 'louvain')
conmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
br<-getBridgeness(gg, alg = 'louvain', conmat)
```
getCentralityMatrix Calculate centrality measures for graph nodes.

Description
Calculate centrality measures for graph nodes.

Usage
getCentralityMatrix(gg, weights = NULL)

Arguments
- **gg**: igraph object
- **weights**: Possibly a numeric vector giving edge weights. If this is NULL and the graph has a weight edge attribute, then the attribute is used. If this is NA then no weights are used (even if the graph has a weight attribute).

Details
The edge attribute weights treated differently by different functions calculating centrality measures. For example, `betweenness` use weights as an edge length, while in `page.rank` "an edge with a larger weight is more likely to be selected by the surfer", which infer the opposite meaning. Taking into account that all methods in `getClustering` treat edge weights in the same way as `page.rank`, we calculate the distance=1/weights as edge weights for BET, dBET, mnSP, and sdSP values. So we treat weights in the package consistently as the strength and closiness of vertices, rather the distance between them.

Value
data.frame with following columns:
- **ID** - vertex ID
- **DEG** - degree
- **iDEG** - in-degree (directed graph only)
- **oDEG** - out-degree (directed graph only)
- **BET** - betweenness for undirected graph
- **dBET** - betweenness when directionality is taken into account (directed graph only)
- **CC** - clustering coefficient
- **SL** - semilocal centrality
- **mnSP** - mean shortest path
- **PR** - page rank for undirected graph
- **dPR** - page rank when directionality is taken into account (directed graph only)
- **sdSP** - standard deviation of the shortest path
getClustering

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
m<-getCentralityMatrix(gg)
```

getClustering

Get clustering results for the graph.

Description

Wrapper function for calculation of clustering for predefined set of ten algorithms:

- **lec** – leading eigenvector community (version of `leading.eigenvector.community`), directed graph will be converted to undirected by `as.undirected` with mode `collapse`;
- **wt** – walktrap community `walktrap.community`;
- **fc** – fastgreedy community `fastgreedy.community`, directed graph will be converted to undirected by `as.undirected` with mode `collapse`;
- **infomap** – infomap community `cluster_infomap`;
- **louvain** – cluster_louvain `cluster_louvain`, directed graph will be converted to undirected by `as.undirected` with mode `collapse`;
- **sgG1** – spin-glass model and simulated annealing clustering (version of `spinglass.community` with spins=500 and gamma=1);
- **sgG2** – spin-glass model and simulated annealing clustering (version of `spinglass.community` with spins=500 and gamma=2);
- **sgG5** – spin-glass model and simulated annealing clustering (version of `spinglass.community` with spins=500 and gamma=7);
- **spectral** – spectral modularity clustering `spectral_igraph_communities`;

Usage

```r
getClustering(
  gg,
  weights = NULL
)
```

Arguments

- **gg**
 igraph object to cluster
- **alg**
 clustering algorithm name
getClusterSubgraphByID

weights

The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.

Details

graph suppose to be undirected. If algorithm failed warning will be issued and function returned NULL.

Algorithm names are verified with `match.arg`.

Value

`communities` object or NULL if algorithm failed.

Examples

data(karate, package = 'igraphdata')
c <- getClustering(karate, 'lec')
c$mmodularity

getClusterSubgraphByID

Return induced subgraph for cluster

Description

Function reads in a graph `gg`, vertex cluster membership vector `mem`, and returns an induced subgraph given a cluster membership number `clID`.

Usage

getClusterSubgraphByID(clID, gg, mem)

Arguments

cID

cluster ID to extracte

gg

graph to analyze

m

membership vector

Value

induced subgraph as igraph object
getCommunityGraph

Examples

data(karate, package='igraphdata')
alg<- 'louvain'
c<-getClustering(karate, alg = alg)
cg3<-getClusterSubgraphByID(3, karate, membership(c))
#plot(gc3, vertex.label=V(gc3)$name)

data(karate, package='igraphdata')
alg<- 'louvain'
mem<-calcMembership(karate, alg = alg)
cg<-getCommunityGraph(karate, mem$membership)

getDiseases

Description

Return vector of HDO disease IDs for synaptic PPI analysis.

Usage

getAddresses()
Value

vector of disease IDs of interest

See Also

getDType

Examples

getDiseases()
getDYNAMO

Calculate DYNAMO sensitivity matrix.

Description

This function calculates sensitivity matrix that represents perturbation patterns defined by topology and edge weights of the network. If weights are signed value sensitivity matrix is able to reproduce not only activation but inhibition relationships in the network.

Usage

getDYNAMO(g, attr = NULL, vid = "name", alpha = 0.9)

Arguments

- **g**: igraph object
- **attr**: NULL or the name of edge attribute containing numerical weight values
- **vid**: name of the vertex attribute to be used as row and column names
- **alpha**: parameter characterizing the propagation strength, default value 0.9 taken from Santolini paper.

