1 clustifyrdatahub

clustifyrdatahub provides external reference data sets for cell-type assignment with clustifyr.

1.1 Installation

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("clustifyrdatahub")

1.2 Available references include

knitr::kable(dplyr::select(
  read.csv(system.file("extdata", "metadata.csv", package = "clustifyrdatahub")),
  c(1, 9, 2:7)))
Title Species Description RDataPath BiocVersion Genome SourceType SourceUrl
ref_MCA Mus musculus Mouse Cell Atlas clustifyrdatahub/ref_MCA.rda 3.12 mm10 Zip https://ndownloader.figshare.com/files/10756795
ref_tabula_muris_drop Mus musculus Tabula Muris (10X) clustifyrdatahub/ref_tabula_muris_drop.rda 3.12 mm10 Zip https://ndownloader.figshare.com/articles/5821263
ref_tabula_muris_facs Mus musculus Tabula Muris (SmartSeq2) clustifyrdatahub/ref_tabula_muris_facs.rda 3.12 mm10 Zip https://ndownloader.figshare.com/articles/5821263
ref_mouse.rnaseq Mus musculus Mouse RNA-seq from 28 cell types clustifyrdatahub/ref_mouse.rnaseq.rda 3.12 mm10 RDA https://github.com/dviraran/SingleR/tree/master/data
ref_moca_main Mus musculus Mouse Organogenesis Cell Atlas (main cell types) clustifyrdatahub/ref_moca_main.rda 3.12 mm10 RDA https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads
ref_immgen Mus musculus Mouse sorted immune cells clustifyrdatahub/ref_immgen.rda 3.12 mm10 RDA https://github.com/dviraran/SingleR/tree/master/data
ref_hema_microarray Homo sapiens Human hematopoietic cell microarray clustifyrdatahub/ref_hema_microarray.rda 3.12 hg38 TXT https://ftp.ncbi.nlm.nih.gov/geo/series/GSE24nnn/GSE24759/matrix/GSE24759_series_matrix.txt.gz
ref_cortex_dev Homo sapiens Human cortex development scRNA-seq clustifyrdatahub/ref_cortex_dev.rda 3.12 hg38 TSV https://cells.ucsc.edu/cortex-dev/exprMatrix.tsv.gz
ref_pan_indrop Homo sapiens Human pancreatic cell scRNA-seq (inDrop) clustifyrdatahub/ref_pan_indrop.rda 3.12 hg38 RDA https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/baron-human.rds
ref_pan_smartseq2 Homo sapiens Human pancreatic cell scRNA-seq (SmartSeq2) clustifyrdatahub/ref_pan_smartseq2.rda 3.12 hg38 RDA https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/segerstolpe.rds
ref_mouse_atlas Mus musculus Mouse Atlas scRNA-seq from 321 cell types clustifyrdatahub/ref_mouse_atlas.rda 3.12 mm10 RDA https://github.com/rnabioco/scRNA-seq-Cell-Ref-Matrix/blob/master/atlas/musMusculus/MouseAtlas.rda

1.3 To use clustifyrdatahub

library(ExperimentHub)
eh <- ExperimentHub()

## query
refs <- query(eh, "clustifyrdatahub")
refs
#> ExperimentHub with 11 records
#> # snapshotDate(): 2025-10-10
#> # $dataprovider: figshare, S3, GitHub, GEO, washington.edu, UCSC
#> # $species: Mus musculus, Homo sapiens
#> # $rdataclass: data.frame
#> # additional mcols(): taxonomyid, genome, description,
#> #   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
#> #   rdatapath, sourceurl, sourcetype 
#> # retrieve records with, e.g., 'object[["EH3444"]]' 
#> 
#>            title                
#>   EH3444 | ref_MCA              
#>   EH3445 | ref_tabula_muris_drop
#>   EH3446 | ref_tabula_muris_facs
#>   EH3447 | ref_mouse.rnaseq     
#>   EH3448 | ref_moca_main        
#>   ...      ...                  
#>   EH3450 | ref_hema_microarray  
#>   EH3451 | ref_cortex_dev       
#>   EH3452 | ref_pan_indrop       
#>   EH3453 | ref_pan_smartseq2    
#>   EH3779 | ref_mouse_atlas
## either by index or id
ref_hema_microarray <- refs[[7]]         ## load the first resource in the list
ref_hema_microarray <- refs[["EH3450"]]  ## load by EH id

## or list and load
refs <- listResources(eh, "clustifyrdatahub")
ref_hema_microarray <- loadResources(
    eh, 
    "clustifyrdatahub",
    "ref_hema_microarray"
    )[[1]]

