Package ‘ASURAT’

March 20, 2024

Type Package

Title Functional annotation-driven unsupervised clustering for single-cell data

Version 1.6.0

Description ASURAT is a software for single-cell data analysis. Using ASURAT, one can simultaneously perform unsupervised clustering and biological interpretation in terms of cell type, disease, biological process, and signaling pathway activity. Inputting a single-cell RNA-seq data and knowledge-based databases, such as Cell Ontology, Gene Ontology, KEGG, etc., ASURAT transforms gene expression tables into original multivariate tables, termed sign-by-sample matrices (SSMs).

License GPL-3 + file LICENSE

biocViews GeneExpression, SingleCell, Sequencing, Clustering, GeneSignaling

VignetteBuilder knitr

Encoding UTF-8

LazyData TRUE

Depends R (>= 4.0.0)

Imports SingleCellExperiment, SummarizedExperiment, S4Vectors, Rcpp

(>= 1.0.7), cluster, utils, plot3D, ComplexHeatmap, circlize, grid, grDevices, graphics

Suggests ggplot2, TENxPBMCData, dplyr, Rtsne, Seurat, AnnotationDbi, BiocGenerics, stringr, org.Hs.eg.db, knitr, rmarkdown, testthat

(>= 3.0.0)

RoxygenNote 7.1.2

LinkingTo Rcpp

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/ASURAT

git_branch RELEASE_3_18

git_last_commit b1581b2
add_metadata

Description

This function adds metadata of variables and samples.

Usage

```
add_metadata(sce = NULL, mitochondria_symbol = NULL)
```
ASURAT

Arguments

sce A SingleCellExperiment object.
mitochondria_symbol A string representing for mitochondrial genes. This function computes percents of reads that map to the mitochondrial genes. Examples are '^MT-', '^mt-', etc.

Value

A SingleCellExperiment object.

Examples

data(pbmc_eg)
pbmc <- add_metadata(sce = pbmc_eg, mitochondria_symbol = "^MT-")

ASURAT Functional annotation-driven unsupervised clustering of SingleCell data.

Description

ASURAT is a software for single-cell data analysis. Using ASURAT, one can simultaneously perform unsupervised clustering and biological interpretation in terms of cell type, disease, biological process, and signaling pathway activity. Inputting a single-cell RNA-seq data and knowledge-based databases, such as Cell Ontology, Gene Ontology, KEGG, etc., ASURAT transforms gene expression tables into original multivariate tables, termed sign-by-sample matrices (SSMs).

bubble_sort Perform bubble sorting, counting the number of steps.

Description

Perform bubble sorting, counting the number of steps.

Usage

bubble_sort(listdata)

Arguments

listdata A list of vector and integer. For example, in R code, listdata = list(vec = c(1, 0, 1, ...), cnt = 0). The integer (cnt = 0) is the initial number of steps for bubble sorting.
cluster_genesets

Value

A List.

Examples

bubble_sort(list(vec = c(1, 1, 0), cnt = 0))

correlation <- function(x) {
 x <- x / sd(x)
 if (x > 0.7) {
 return(1)
 } else if (x < -0.7) {
 return(-1)
 } else {
 return(0)
 }
}

cluster_genesets

Cluster each functional gene set into strongly, variably, and weakly correlated gene sets.

Usage

cluster_genesets(sce = NULL, cormat = NULL, th_posi = NULL, th_nega = NULL)

Arguments

sce
 A SingleCellExperiment object.

cormat
 A correlation matrix of gene expressions.

th_posi
 A threshold of positive correlation coefficient.

th_nega
 A threshold of negative correlation coefficient.

Value

A SingleCellExperiment object.

Examples

data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmc <- list(GO = pbmc)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat, th_posi = 0.24, th_nega = -0.20)
The results are stored in `metadata(pbmcs$GO)$sign`.
compute_sepI_all

An R function to compute separation indices for each cluster against the others.

Description

This function computes separation indices for each cluster versus the others.

Usage

```r
compute_sepI_all(sce = NULL, labels = NULL, nrand_samples = NULL)
```

Arguments

- `sce`: A SingleCellExperiment object.
- `labels`: A vector of labels of all the samples (cells).
- `nrand_samples`: An integer for the number of samples used for random sampling, which samples at least one sample per cluster.

Value

A SingleCellExperiment object.

Examples

```r
data(pbmcs_eg)
labels <- SummarizedExperiment::colData(pbmcs_eg$GO)$seurat_clusters
pbmcs_eg$GO <- compute_sepI_all(sce = pbmcs_eg$GO, labels = labels,
nrand_samples = 10)
# The results are stored in `metadata(pbmcs_eg$GO)$marker_signs`.
```

compute_sepI_clusters

An R function to compute separation indices of sign scores for given two clusters.