Details

Algorithm proposed in:

Value

sparse sensitivity matrix defined by the network topology and edge values

Examples

data(karate, package='igraphdata')
d<-getDYNAMO(karate,attr='weight')
df<-metlMatrix(d)
head(df)
getEntropy

Calculates vertex perturbation graph entropy.

Description
According to Teschendorf et al., 2010, network entropy measure quantifies the degree of randomness in the local pattern information flux around single genes. For instance, in metastatic cancer this measure was found significantly higher than in non-metastatic and helped to identify genes and entire pathways involved on metastasis. However, for the assessment of scale-free structure we do not actually require gene expression data as it based solely on the network topology.

Usage
getEntropy(gg, maxSr = NULL, exVal = NULL)

Arguments

<table>
<thead>
<tr>
<th>gg</th>
<th>igraph object</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxSr</td>
<td>the maximum entropy rate (\text{maxSR}), if NULL getEntropyRate will be called.</td>
</tr>
<tr>
<td>exVal</td>
<td>expression values boundaries. Two columns are expected: (xx) and (\lambda). If NULL default values (c(2,14)) and (c(-14,14)) will be used for (xx) and (\lambda) respectively.</td>
</tr>
</tbody>
</table>

Details
In this function, following procedure described in (Teschendorff et al., 2015), all vertexes are artificially assigned a uniform weight then sequentially perturbed with the global entropy rate (SR) after each protein’s perturbation being calculated and plotted against the log of the protein’s degree. In case of scale-free or approximate scale-free topologies, we see a clear bi-modal response between over-weighted vertices and their degree and an opposing bi-phasic response in under-weighted vertices and their degrees.

Value
matrix containing for each Gene:

- Entrez ID,
- Name,
- Degree,
- UP – Graph Entropy values when gene is expressed up,
- DOWN – Graph Entropy values when gene is expressed down.

Note
Entropy is calculated with respect to GeneName property, if there is no such vertex attribute in the graph vertex name will be copied to the GeneName attribute. If any NA is found in GeneNames error will be thrown.
getEntropyRate

See Also

Other Entropy Functions: calcEntropy(), getEntropyRate(), plotEntropy()

Examples

file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
 gg<-annotateGeneNames(gg)
e<- getEntropy(gg)

getEntropyRate

Description

This function calculates the maximum entropy rate \(\text{maxSR (maxSr)}\) and initial entropy rate \(\text{SR}_0 (\text{SRo})\) given a connected network.

Usage

getEntropyRate(gg)

Arguments

gg igraph object

Details

The maximum entropy rate being calculated from the network’s adjacency matrix:

\[
\text{maxSR} = \sum_{i,j} p_{ij} = \frac{A_{ij} \nu_j}{\lambda \nu_i}
\]

where \(\nu\) and \(\lambda\) are the leading eigenvector and eigenvalue of the network adjacency matrix \(A\) respectively.

The initial configuration occurs when the entropy for each node is maximal. This can be calculated by setting the expression value for each gene/node in the network to be the same, and thus the maximal node entropy is dependent only on the node’s degree \(k\):

\[
\text{SR}_0 = \frac{1}{N\bar{k}} \sum_j k_j \log k_i
\]

where \(N\) here is the number of nodes and \(\bar{k}\) the average node degree found in the network.

Value

list with values of maxSr and SRo
getGNP

See Also

Other Entropy Functions: calcEntropy(), getEntropy(), plotEntropy()

Examples

data(karate, package='igraphdata')
ent <- getEntropyRate(karate)

generate_random_graph <- getGNP(karate)
vcount(generate_random_graph)
ecount(generate_random_graph)

data(karate, package='igraphdata')
vcount(karate)
ecount(karate)
gr <- getGNP(karate)
vcount(gr)
ecount(gr)

Description

Function generates random G(n,p) Erdos-Renyi graph (sample_gnp) with the same number of vertices and edges as in the reference graph gg.

Usage

generate_random_graph <- getGNP(gg, ...)

Arguments

- gg: reference graph
- ...: additional arguments to be passed to sample_gnp

Value

new instance of the random graph.

Examples

data(karate, package='igraphdata')
vcount(karate)
ecount(karate)
gr <- getGNP(karate)
vcount(gr)
ecount(gr)
getGraphCentralityECDF

Convert centrality matrix into ECDF

Description

Convert centrality matrix into ECDF

Usage

getGraphCentralityECDF(m)

Arguments

m centrality matrix from getCentralityMatrix invocation.

Value

list of several ecdf objects, corresponding to values in centrality matrix from getCentralityMatrix invocation.

