Contents

1 Introduction

Here, we explain the way to generate CCI simulation data. scTensor has a function cellCellSimulate to generate the simulation data.

The simplest way to generate such data is cellCellSimulate with default parameters.

suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

This function internally generate the parameter sets by newCCSParams, and the values of the parameter can be changed, and specified as the input of cellCellSimulate by users as follows.

# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
##   ..@ nGene  : num 1000
##   ..@ nCell  : num [1:3] 50 50 50
##   ..@ cciInfo:List of 4
##   .. ..$ nPair: num 500
##   .. ..$ CCI1 :List of 4
##   .. .. ..$ LPattern: num [1:3] 1 0 0
##   .. .. ..$ RPattern: num [1:3] 0 1 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI2 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 1 0
##   .. .. ..$ RPattern: num [1:3] 0 0 1
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI3 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 0 1
##   .. .. ..$ RPattern: num [1:3] 1 0 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   ..@ lambda : num 1
##   ..@ seed   : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
    nPair=500, # Total number of L-R pairs
    # 1st CCI
    CCI1=list(
        LPattern=c(1,0,0), # Only 1st cell type has this pattern
        RPattern=c(0,1,0), # Only 2nd cell type has this pattern
        nGene=50, # 50 pairs are generated as CCI1
        fc="E10"), # Degree of differential expression (Fold Change)
    # 2nd CCI
    CCI2=list(
        LPattern=c(0,1,0),
        RPattern=c(0,0,1),
        nGene=30,
        fc="E100")
    )
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123

# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

The output object sim has some attributes as follows.

Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.

dim(sim$input)
## [1] 1000   60
sim$input[1:2,1:3]
##       Cell1 Cell2 Cell3
## Gene1  9105     2     0
## Gene2     4    37   850

Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.

dim(sim$LR)
## [1] 500   2
sim$LR[1:10,]
##    GENEID_L GENEID_R
## 1     Gene1   Gene81
## 2     Gene2   Gene82
## 3     Gene3   Gene83
## 4     Gene4   Gene84
## 5     Gene5   Gene85
## 6     Gene6   Gene86
## 7     Gene7   Gene87
## 8     Gene8   Gene88
## 9     Gene9   Gene89
## 10   Gene10   Gene90
sim$LR[46:55,]
##    GENEID_L GENEID_R
## 46   Gene46  Gene126
## 47   Gene47  Gene127
## 48   Gene48  Gene128
## 49   Gene49  Gene129
## 50   Gene50  Gene130
## 51   Gene51  Gene131
## 52   Gene52  Gene132
## 53   Gene53  Gene133
## 54   Gene54  Gene134
## 55   Gene55  Gene135
sim$LR[491:500,]
##     GENEID_L GENEID_R
## 491  Gene571  Gene991
## 492  Gene572  Gene992
## 493  Gene573  Gene993
## 494  Gene574  Gene994
## 495  Gene575  Gene995
## 496  Gene576  Gene996
## 497  Gene577  Gene997
## 498  Gene578  Gene998
## 499  Gene579  Gene999
## 500  Gene580 Gene1000

Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.

length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 
##   "Cell1"   "Cell2"   "Cell3"   "Cell4"   "Cell5"   "Cell6"
table(names(sim$celltypes))
## 
## Celltype1 Celltype2 Celltype3 
##        20        20        20