Description

This function computes separation indices of sign scores for given two clusters.

Usage

```r
compute_sepI_clusters strengths
```
create_signs

Define signs for strongly and variably correlated gene sets.

Description

This function define signs for strongly and variably correlated gene sets.

Usage

create_signs(sce = NULL, min_cnt_strg = 2, min_cnt_vari = 2)

Arguments

sce A SingleCellExperiment object.

min_cnt_strg An integer for the cutoff value for strongly correlated gene sets.

min_cnt_vari An integer for the cutoff value for variably correlated gene sets.

Value

A SingleCellExperiment object.

Examples

data(pbmcs_eg)
labels <- SummarizedExperiment::colData(pbmcs_eg$GO)$seurat_clusters
pbmcs_eg$GO <- compute_sepI_clusters(sce = pbmcs_eg$GO, labels = labels,
nrand_samples = 10, ident_1 = 1,
ident_2 = c(0, 2))

The results are stored in `metadata(pbmcs_eg$GO)$marker_signs`.

Arguments

sce A SingleCellExperiment object.

labels A vector of labels of all the samples.

nrand_samples An integer for the number of samples used for random sampling, which samples at least one sample per cluster.

ident_1 Label names identifying cluster numbers, e.g., ident_1 = 1, ident_1 = c(1, 3).

ident_2 Label names identifying cluster numbers, e.g., ident_2 = 2, ident_2 = c(2, 4).

Value

A SingleCellExperiment object.
Examples

data(pbmc_eg)
data(human.GO_egg)
mat <- t(as.matrix(pbmc_eg, "centered"))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human.GO_egg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmc$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmc$GO, cormat = pbmc_cormat,
 th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
The results are stored in `metadata(pbmcs$GO)$sign_all`.

human_COMSig_eg

A list of small Cell Ontology and MSigDB databases for human.

Description

A list of small Cell Ontology and MSigDB databases for human.

Usage

human_COMSig_eg

Format

A list of dataframe.

human_GO_egg

A list of small Gene Ontology database for human.

Description

A list of small Gene Ontology database for human.

Usage

human_GO_egg

Format

A list of dataframe.
human_KEGG_eg

A list of small KEGG database for human.

Description
A list of small KEGG database for human.

Usage
human_KEGG_eg

Format
A list of dataframe.

makeSignMatrix

Create a new SingleCellExperiment object for sign-by-sample matrices.

Description
This function creates a new SingleCellExperiment object for sign-by-sample matrices (SSM) by concatenating SSMs for strongly and variably correlated gene sets.

Usage
makeSignMatrix(sce = NULL, weight_strg = 0.5, weight_vari = 0.5)

Arguments
sce A SingleCellExperiment object.
weight_strg A weight parameter for strongly correlated gene sets.
weight_vari A weight parameter for variably correlated gene sets.

Value
A SingleCellExperiment object.
Examples

data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbms <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg["BP"])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
pbmcs$GO <- makeSignMatrix(sce = pbmcs$GO, weight_strg = 0.5,
weight_vari = 0.5)
The results can be check by, e.g., assay(pbmcs$GO, "counts").

pbmcs_eg

A list of SingleCellExperiment objects made from sign-sample matrices.

Description

A list of SingleCellExperiment objects, consisting of small sign-by-sample matrices, pbmcs_eg$CM (using Cell Ontology and MSigDB databases), pbmcs_eg$GO (using Gene Ontology database), and pbmcs_eg$KG (KEGG). Here, pbmcs_eg$CM, pbmcs_eg$GO, and pbmcs_eg$KG include 87, 72, and 64 signs, respectively, and 50 cells.

Usage

pbmcs_eg

Format

A list of SingleCellExperiment objects.

pbmc_eg

A SingleCellExperiment object made from a gene expression table.

Description

A SingleCellExperiment object, including 50 genes and 50 cells. The original data "4k PBMCs from a Healthy Donor" was downloaded from 10x Genomics database.

Usage

pbmc_eg
Format

SingleCellExperiment object.

Source

https://support.10xgenomics.com/single-cell-gene-expression

plot_dataframe3D

Visualize a three-dimensional data with labels and colors.

Description

This function visualizes a three-dimensional data with labels and colors.

Usage

plot_dataframe3D(
 dataframe3D = NULL,
 labels = NULL,
 colors = NULL,
 theta = 30,
 phi = 30,
 title = "",
 xlabel = "",
 ylabel = "",
 zlabel = ""
)

Arguments

dataframe3D A dataframe with three columns.
labels NULL or a vector of labels of all the samples, corresponding to colors.
colors NULL or a vector of colors of all the samples, corresponding to labels.
theta Angle of the plot.
phi Angle of the plot.
title Title.
xlabel x-axis label.
ylabel y-axis label.
зlabel z-axis label.