See Also

getCentralityMatrix

descriptions

Examples

file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
m<-getCentralityMatrix(gg)
ecdfL<-getGraphCentralityECDF(m)

getIDs

Utility function to get vertex ids from vertex attributes The function obtain attribute values and check duplicates in it. It fails if any duplicate found.

Description

Utility function to get vertex ids from vertex attributes The function obtain attribute values and check duplicates in it. It fails if any duplicate found.

Usage

getIDs(gg, idatt)
getPA

Arguments

- **gg**: graph
- **idatt**: attribute name

Value

- **idatt** attribute values

Description

The function generates random Barabasi-Albert graph (\texttt{sample_pa}) with the same vertex number as in the reference graph \texttt{gg} and the power specified by parameter \texttt{pwr}. If \texttt{pwr} is missing, we are trying to estimate \texttt{pwr} from the reference graph \texttt{gg}.

Usage

```r
getPA(gg, pwr, ...)
```

Arguments

- **gg**: reference graph
- **pwr**: the power parameter for the \texttt{sample_pa}
- **...**: additional parameters to be passed to the \texttt{sample_pa}

Value

- new instance of the random graph.

Examples

```r
data(karate, package='igraphdata')
vcount(karate)
ecount(karate)
rg<- getPA(karate,pwr=1.25)
vcount(rg)
ecount(rg)
```
getRandomGraphCentrality

Centrality measures for random graphs induced by input one

Description

Generate a random graph that mimics the properties of the input graph and calls getCentralityMatrix to calculate all available vertex centrality measures. There are four different types of random graph to generate.

Usage

getRandomGraphCentrality(
 gg,
 type = c("gnp", "pa", "cgnp", "rw"),
 power = NULL,
 weights = NULL,
 ...
)

Arguments

gg template graph to mimic

 type type of random graph to generate:
 • gnp – G(n,p) Erdos-Renyi model (sample_gnp)
 • pa – Barabasi-Albert model (sample_pa)
 • cgnp – new random graph from a given graph by randomly adding/removing edges (sample_correlated_gnp)
 • rw – new random graph from a given graph by rewiring 25% of edges preserving the degree distribution sample_gnp, sample_correlated_gnp, and sample_pa

 power optional argument of the power of the preferential attachment to be passed to sample_pa. If power is NULL the power of the preferential attachment will be estimated from fitDegree function.

 weights Possibly a numeric vector giving edge weights. If this is NULL and the graph has a weight edge attribute, then the attribute is used. If this is NA then no weights are used (even if the graph has a weight attribute).

 ... other parameters passed to random graph generation functions

Value

matrix of random graph vertices centrality measure.

See Also

generic INTERNAL. For explanation of the use of weights.

getRobustness

Examples

data(karate, package='igraphdata')
m<- getRandomGraphCentrality(karate, 'pa', threads=1)
to avoid repetitive costly computation of PowerLaw fit
power parameter could be send explicitly:
pFit <- fitDegree(as.vector(igraph::degree(graph=kareate)),
 Nsim=10, plot=FALSE, threads=1)
pwr <- slot(pFit, 'alpha')
m<- getRandomGraphCentrality(karate, 'pa', power=pwr)
lpa<- lapply(1:5, getRandomGraphCentrality, gg=karate, type='pa',
 power=pwr, weights = NULL)

getRobustness

Calculate cluster robustness from consensus matrix

Description

This function takes as argument a network (gg), the name of a clustering algorithm (alg) which can be found in the network, and a consensus matrix (conmat) generated from the clustering network. The function uses the consensus matrix to generate a measure of cluster robustness \(C_{rob} \) for each cluster \(C \) using the R function \(clrob \). Briefly, this is done by summing elements of the consensus matrix that are found in the same cluster, and dividing this by the total number of entries in the matrix:

\[
C_{rob} = \frac{2}{C_n(C_n-1)} \sum_{i,j \in I_C} \text{conmat}_{i,j}
\]

where \(I_C \) – indices of vertices of the cluster \(C \), \(C_n \) is the number of nodes found inside the cluster \(C \).

Usage

generalRhostsness(gg, alg, conmat)

Arguments

gg igraph object
alg clustering algorithm
conmat consensus matrix

Value

data.frame that for each cluster \(C \) shows

- its size \(C_n \) (\(Cn \)),
- robustness \(C_{rob} \) (\(Crob \)) and
- robustness scaled to range between 0 and 1 (\(CrobScaled \)).
gofs

Goodness of fit KS test

Description

This is internal function and do not suppose to be called by user.