## use for classification of cell types
res <- clustifyr::clustify(
    input = clustifyr::pbmc_matrix_small,
    metadata = clustifyr::pbmc_meta$classified,
    ref_mat = ref_hema_microarray,
    query_genes = clustifyr::pbmc_vargenes
)
## or load refs by function name (after loading hub library)
library(clustifyrdatahub)
ref_hema_microarray()[1:5, 1:5]           ## data are loaded
#>        Basophils CD4+ Central Memory CD4+ Effector Memory CD8+ Central Memory
#> DDR1    6.084244            5.967502             5.933039            6.005278
#> RFC2    6.280044            6.028615             6.047005            5.992979
#> HSPA6   6.535444            5.811475             5.746326            5.928349
#> PAX8    6.669153            5.896401             6.118577            6.270870
#> GUCA1A  5.239230            5.232116             5.206960            5.227415
#>        CD8+ Effector Memory
#> DDR1               5.895926
#> RFC2               5.942426
#> HSPA6              5.942670
#> PAX8               6.323922
#> GUCA1A             5.090882
ref_hema_microarray(metadata = TRUE)      ## only metadata
#> ExperimentHub with 1 record
#> # snapshotDate(): 2025-10-10
#> # names(): EH3450
#> # package(): clustifyrdatahub
#> # $dataprovider: GEO
#> # $species: Homo sapiens
#> # $rdataclass: data.frame
#> # $rdatadateadded: 2020-05-14
#> # $title: ref_hema_microarray
#> # $description: Human hematopoietic cell microarray
#> # $taxonomyid: 9606
#> # $genome: hg38
#> # $sourcetype: TXT
#> # $sourceurl: https://ftp.ncbi.nlm.nih.gov/geo/series/GSE24nnn/GSE24759/matr...
#> # $sourcesize: NA
#> # $tags: c("SingleCellData", "SequencingData", "MicroarrayData",
#> #   "ExperimentHub") 
#> # retrieve record with 'object[["EH3450"]]'

2 session info

sessionInfo()
#> R Under development (unstable) (2025-10-20 r88955)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.3 LTS
#> 
#> Matrix products: default
#> BLAS:   /home/biocbuild/bbs-3.23-bioc/R/lib/libRblas.so 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=en_GB              LC_COLLATE=C              
#>  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
#>  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: America/New_York
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] clustifyrdatahub_1.19.0 ExperimentHub_2.99.6    AnnotationHub_3.99.6   
#> [4] BiocFileCache_2.99.6    dbplyr_2.5.1            BiocGenerics_0.55.4    
#> [7] generics_0.1.4          BiocStyle_2.37.1       
#> 
#> loaded via a namespace (and not attached):
#>  [1] tidyselect_1.2.1            dplyr_1.1.4                
#>  [3] farver_2.1.2                blob_1.2.4                 
#>  [5] filelock_1.0.3              Biostrings_2.77.2          
#>  [7] S7_0.2.0                    fastmap_1.2.0              
#>  [9] SingleCellExperiment_1.31.1 digest_0.6.37              
#> [11] dotCall64_1.2               lifecycle_1.0.4            
#> [13] SeuratObject_5.2.0          KEGGREST_1.49.2            
#> [15] RSQLite_2.4.3               magrittr_2.0.4             
#> [17] clustifyr_1.21.0            compiler_4.6.0             
#> [19] rlang_1.1.6                 sass_0.4.10                
#> [21] tools_4.6.0                 yaml_2.3.10                
#> [23] data.table_1.17.8           knitr_1.50                 
#> [25] S4Arrays_1.9.1              bit_4.6.0                  
#> [27] sp_2.2-0                    curl_7.0.0                 
#> [29] DelayedArray_0.35.3         RColorBrewer_1.1-3         
#> [31] BiocParallel_1.43.4         abind_1.4-8                
#> [33] withr_3.0.2                 purrr_1.1.0                
#> [35] grid_4.6.0                  stats4_4.6.0               
#> [37] future_1.67.0               progressr_0.17.0           
#> [39] ggplot2_4.0.0               globals_0.18.0             
#> [41] scales_1.4.0                SummarizedExperiment_1.39.2
#> [43] dichromat_2.0-0.1           cli_3.6.5                  
#> [45] rmarkdown_2.30              crayon_1.5.3               
#> [47] future.apply_1.20.0         httr_1.4.7                 
#> [49] DBI_1.2.3                   cachem_1.1.0               
#> [51] parallel_4.6.0              AnnotationDbi_1.71.2       
#> [53] BiocManager_1.30.26         XVector_0.49.1             
#> [55] matrixStats_1.5.0           vctrs_0.6.5                
#> [57] Matrix_1.7-4                jsonlite_2.0.0             
#> [59] bookdown_0.45               IRanges_2.43.5             
#> [61] S4Vectors_0.47.4            bit64_4.6.0-1              
#> [63] listenv_0.9.1               tidyr_1.3.1                
#> [65] jquerylib_0.1.4             glue_1.8.0                 
#> [67] parallelly_1.45.1           spam_2.11-1                
#> [69] codetools_0.2-20            cowplot_1.2.0              
#> [71] gtable_0.3.6                BiocVersion_3.22.0         
#> [73] GenomicRanges_1.61.6        tibble_3.3.0               
#> [75] pillar_1.11.1               rappdirs_0.3.3             
#> [77] htmltools_0.5.8.1           Seqinfo_0.99.3             
#> [79] fgsea_1.35.8                entropy_1.3.2              
#> [81] R6_2.6.1                    httr2_1.2.1                
#> [83] evaluate_1.0.5              lattice_0.22-7             
#> [85] Biobase_2.69.1              png_0.1-8                  
#> [87] memoise_2.0.1               bslib_0.9.0                
#> [89] fastmatch_1.1-6             Rcpp_1.1.0                 
#> [91] SparseArray_1.9.1           xfun_0.53                  
#> [93] MatrixGenerics_1.21.0       pkgconfig_2.0.3