Value

A scatter3D object in plot3D package.
plot_multiheatmaps

Examples

```r
data(pbmcs_eg)
mat <- SingleCellExperiment::reducedDim(pbmcs_eg$CM, "UMAP")[, 1:3]
dataframe3D <- as.data.frame(mat)
labels <- SummarizedExperiment::colData(pbmcs_eg$CM)$seurat_clusters
plot_dataframe3D(dataframe3D = dataframe3D, labels = labels, colors = NULL,
theta = 45, phi = 20, title = "PBMC (CO & MSigDB)",
xlabel = "UMAP_1", ylabel = "UMAP_2", zlabel = "UMAP_3")
```

Description

This function visualizes multivariate data by heatmaps.

Usage

```r
plot_multiheatmaps(
 ssm_list = NULL,
 gem_list = NULL,
 ssmlabel_list = NULL,
 gemlabel_list = NULL,
 nrand_samples = NULL,
 show_row_names = FALSE,
 title = NULL
)
```

Arguments

- `ssm_list`: A list of sign-by-sample matrices.
- `gem_list`: A list of gene-by-sample matrices.
- `ssmlabel_list`: NULL or a list of dataframes of sample (cell) labels and colors. The length of the list must be as same as that of ssm_list, and the order of labels in each list must be as same as those in ssm_list.
- `gemlabel_list`: NULL or a list of dataframes of sample (cell) annotations and colors. The length of the list must be as same as that of gem_list, and the order of labels in each list must be as same as those in gem_list.
- `nrand_samples`: Number of samples (cells) used for random sampling.
- `show_row_names`: TRUE or FALSE: if TRUE, row names are shown.
- `title`: Title.

Value

A ComplexHeatmap object.
remove_samples

Remove samples based on expression profiles across variables.

Description

This function removes sample data by setting minimum and maximum threshold values for the metadata.

Usage

```r
remove_samples(  
  sce = NULL,  
  min_nReads = NULL,  
  max_nReads = NULL,  
  min_nGenes = NULL,  
  max_nGenes = NULL,  
  min_percMT = NULL,  
  max_percMT = NULL  
)
```
remove_signs

Arguments

- `sce` A SingleCellExperiment object.
- `min_nReads` A minimum threshold value of the number of reads.
- `max_nReads` A maximum threshold value of the number of reads.
- `min_nGenes` A minimum threshold value of the number of non-zero expressed genes.
- `max_nGenes` A maximum threshold value of the number of non-zero expressed genes.
- `min_percMT` A minimum threshold value of the percent of reads that map to mitochondrial genes.
- `max_percMT` A maximum threshold value of the percent of reads that map to mitochondrial genes.

Value

A SingleCellExperiment object.

Examples

data(pbmc_eg)
pbmc <- add_metadata(sce = pbmc_eg, mitochondria_symbol = "^MT-")
pbmc <- remove_samples(sce = pbmc, min_nReads = 0, max_nReads = 1e+10,
 min_nGenes = 0, max_nGenes = 1e+10,
 min_percMT = NULL, max_percMT = NULL)

remove_signs

Remove signs including too few or too many genes.

Description

This function removes signs including too few or too many genes.

Usage

remove_signs(sce = NULL, min_nGenes = 2, max_nGenes = 1000)

Arguments

- `sce` A SingleCellExperiment object.
- `min_nGenes` Minimum number of genes, which must be greater than one.
- `max_nGenes` Maximum number of genes, which must be greater than one.

Value

A SingleCellExperiment object.
Examples

```r
data(pbmc_eg)
data(human_GO_eg)
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
# The results are stored in `metadata(pbmcs$GO)$sign`.
```

```r
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat, th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
keywords <- "Covid19|foofoo|hogehoge"
pbmcs$GO <- remove_signs_manually(sce = pbmcs$GO, keywords = keywords)
# The results are stored in `metadata(pbmcs$GO)$sign_SCG`, 
# `metadata(pbmcs$GO)$sign_VCG`, and `metadata(pbmcs$GO)$sign_all`.
```

remove_signs_manually
Remove signs by specifying keywords.

Description

This function removes signs by specifying keywords.

Usage

```r
remove_signs_manually(sce = NULL, keywords = NULL)
```

Arguments

- `sce`
 A SingleCellExperiment object.

- `keywords`
 keywords separated by pipes `|`.

Value

A SingleCellExperiment object.

Examples

```r
data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat, th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
keywords <- "Covid19|foofoo|hogehoge"
pbmcs$GO <- remove_signs_manually(sce = pbmcs$GO, keywords = keywords)
# The results are stored in `metadata(pbmcs$GO)$sign_SCG`, 
# `metadata(pbmcs$GO)$sign_VCG`, and `metadata(pbmcs$GO)$sign_all`.
```
remove_signs_redundant

Remove redundant signs using semantic similarity matrices.