Usage

```r
gofs(x, rate, model, sigma2 = NULL, countDATA = TRUE)
```

Arguments

- **x**: steps along the Fe
- **rate**: parameters of the sigmoid
- **model**: fitted model
- **sigma2**: noise strength
- **countDATA**: should points to be counted

Value

- list of `ks.test` values for each value in `rate`

See Also

Other Robustness functions: `makeConsensusMatrix()`

Examples

```r
data(karate, package='igraphdata')
alg<-'louvain'
gg<-calcClustering(karate, alg = alg)
conmat<-makeConsensusMatrix(gg, N=100, mask = 10, alg = alg, type = 2)
clob<-getRobustness(gg, alg = alg, conmat)
clob
```
law-class

Result of PawerLaw fit

Description

Result of PawerLaw fit

Slots

fit displ-class result of power law fit.
p numeric.
alpha numeric degree of power-law.
SDxmin numeric bootstrap sd of Xmin.
SDalpha numeric bootstrap sd of alpha.

layoutByCluster

Calculate layout based upon membership

Description

Function to split graph into clusters and layout each cluster independently..

Usage

layoutByCluster(gg, mem, layout = layout_with_kk)

Arguments

gg graph to layout
mem membership data.frame from calcMembership
layout algorithm to use for layout

Value

Layout in a form of 2D matrix.

See Also

igraph::layout_

Examples

data(karate, package='igraphdata')
alg <- 'louvain'
mem <- calcMembership(karate, alg = alg)
lay <- layoutByCluster(karate, mem)
#plot(karate, layout=lay)
layoutByRecluster
Calculate two-level layout from recluster matrix

Description
Takes results of recluster and apply `layoutByCluster` to each

Usage

```
layoutByRecluster(gg, remem, layout = layout_with_kk)
```

Arguments
- **gg**: graph to layout
- **remem**: recluster result obtained by `calcReclusterMatrix` invocation
- **layout**: one of the layout algorithms from `layout_`

Value
Layout in a form of 2D matrix.

Examples
```
data(karate, package='igraphdata')
alg<-'louvain'
mem<-'calcMembership(karate,alg = alg)
remem<-'calcReclusterMatrix(karate,mem,alg,10)
lay<-'layoutByRecluster(karate,remem)
#plot(karate,layout=lay)
```

makeConsensusMatrix
Function to make random resampling consensus matrix in memory

Description
Function to make random resampling consensus matrix in memory

Usage

```
makeConsensusMatrix(
  gg, 
  N = 500, 
  mask = 20, 
  alg, 
  type, 
  weights = NULL,
)```
```r
reclust = FALSE,
Cnmax = 10
)

Arguments

- `gg`: graph to perturb
- `N`: number of perturbation steps
- `mask`: percentage of elements to perturbe
- `alg`: clustering alg.
- `type`: edges (1) or nodes (2) to mask
- `weights`: The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.
- `reclust`: logical to decide wether to invoke reclustering via `recluster`
- `Cnmax`: maximum size of the cluster in mem that will not be processed if reclustering is invoked

Details

Function to assess the robustness of network clustering. A randomisation study is performed apply the same clustering algorithm to N perturbed networks, and which returns the consensus matrix where each vertex pair is assigned the probability of belong to the same cluster. The inputted network is perturbed by randomly removing a mask percentage of edges (type=1) or vertices (type=2) from the network before clustering.

Value

consensus matrix of Nvert X Nvert

See Also

Other Robustness functions: `getRobustness()`

Examples

data(karate, package='igraphdata')
alg<- 'louvain'
gg<- calcClustering(karate, alg = alg)
conmat<- makeConsensusMatrix(gg, N=100, mask = 10, alg = alg, type = 2)
dim(conmat)
```
### metlMatrix

**Convert sparce matrix into triplet data.frame.**

**Description**

For very large graphs handling adjacency-like matrices is difficult due to its sparse nature. This function convert sparse matrix into triplet data.frame with row and column indices and names, and cell value.

**Usage**

```r
metlMatrix(sparceM)
```

**Arguments**

- `sparceM`  
  sparce matrix to convert into triplet data.frame

**Value**

data.frame with three columns:

- `i` – row index;
- `j` – column index;
- `x` – cell value;
- `Rname` – i-th row name;
- `Cname` – j-th column name.

**Examples**

```r
data(karate, package='igraphdata')
Ws <- as_adjacency_matrix(karate,type='both',attr='weight',sparse = TRUE)
mdf<-metlMatrix(Ws)
head(mdf)
```

---

### normModularity

**Calculates the normalised network modularity value.**

**Description**

Function to compare network Modularity of input network with networks of different size and connectivity.
Usage

