Package ‘BicARE’
May 3, 2024

Version 1.62.0
Date 2008-06-05
Title Biclustering Analysis and Results Exploration
Depends R (>= 1.8.0), Biobase (>= 2.5.5), multtest, GSEABase, GO.db
Imports methods
Suggests hgu95av2
Author Pierre Gestraud
Maintainer Pierre Gestraud <pierre.gestraud@curie.fr>
Description Biclustering Analysis and Results Exploration.
License GPL-2
URL http://bioinfo.curie.fr
biocViews Microarray, Transcription, Clustering
git_url https://git.bioconductor.org/packages/BicARE
git_branch RELEASE_3_19
git_last_commit 7d2bddf
git_last_commit_date 2024-04-30
Repository Bioconductor 3.19
Date/Publication 2024-05-03

Contents

BicARE-package .. 2
bicluster .. 3
FLOC .. 3
makeReport ... 5
residue ... 6
sample.bicData .. 7
sample.biclustering 7
testAnnot .. 8
testSet .. 9

Index .. 10
BicARE-package

Description

Biclustering Analysis and Results Exploration

Details

Package: BicARE
Version: 0.1.0
Date: 2008-06-05
Depends: R (>= 1.8.0), Biobase, multtest, GSEABase
License: GPL
biocViews: Microarray, Transcription, Statistics, Clustering
URL: http://bioinfo.curie.fr
Packaged: Tue Aug 19 14:21:38 2008; pgestraud
Built: R 2.8.0; i686-pc-linux-gnu; 2008-08-19 14:39:57; unix

Index:

FLOC Performs the FLOC algorithm
bicluster Extract a bicluster
makeReport Export the results as html files
residue Residue of a matrix
sample.bicData Example data set for BicARE
sample.biclustering Example biclustering object
testAnnot Find samples annotations over-represented in biclusters
testSet Find gene sets that are enriched in a bicluster

Further information is available in the following vignettes:

BicARE BicARE (source, pdf)

Author(s)

Pierre Gestraud

Maintainer: Pierre Gestraud , <pierre.gestraud@curie.fr>
bicluster

Extract a bicluster

Description
Extract a bicluster from an object of class biclustering

Usage
\[
bicluster(biclustering, k, graph=TRUE)
\]

Arguments
- **biclustering**: an object of class "biclustering" created by function \texttt{FLOC}
- **k**: the number of the bicluster considered in the "biclustering" object
- **graph**: boolean, indicating whether the graph should be plotted or not

Value
Returns the bicluster as a matrix with the genes on rows and the samples on columns. Result matrix is of class "bicluster". The "graph" option allows to plot the expression profiles of the genes across the conditions in the bicluster.

Author(s)
Pierre Gestraud

Examples
```r
## extract the first bicluster
data(sample.biclustering)
sample.biclustering
bic <- bicluster(sample.biclustering, 1, graph=TRUE)
plot(bic)
```

FLOC

Performs the FLOC algorithm

Description
Find a given number of biclusters using the a modified version of the FLOC algorithm.

Usage
\[
FLOC(Data, k = 20, pGene = 0.5, pSample=pGene, r = NULL, N = 8, M = 6, t = 500, blocGene = NULL, blocSample = NULL)
\]
Arguments

- **Data**: an `ExpressionSet` or a matrix (with genes on rows and conditions on columns)
- **k**: the number of biclusters searched
- **pGene**: genes initial probability of membership to the biclusters
- **pSample**: samples initial probability of membership to the biclusters
- **r**: the residue threshold
- **N**: minimal number of gene per bicluster
- **M**: minimal number of conditions per bicluster
- **t**: number of iterations
- **blocGene**: a matrix indicating the directed initialisation for the genes (see details)
- **blocSample**: a matrix indicating the directed initialisation for the conditions (see details)

Details

This biclustering algorithm is based on the FLOC algorithm (FLexible Overlapped biClustering) defined by Yang et al. (see references). It can discover a set of k, possibly overlapping, biclusters. If r is set to NULL, the residue threshold used in the analysis is the residue of `Data` divided by 10.

`blocGene` and `blocSample` are matrix of 0 and 1 with the rows representing the features (gene or samples) and the columns the biclusters. A 1 on line i and column j indicates that the feature i (gene or sample) will be include in the bicluster j during the initialisation step and will not be removed from it during the analysis. If the number of columns in these matrices is different from the number of bicluster searched, k is set to the maximal value of these two.

See `bicluster` to extract a bicluster from the biclustering result.

Value

Returns an object of class 'biclustering', a list containing at least:

- **Call**: the matched call.
- **ExpressionSet**: the data used
- **param**: a data.frame with the algorithm parameters
- **bicRow**: a matrix of boolean indicating the belonging of the genes to the biclusters
- **bicCol**: the same as for bicRow but for the conditions
- **mat.resvol.bic**: a matrix describing the biclusters

Author(s)

Pierre Gestraud (<pierre.gestraud@curie.fr>)

References

Examples

data(sample.bicData) ## subset of sample.ExpressionSet from Biobase
residue(sample.bicData) ## 0.3401921

resBic <- FLOC(sample.bicData, k=10, pGene=0.5, r=0.05, N=8, M=10, t=500)
resBic

initialising samples of 2 biclusters
iniSample <- matrix(0, ncol=2, nrow=26)

first bicluster initialised around Female cases
iniSample[pData(sample.bicData)$sex=="Female",1] <- 1

second bicluster initialised around control cases
iniSample[pData(sample.bicData)$type=="Control",2] <- 1

resBic <- FLOC(sample.bicData, k=10, pGene=0.5, r=0.05, N=8, M=10, t=500, blocSample=iniSample)
resBic

makeReport
Export the results as html files

Description

Creates a directory with html files containing the biclustering results.