Description
This function removes redundant signs using semantic similarity matrices.

Usage

```r
remove_signs_redundant(
  sce = NULL,
  similarity_matrix = NULL,
  threshold = NULL,
  keep_rareID = NULL
)
```

Arguments

- `sce` A SingleCellExperiment object.
- `similarity_matrix` A semantic similarity matrix.
- `threshold` A threshold value of semantic similarity, used for regarding biological terms as similar ones.
- `keep_rareID` If TRUE, biological terms with the larger ICs are kept.

Value
A SingleCellExperiment object.

Examples

```r
data(pbmc_eg)
data(human.GO_eg)
mat <- t(as.matrix(assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human.GO_eg["BP"])
pbmcs$GO <- remove_signs(sce = pbmc$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmc$GO, cormat = pbmc_cormat,
  th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmc$GO, min_cnt_strg = 2, min_cnt_vari = 2)
pbmcs$GO <- remove_signs_redundant(
  sce = pbmc$GO, similarity_matrix = human.GO_eg$similarity_matrix$BP,
  threshold = 0.80, keep_rareID = TRUE)
# The results are stored in "metadata(pbmcs$GO)$sign_SCG",
# "metadata(pbmcs$GO)$sign_VCG", "metadata(pbmcs$GO)$sign_all",
# and if there exist, "metadata(pbmcs$GO)$sign_SCG_redundant" and
```
remove_variables

Removes variables based on expression profiles across samples.

Description

This function removes low expressed variable data.

Usage

remove_variables(sce = NULL, min_nsamples = 0)

Arguments

sce A SingleCellExperiment object.

min_nsamples An integer. This function removes variables for which the numbers of non-zero expressing samples are less than this value.

Value

A SingleCellExperiment object.

Examples

data(pbmc_eg)
pbmcs <- add_metadata(sce = pbmc_eg, mitochondria_symbol = "^MT-")
pbmcs <- remove_variables(sce = pbmc, min_nsamples = 10)

remove_variables_second

Removes variables based on the mean expression levels across samples.

Description

This function removes variable data such that the mean expression levels across samples are less than ‘min_meannReads’.

Usage

remove_variables_second(sce = NULL, min_meannReads = 0)
select_signs_manually

Arguments

sce A SingleCellExperiment object.
min_meannReads An integer. This function removes variables for which the mean read counts are less than this value.

Value

A SingleCellExperiment object.

Examples

data(pbmc_eg)
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
keywords <- c("cell", "process")

select_signs_manually Select signs by specifying keywords.

Description

This function selects signs by specifying keywords.

Usage

select_signs_manually(sce = NULL, keywords = NULL)

Arguments

sce An ASURAT object.
keywords Keywords separated by a pipe.

Value

An ASURAT object.

Examples

data(pbmc_eg)
data(human_GO_eg)
mat <- t(as.matrix(SummarizedExperiment::assay(pbmc_eg, "centered")))
pbmc_cormat <- cor(mat, method = "spearman")
pbmcs <- list(GO = pbmc_eg)
S4Vectors::metadata(pbmcs$GO) <- list(sign = human_GO_eg[["BP"]])
pbmcs$GO <- remove_signs(sce = pbmcs$GO, min_ngenes = 2, max_ngenes = 1000)
pbmcs$GO <- cluster_genesets(sce = pbmcs$GO, cormat = pbmc_cormat,
th_posi = 0.24, th_nega = -0.20)
pbmcs$GO <- create_signs(sce = pbmcs$GO, min_cnt_strg = 2, min_cnt_vari = 2)
keywords <- c("cell", "process")
swap_pass

Perform one-shot adjacent swapping for each element.

Description

Perform one-shot adjacent swapping for each element.

Usage

swap_pass(listdata)

Arguments

listdata A list of vector and integer.

Value

A List.

Examples

swap_pass(list(vec = c(1, 1, 0), cnt = 0))
Index

* datasets
 human_COMSig_eg, 7
 human_GO_eg, 7
 human_KEGG_eg, 8
 pbmc_eg, 9
 pbmcs_eg, 9

add_metadata, 2
ASURAT, 3

bubble_sort, 3

cluster_genesets, 4
compute_sepI_all, 5
compute_sepI_clusters, 5
create_signs, 6

human_COMSig_eg, 7
human_GO_eg, 7
human_KEGG_eg, 8

makeSignMatrix, 8

pbmc_eg, 9
pbmcs_eg, 9
plot_dataframe3D, 10
plot_multiheatmaps, 11

remove_samples, 12
remove_signs, 13
remove_signs_manually, 14
remove_signs_redundant, 15
remove_variables, 16
remove_variables_second, 16

select_signs_manually, 17
swap_pass, 18