```r
normModularity(
 gg,
 alg = c("lec", "wt", "fc", "infomap", "louvain", "sgG1", "sgG2", "sgG5"),
 Nint = 1000,
 weights = NULL
)
```

Arguments

- **gg**: graph object to analyze
- **alg**: clustering algorithm
- **Nint**: number of iterations
- **weights**: The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.

Details

Used the normalised network modularity value $Q_m$ based on the previous studies by Parter et al., 2007, Takemoto, 2012, Takemoto, 2013, Takemoto and Borjigin, 2011, which was defined as:

$$Q_m = \frac{Q_{real} - Q_{rand}}{Q_{max} - Q_{rand}}$$

Where $Q_{real}$ is the network modularity of a real-world signalling network and, $Q_{rand}$ is the average network modularity value obtained from 10,000 randomised networks constructed from its real-world network. $Q_{max}$ was estimated as: $1 - 1/M$, where M is the number of modules in the real network.

Randomised networks were generated from a real-world network using the edge-rewiring algorithm (Maslov and Sneppen, 2002).

Value

normalized modularity value

References

Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)

nm<-normModularity(gg, alg='louvain',Nint=10)
```

---

**permute**

*Randomly shuffle annotations*

**Description**

This function is a convinience wrapper to `sample` with replace= FALSE

**Usage**

`permute(GNS, N)`

**Arguments**

- **GNS** annotation list to take data from
- **N** size of the sample

**Value**

random list of GNS values

**Examples**

```r
permute(LETTERS, 15)
```

---

**plotBridgeness**

*Plot Bridgeness values*

**Description**

Semi-local centrality measure (Chen et al., 2011) lies between 0 and 1 indicating whether protein is important globally or locally. By plotting Bridgeness against semi-local centrality we can categorises the influence each protein found in our network has on the overall network structure:

- Region 1, proteins having a 'global' rather than 'local' influence in the network (also been called bottle-neck bridges, connector or kinless hubs (0<Sl<0.5; 0.5<Br<1).
- Region 2, proteins having 'global' and 'local' influence (0.5<Sl<1, 0.5<Br<1).
- Region 3, proteins centred within the community they belong to, but also communicating with a few other specific communities (0<Sl<0.5; 0.1<Br<0.5).
- Region 4, proteins with 'local' impact, primarily within one or two communities (local or party hubs, 0.5<Sl<1, 0<Br<0.5).
plotBridgeness

Usage

plotBridgeness(
  gg,
  alg,
  VIPs,
  Xatt = "SL",
  Xlab = "Semilocal Centrality (SL)",
  Ylab = "Bridgeness (B)",
  bsize = 3,
  spsize = 7,
  MainDivSize = 0.8,
  xmin = 0,
  xmax = 1,
  ymin = 0,
  ymax = 1,
  baseColor = "royalblue2",
  SPColor = "royalblue2"
)

Arguments

gg       igraph object with bridgeness values stored as attributes, after call to calcBridgeness
alg      clustering algorithm that was used to calculate bridgeness values
VIPs     list of 'special' genes to be marked on the plot
Xatt     name of the attribute that stores values to be used as X-axis values. By default SL for semi-local centrality
Xlab     label for the X-axis
Ylab     label for the Y-axis
bsize    point size for genes
spsize   point size for 'special' genes
MainDivSize size of the line for the region separation lines
xmin     low limit for X-axis
xmax     upper limit for X-axis
ymin     low limit for Y-axis
ymax     upper limit for Y-axis
baseColor basic color for genes
SPColor  colour highlighting any 'special' genes

Value

ggplot object with plot
Examples

```r
data(karate, package='igraphdata')
set.seed(100)
 gg <- calcClustering(karate, 'louvain')
 gg <- calcCentrality(gg)
 cnmat <- makeConsensusMatrix(gg, N=10, alg = 'louvain', type = 2, mask = 10)
 gg<-calcBridgeness(gg, alg = 'louvain', cnmat)
plotBridgeness(gg,alg = 'louvain',VIPs=c("Mr Hi","John A"))
```

Description

Following procedure described in (Teschendorff et al., 2015), all vertexes are artificially assigned a uniform weight then sequentially perturbed with the global entropy rate \( \text{SRprime} \) after each protein’s perturbation being calculated by `getEntropy` function.

Usage

```r
plotEntropy(SRprime, subTIT = "Entropy", SRo = NULL, maxSr = NULL)
```

Arguments

- **SRprime**: results of `getEntropy` invocation
- **subTIT**: entropy axis label
- **SRo**: initial entropy rate \( SR_0 \), results of `getEntropyRate` invocation
- **maxSr**: the maximum entropy rate \( maxSR \), results of `getEntropyRate` invocation

Details

This function plot \( \text{SRprime} \) against the log of the protein’s degree. In case of scale-free or approximate scale-free topologies, we see a clear bi-modal response between over-weighted vertices and their degree and an opposing bi-phasic response in under-weighted vertices and their degrees.

If \( \text{maxSr} \) or \( \text{SRo} \) is set to their default value NULL `getEntropyRate` will be called and returned values will be used in the following calculations. As \( \text{maxSr} \) is required for \( \text{SRprime} \) calculation by `getEntropy` using explicit values could save some time in the case of large network.