Usage

makeReport(dirPath, dirName, resBic, browse=TRUE)

Arguments

 dirPath path to the directory
 dirName the name of the directory where the report will be created
 resBic a biclustering result
 browse logical. If TRUE the web browser will be opened

Details

makeReport produces a html report of biclustering results in a new directory named dirName. If the browse argument is set to TRUE the web browser will be opened on the "home.html" file. Make sure to have rights to create the result directory.

Author(s)

Pierre Gestraud <pierre.gestraud@curie.fr>

Examples

data(sample.biclustering)
dirPath <- getwd() ## report created in the current working directory
dirName <- "test"
makeReport(dirPath, dirName, sample.biclustering, browse=FALSE)
Description

Returns the residue of a matrix.

Usage

residue(Data)

Arguments

Data an ExpressionSet-class or a matrix

Details

This function computes the residue of a matrix as defined by Yang et al (see references).

Author(s)

Pierre Gestraud

References

See Also

FLOC

Examples

data(sample.bicData)
residue(sample.bicData)
Example data set for BicARE

Description

A subset of sample.ExpressionSet from package Biobase. The data for 26 cases, labeled A to Z and 350 genes. Each case has three covariates: sex (male/female), type (case/control) and score (testing score).

Usage

```r
sample.bicData
```

Format

An ExpressionSet

Description

A biclustering object created by the `FLOC` function on the sample.bicData with the following options: k=10, pGene = 0.3, pSample = 0.5, r = 0.025, N = 8, M = 8, t = 1000.

Usage

```r
sample.biclustering
```

Format

a biclustering object
testAnnot

Find samples annotations over-represented covariates in biclusters

Description

Characterisation of the biclusters in term of over-representation of sample covariates.

Usage

testAnnot(resBic, annot=NULL, covariates="all")

Arguments

- resBic: a biclustering result from FLOC
- annot: annotation matrix, default value is set to NULL, then phenoData of the ExpressionSet is used
- covariates: the names of the covariates that should be tested, default value is set to "all"

Details

For each bicluster and each covariate a chi-squared test is performed to test the adequation between the distribution of the levels of the covariates in the bicluster and in the original dataset.

Multiple testing correction is performed by the Benjamini-Yekutieli procedure. The residuals of the tests indicate if the level is over or down represented in the bicluster.

Due to the amount of results it is advised to use the makeReport function to get a html report.

Value

A biclustering object containing resBic and updated with the results of the tests in resBic$covar.

The results are presented as a list with:

- covar: the samples covariates tested
- pvalues: a matrix with the p-values of the tests
- adjpvalues: a matrix with the p-values adjusted by the Benjamini Yekutieli procedure
- index: a list of matrices with the numbers of each level in each bicluster
- residuals: a list of matrices with the residuals of the tests for each modality in each bicluster

Author(s)

Pierre Gestraud

Examples

data(sample.biclustering)
resBic <- testAnnot(sample.biclustering, annot=NULL, covariates=c("sex", "type"))
testSet

Find gene sets that are enriched in a bicluster

Description
Test of the over-representation of gene sets in the biclusters

Usage
testSet(resBic, geneSetCol)

Arguments
resBic a biclustering object created by FLOC
geneSetCol a GeneSetCollection-class

Details
The over-representation of a gene set in a bicluster is evaluated by an hypergeometric test.
The genes identifiers of the gene sets will automatically be mapped to the same as those used in the data.
Due to the amount of results it is advised to use the makeReport function to get a html report.

Value
A biclustering object containing resBic and updated with the results of the tests in resBic$geneSet.
The results are presented as a list with :
GeneSetCollection the GeneSetCollection used
pvalues a matrix containing the pvalues of the tests for each geneSet and each bicluster
adjpvalue a matrix containing the p-values adjusted by the Benjamini Yekutiel procedure

Author(s)
Pierre Gestraud <pierre.gestraud@curie.fr>

Examples
data(sample.biclustering)
gss <- GeneSetCollection(sample.biclustering$ExpressionSet[1:50,], setType=GOCollection())
resBic <- testSet(sample.biclustering, gss)
Index

* cluster
 bicluster, 3
 FLOC, 3
 makeReport, 5
 residue, 6
 testAnnot, 8
 testSet, 9

* datasets
 sample.bicData, 7
 sample.biclustering, 7

* package
 BicARE-package, 2
 BicARE (BicARE-package), 2
 BicARE-package, 2
 bicluster, 3, 4
 ExpressionSet, 4
 FLOC, 3, 3, 6–9
 makeReport, 5, 8, 9
 residue, 6
 sample.bicData, 7
 sample.biclustering, 7
 testAnnot, 8
 testSet, 9