Session information

## R Under development (unstable) (2022-10-25 r83175)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.1 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] scTGIF_1.13.0                          
##  [2] Homo.sapiens_1.3.1                     
##  [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [4] org.Hs.eg.db_3.16.0                    
##  [5] GO.db_3.16.0                           
##  [6] OrganismDbi_1.41.0                     
##  [7] GenomicFeatures_1.51.0                 
##  [8] AnnotationDbi_1.61.0                   
##  [9] SingleCellExperiment_1.21.0            
## [10] SummarizedExperiment_1.29.0            
## [11] Biobase_2.59.0                         
## [12] GenomicRanges_1.51.0                   
## [13] GenomeInfoDb_1.35.0                    
## [14] IRanges_2.33.0                         
## [15] S4Vectors_0.37.0                       
## [16] MatrixGenerics_1.11.0                  
## [17] matrixStats_0.62.0                     
## [18] scTensor_2.9.0                         
## [19] RSQLite_2.2.18                         
## [20] LRBaseDbi_2.9.0                        
## [21] AnnotationHub_3.7.0                    
## [22] BiocFileCache_2.7.0                    
## [23] dbplyr_2.2.1                           
## [24] BiocGenerics_0.45.0                    
## [25] BiocStyle_2.27.0                       
## 
## loaded via a namespace (and not attached):
##   [1] rTensor_1.4.8                 GSEABase_1.61.0              
##   [3] progress_1.2.2                goftest_1.2-3                
##   [5] Biostrings_2.67.0             vctrs_0.5.0                  
##   [7] spatstat.random_3.0-0         digest_0.6.30                
##   [9] png_0.1-7                     registry_0.5-1               
##  [11] ggrepel_0.9.1                 deldir_1.0-6                 
##  [13] parallelly_1.32.1             magick_2.7.3                 
##  [15] MASS_7.3-58.1                 reshape2_1.4.4               
##  [17] httpuv_1.6.6                  foreach_1.5.2                
##  [19] qvalue_2.31.0                 withr_2.5.0                  
##  [21] xfun_0.34                     ggfun_0.0.7                  
##  [23] ellipsis_0.3.2                survival_3.4-0               
##  [25] memoise_2.0.1                 hexbin_1.28.2                
##  [27] gson_0.0.9                    tidytree_0.4.1               
##  [29] zoo_1.8-11                    pbapply_1.5-0                
##  [31] entropy_1.3.1                 prettyunits_1.1.1            
##  [33] KEGGREST_1.39.0               promises_1.2.0.1             
##  [35] httr_1.4.4                    restfulr_0.0.15              
##  [37] schex_1.13.0                  globals_0.16.1               
##  [39] fitdistrplus_1.1-8            miniUI_0.1.1.1               
##  [41] generics_0.1.3                DOSE_3.25.0                  
##  [43] reactome.db_1.82.0            babelgene_22.9               
##  [45] concaveman_1.1.0              curl_4.3.3                   
##  [47] fields_14.1                   zlibbioc_1.45.0              
##  [49] ggraph_2.1.0                  polyclip_1.10-4              
##  [51] ca_0.71.1                     GenomeInfoDbData_1.2.9       
##  [53] RBGL_1.75.0                   interactiveDisplayBase_1.37.0
##  [55] xtable_1.8-4                  stringr_1.4.1                
##  [57] evaluate_0.17                 hms_1.1.2                    
##  [59] bookdown_0.29                 irlba_2.3.5.1                
##  [61] colorspace_2.0-3              filelock_1.0.2               
##  [63] visNetwork_2.1.2              ROCR_1.0-11                  
##  [65] reticulate_1.26               spatstat.data_3.0-0          
##  [67] magrittr_2.0.3                lmtest_0.9-40                
##  [69] Rgraphviz_2.43.0              later_1.3.0                  
##  [71] viridis_0.6.2                 ggtree_3.7.0                 
##  [73] lattice_0.20-45               misc3d_0.9-1                 
##  [75] spatstat.geom_3.0-3           future.apply_1.9.1           
##  [77] genefilter_1.81.0             plot3D_1.4                   
##  [79] spatstat.core_2.4-4           scattermore_0.8              
##  [81] XML_3.99-0.12                 shadowtext_0.1.2             
##  [83] cowplot_1.1.1                 RcppAnnoy_0.0.20             
##  [85] pillar_1.8.1                  nlme_3.1-160                 
##  [87] iterators_1.0.14              compiler_4.3.0               
##  [89] stringi_1.7.8                 Category_2.65.0              
##  [91] TSP_1.2-1                     tensor_1.5                   
##  [93] dendextend_1.16.0             GenomicAlignments_1.35.0     
##  [95] plyr_1.8.7                    msigdbr_7.5.1                
##  [97] BiocIO_1.9.0                  crayon_1.5.2                 
##  [99] abind_1.4-5                   gridGraphics_0.5-1           
## [101] sp_1.5-0                      graphlayouts_0.8.3           
## [103] bit_4.0.4                     dplyr_1.0.10                 
## [105] fastmatch_1.1-3               tagcloud_0.6                 
## [107] codetools_0.2-18              bslib_0.4.0                  
## [109] plotly_4.10.0                 mime_0.12                    
## [111] splines_4.3.0                 Rcpp_1.0.9                   
## [113] HDO.db_0.99.1                 knitr_1.40                   
## [115] blob_1.2.3                    utf8_1.2.2                   
## [117] BiocVersion_3.17.0            listenv_0.8.0                
## [119] checkmate_2.1.0               ggplotify_0.1.0              
## [121] tibble_3.1.8                  Matrix_1.5-1                 
## [123] tweenr_2.0.2                  pkgconfig_2.0.3              
## [125] tools_4.3.0                   cachem_1.0.6                 
## [127] viridisLite_0.4.1             DBI_1.1.3                    
## [129] graphite_1.45.0               fastmap_1.1.0                
## [131] rmarkdown_2.17                scales_1.2.1                 
## [133] grid_4.3.0                    outliers_0.15                
## [135] ica_1.0-3                     Seurat_4.2.0                 
## [137] rgeos_0.5-9                   Rsamtools_2.15.0             
## [139] sass_0.4.2                    patchwork_1.1.2              
## [141] BiocManager_1.30.19           dotCall64_1.0-2              
## [143] graph_1.77.0                  RANN_2.6.1                   
## [145] rpart_4.1.19                  farver_2.1.1                 
## [147] tidygraph_1.2.2               scatterpie_0.1.8             
## [149] mgcv_1.8-41                   yaml_2.3.6                   
## [151] AnnotationForge_1.41.0        rtracklayer_1.59.0           
## [153] cli_3.4.1                     purrr_0.3.5                  
## [155] webshot_0.5.4                 leiden_0.4.3                 
## [157] lifecycle_1.0.3               uwot_0.1.14                  
## [159] backports_1.4.1               BiocParallel_1.33.0          
## [161] annotate_1.77.0               MeSHDbi_1.35.0               
## [163] rjson_0.2.21                  gtable_0.3.1                 
## [165] ggridges_0.5.4                progressr_0.11.0             
## [167] parallel_4.3.0                ape_5.6-2                    
## [169] jsonlite_1.8.3                seriation_1.4.0              
## [171] bitops_1.0-7                  ggplot2_3.3.6                
## [173] bit64_4.0.5                   assertthat_0.2.1             
## [175] Rtsne_0.16                    yulab.utils_0.0.5            
## [177] ReactomePA_1.43.0             spatstat.utils_3.0-1         
## [179] SeuratObject_4.1.2            heatmaply_1.4.0              
## [181] jquerylib_0.1.4               highr_0.9                    
## [183] nnTensor_1.1.8                GOSemSim_2.25.0              
## [185] ccTensor_1.0.2                lazyeval_0.2.2               
## [187] shiny_1.7.3                   htmltools_0.5.3              
## [189] enrichplot_1.19.0             sctransform_0.3.5            
## [191] rappdirs_0.3.3                glue_1.6.2                   
## [193] tcltk_4.3.0                   spam_2.9-1                   
## [195] XVector_0.39.0                RCurl_1.98-1.9               
## [197] treeio_1.23.0                 gridExtra_2.3                
## [199] igraph_1.3.5                  R6_2.5.1                     
## [201] tidyr_1.2.1                   fdrtool_1.2.17               
## [203] cluster_2.1.4                 aplot_0.1.8                  
## [205] DelayedArray_0.25.0           tidyselect_1.2.0             
## [207] plotrix_3.8-2                 GOstats_2.65.0               
## [209] maps_3.4.1                    xml2_1.3.3                   
## [211] ggforce_0.4.1                 future_1.28.0                
## [213] munsell_0.5.0                 KernSmooth_2.23-20           
## [215] data.table_1.14.4             htmlwidgets_1.5.4            
## [217] fgsea_1.25.0                  RColorBrewer_1.1-3           
## [219] biomaRt_2.55.0                rlang_1.0.6                  
## [221] spatstat.sparse_3.0-0         meshr_2.5.0                  
## [223] fansi_1.0.3