Value

- ggplot2 object with diagram

See Also

- `getEntropy()`
- Other Entropy Functions: `calcEntropy()`, `getEntropyRate()`, `getEntropy()`
Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.csv", package = "BioNAR")
tbl <- read.csv(file, sep="\t")
gg <- buildNetwork(tbl)
gg<-annotateGeneNames(gg)
ent <- getEntropyRate(gg)
SRprime <- getEntropy(gg, maxSr = NULL)
plotEntropy(SRprime, subTIT = "Entropy", SRO = ent$SRO, maxSr = ent$maxSr)
```

---

**plotRatio**

*Plot fraction of enriched communities*

**Description**

Plot fraction of enriched communities

**Usage**

```r
plotRatio(x, desc = "", anno = "", LEGtextSize = 1.5, LEGlineSize = 4, type = NULL)
```

**Arguments**

- `x`: enrichment statistics
- `desc`: plot subtitle
- `anno`: name of annotation used
- `LEGtextSize`: size of the text
- `LEGlineSize`: width of the line
- `type`: type of the plot

**Value**

`ggplot` object
plotSigmoid

Plot results of the sigmoid fit

Description

Plot results of the sigmoid fit

Usage

plotSigmoid(x, rates, model, alg = "", pv = 0)

Arguments

  x  steps along the Fe
  rates parameters of the sigmoid
  model fitted model
  alg name of the clustering algorithm
  pv Kolmogorov-Smirnov test’s p-value

Value

  ggplot object with sigmoid fit plot

PPI_Presynaptic.csv

Table of protein protein interactions for presynaptic compartment

Description

Protein-protein interactions (PPIS) for presynaptic compartment, extracted from Synaptome.db, in a csv form. Columns A and B correspond to Entrez IDs for interacting proteins A and B (node names); column We contains the edge weights, if available.

See Also

buildNetwork
**Description**

Protein-protein interactions (PPIS) for presynaptic compartment, extracted from Synaptome.db, and saved in a graph format. Graph contains node attributes, such as names (Entrez IDs), Gene Names, disease association (TopOntoOVG, TopOntoOVGHDOID), annotation with schizophrenia-related genes (Schanno (v/c), function annotation from GO (GOBPID, GOBP, GOMPID, GOMF, GOCCID, GOCC), centrality measures (DEG - degree, BET - betweenness, CC - clustering coefficient, SL - semilocal centrality, mnSP - mean shortest path, PR - page rank, sdSP - standard deviation of the shortest path), and clustering memberships for 8 clustering algorithms (lec, wt, fc, infomap, louvain, sgG1, sgG2, sgG5).

**Usage**

```r
prepareGDA(gg, name)
```

**Arguments**

- `gg`: igraph object to take annotation from
- `name`: name of the vertex attribute that contains annotation. If graph has no such vertex attribute an error is thrown.

**Value**

escaped annotation in Vertex Annotation form

**See Also**

- `getAnnotationVertexList`
- `escapeAnnotation`
Examples

```r
file <- system.file("extdata", "PPI_Presynaptic.gml", package = "BioNAR")
gg <- igraph::read.graph(file, format="gml")
agg<-annotateGeneNames(gg)
gda<-prepareGDA(agg, 'TopOntoOVGHDOID')
head(gda)
```

PresynAn.csv

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presynaptic genes specific functional annotation derived from Boyken at al. (2013) doi:10.1016/j.neuron.2013.02.027. The table has columns: the first containing functional group ID terms, the second - gene functional group description terms, third - gene Human Entrez Ids; in csv format</td>
</tr>
</tbody>
</table>

See Also

annotatePresynaptic

recluster

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchical graph clustering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>recluster(GG, ALGN, CnMAX, weights = NULL)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
</tr>
<tr>
<td>ALGN</td>
</tr>
<tr>
<td>CnMAX</td>
</tr>
<tr>
<td>weights</td>
</tr>
</tbody>
</table>
removeVertexTerm

Value

remembership matrix, that contains vertex ID membership and result of reclustering

Examples

data(karate, package='igraphdata')
alg<- 'louvain'
mem<-calcMembership(karate, alg = alg)
remem<-calcReclusterMatrix(karate, mem, alg, 10)

Description

Remove vertex property.

Usage

removeVertexTerm(GG, NAME)

Arguments

GG igraph object
NAME name of the vertex property to remove

Value

igraph object with attribute removed

Examples

data(karate, package='igraphdata')
vertex_attr_names(karate)
m<-removeVertexTerm(karate, 'color')
vertex_attr_names(m)
**Description**

Function to calculate the disease-pair overlap characteristics of an inputted network, before applying \(N_{\text{perm}}\) permutations on the disease annotations of #" type "random" or "binned" permute. From the permuted networks the function estimates the significance of disease overlap: p-value, Bonferoni-adjusted p-value, and q-value in the `Disease_overlap_sig`. The function also compares the average disease separation between inputted and permuted networks, and calculates its significance using the Wilcox test and store. Significance of disease-pair overlap and disease separation results are stored in the matrix `Disease_location_sig`.

**Usage**

```r
runPermDisease(
 gg,
 name,
 diseases = NULL,
 Nperm = 100,
 permute = c("random", "binned"),
 alpha = c(0.05, 0.01, 0.001)
)
```

**Arguments**

- `gg`: interactome network as igraph object
- `name`: name of the attribute that stores disease annotation
- `diseases`: list of diseases to match
- `Nperm`: number of permutations to apply
- `permute`: type of permutations. random – annotation is randomly shuffled, binned – annotation is shuffled in a way to preserve node degree-annotation relationship by `degreeBinnedGDAs`.
- `alpha`: statistical significance levels

**Details**

Run with care, as large number of permutations could require a lot of memory and be timeconsuming.

**Value**

list of two matrices: `Disease_overlap_sig` gives statistics for each pair of disease, and `Disease_location_sig` gives intra-disease statistics.
Examples

```r
code
```

Description

Function to randomly shuffle vertex annotation terms, whilst preserving the vertex degree originally found with that annotation term.

Usage

```r
sampleDegBinnedGDA(org.map, term)
```

Arguments

- `org.map` degree-annotation mapping returned by `degreeBinnedGDAs`
- `term` annotation term to shuffle

Value

vertex IDs to assign term in shuffled annotation

See Also

- `degreeBinnedGDAs`

Examples

```r
code
```
sampleGraphClust

**Perturb graph and calculate its clustering**

**Description**
Function will mask a percentage of edges (type=1) or vertices (type=2) from the network, find the largest connected component of the masked network and cluster it. The clustering results are stored in a three column matrix: the first column contains the vertex IDs of input network; the second column the vertex IDs of the subsampled network, or -1 if the vertex has been masked; the third column the cluster membership of subsampled network, or -1 if vertex has been masked.

**Usage**
```r
sampleGraphClust(
 gg,
 mask = 20,
 alg,
 type,
 weights = NULL,
 reclust = FALSE,
 Cnmax = 10
)
```

**Arguments**
- `gg` graph
- `mask` percentage of elements to perturbe
- `alg` clustering alg.
- `type` edges=>1 or nodes=>2 to mask
- `weights` The weights of the edges. It must be a positive numeric vector, NULL or NA. If it is NULL and the input graph has a ‘weight’ edge attribute, then that attribute will be used. If NULL and no such attribute is present, then the edges will have equal weights. Set this to NA if the graph was a ‘weight’ edge attribute, but you don’t want to use it for community detection. A larger edge weight means a stronger connection for this function. The weights value is ignored for the spectral clustering.
- `reclust` logical to decide whether to invoke reclustering via `recluster`
- `Cnmax` maximum size of the cluster in `mem` that will not be processed if reclustering is invoked

**Details**
This is internal function and not supposed to be calle by end user.
Value

list of Nx3 matrices

Examples

data(karate, package='igraphdata')
alg<-'louvain'
mem<-calcMembership(karate, alg = alg)
smpl<-BioNAR:::sampleGraphClust(karate, mask=10, alg, type=2)

SCH_flatfile.csv Schizophrenia related synaptic gene functional annotation.

Description

Annotation, manually curated from an external file: Lips et al., (2012) doi:10.1038/mp.2011.117. The table has columns: the first containing gene Human Entrez IDs, the second gene functional group ID terms, the third gene functional group description terms; in csv format

See Also

annotateSCHanno

summaryStats Calculate summary statistics from enrichment table

Description

Calculate summary statistics from enrichment table

Usage

summaryStats(RES, ALPHA, usePadj = FALSE, FeMAX = 0, FcMAX = 0)

Arguments

RES enrichment results data.frame
ALPHA p-value cut-off
usePadj logical, whether to use plain or adjusted p-value
FeMAX max of the FE
FcMAX max of the FC

Value

list of data.frame
unescapeAnnotation

Unescape annotation strings

Description
Function to remove all escape characters from annotation strings (opposite to escapeAnnotation).

Usage
unescapeAnnotation(annVec, col = COLLAPSE, esc = ESC)

Arguments
- annVec: vector of annotation strings
- col: list separator character within annotation string
- esc: escape character

Details
NOTE: spaces are treated as regular characters, no trimming is applied before or after escaping.

Value
vector of annotation strings with removed escape characters

See Also
escapeAnnotation

Examples
annVec<-apply(matrix(letters, ncol=13), 2, paste, collapse=';')
escVec<-escapeAnnotation(annVec, ';', ' |')
cbind(annVec, escVec, unescapeAnnotation(escVec, ';', ' |'))

zeroNA

Auxiliary function to replace NAs with zeros.

Description
Auxiliary function to replace NAs with zeros.

Usage
zeroNA(x)
Arguments

x  matrix or vector to process

Value

matrix or vector with NAs replaced by zero.

Examples

x<-matrix(NA,nrow = 3,ncol = 3)
zeroNA(x)
Index

* **diseasome**
  diseaseasome, 30

* **file**
  flatfile.go.BP.csv, 35
  flatfile.go.CC.csv, 36
  flatfile.go.MF.csv, 36
  flatfile_human_gene2HDO.csv, 36
  PPI_Presynaptic.csv, 63
  PPI_Presynaptic.gml, 64
  PresynAn.csv, 65
  SCH_flatfile.csv, 70

* **graphs**
  diseaseasome, 30

* **internal**
  buildConsensusMatrix, 14

* **list(Entropy Functions)**
  calcEntropy, 23
  getEntropy, 46
  getEntropyRate, 47
  plotEntropy, 61

* **list(Robustness functions)**
  getRobustness, 52
  makeConsensusMatrix, 55

addEdgeAtts, 4
annotateGeneNames, 4
annotateGoBP, 5, 35
annotateGoCC, 6, 36
annotateGoMF, 7, 36
annotateGoOnt, 8
annotateInterpro, 9
annotatePresynaptic, 9, 65
annotateSCHanno, 10, 70
annotateTopOntoOG, 11, 36
annotateVertex, 12, 13
applpMatrixToGraph, 13, 18
as.undirected, 41

betweenness, 40
BioNAR, 14

BioNAR-package (BioNAR), 14
buildConsensusMatrix, 14
buildNetwork, 15, 63

calcAllClustering, 16
calcBridgeness, 17, 60
calcCentrality, 18
calcCentralityExternalDistances, 19
calcCentralityInternalDistances, 20
calcClustering, 16, 21
calcDiseasePairs, 22

calcEntropy, 23, 47, 48, 61
calcMembership, 24, 54
calcReclusterMatrix, 25, 55
calcSparsness, 26
clrob, 52
cluster_infomap, 41
cluster_louvain, 41
clusteringSummary, 27
clusterORA, 28

communities, 42
degreeBinnedGDAs, 22, 29, 67, 68
diseaseasome, 30
dist, 20

e scapeAnnotation, 31
evalCentralitySignificance, 32

fastgreedy.community, 41
findLCC, 33
fitDegree, 33, 51
fitSigmoid, 35

flatfile.go.BP.csv, 35
flatfile.go.CC.csv, 36
flatfile.go.MF.csv, 36
flatfile_human_gene2HDO.csv, 36

getAnnotationList, 37
getAnnotationVertexList, 38
getBridgness, 17, 39
INDEX

getCentralityMatrix, 18, 19, 40, 49, 51
getCentralityMatrix(), 18, 51
getClustering, 21, 24, 40, 41
getClusterSubgraphByID, 42
getCommunityGraph, 43
getDiseases, 43
getDType, 44
getDYNAMO, 45
getEntropy, 23, 24, 46, 49, 61
getEntropy(), 24, 61
getEntropyRate, 24, 47, 47, 61
getGNP, 48
getGraphCentralityECDF, 49
getIDs, 49
getPA, 50
getRandomGraphCentrality, 19, 20, 51
getRobustness, 52, 56
ggplot, 60, 63
goFs, 53
graph, 30, 31
graph_from_data_frame, 15

ek, 5, 8
keytypes, 5, 8
ks.test, 53

law-class, 54
layout_, 55
layoutByCluster, 54
layoutByRecluster, 55
leading.eigenvector.community, 41

makeConsensusMatrix, 53, 55
match.arg, 21, 42
metlMatrix, 57
modularity, 27

normModularity, 57
org.Hs.eg.db, 4, 8

page.rank, 40
permute, 59
plotBridgeness, 59
plotEntropy, 24, 47, 48, 61
plotRatio, 62
plotSigmoid, 63
PPI_Presynaptic.csv, 63
PPI_Presynaptic.gml, 64
prepareGDA, 30, 64
PresynAn.csv, 65
recluster, 56, 65, 69
removeVertexTerm, 66
runPermDisease, 67
sample, 59
sample_correlated_gnp, 51
sample_gnp, 48, 51
sample_pa, 50, 51
sampleDegBinnedGDA, 68
sampleGraphClust, 14, 15, 69
SCH_flatfile.csv, 70
spectral_igraph_communities, 41
spinglass.community, 41
summaryStats, 35, 70
unescapeAnnotation, 71
vcount, 27
walktrap.community, 41
zeroNA, 71