NormqPCR: Functions for normalisation of RT-qPCR data

James Perkins and Matthias Kohl
University of Malaga (Spain) / Furtwangen University (Germany)

October 24, 2023

Contents

1 Introduction 1
2 Combining technical replicates 2
3 Dealing with undetermined values 3
4 Selection of most stable reference/housekeeping genes 5
 4.1 geNorm 5
 4.2 NormFinder 11
5 Normalization by means of reference/housekeeping genes 14
 5.1 ΔC_q method using a single housekeeper 14
 5.2 ΔC_q method using a combination of housekeeping genes 15
 5.3 $2^{\Delta C_q}$ method using a single housekeeper 16
 5.4 $2^{\Delta \Delta C_q}$ method using a combination of housekeeping genes 19
 5.5 Compute NRQs 21

1 Introduction

The package "NormqPCR" provides methods for the normalization of real-time quantitative RT-PCR data. In this vignette we describe and demonstrate the available functions. Firstly we show how the user may combine technical replicates, deal with undetermined values and deal with values above a user-chosen threshold. The rest of the vignette is split into two distinct sections, the first giving details of different methods to select the best housekeeping gene/genes for normalisation, and the second showing how to use the selected housekeeping gene(s) to produce $2^{-\Delta C_q}$ normalised estimators and $2^{-\Delta \Delta C_q}$ estimators of differential expression.
2 Combining technical replicates

When a raw data file read in using read.qPCR contains technical replicates, they are dealt with by concatenating the suffix _TechRep.n to the detector name, where n in 1, 2...N is the number of the replication in the total number of replicates, N, based on order of appearance in the qPCR data file.

So if we read in a file with technical replicates, we can see that the detector/feature names are thus suffixed:

```r
> library(ReadqPCR) # load the ReadqPCR library
> library(NormqPCR)
> path <- system.file("exData", package = "NormqPCR")
> qPCR.example.techReps <- file.path(path, "qPCR.techReps.txt")
> qPCRBatch.qPCR.techReps <- read.qPCR(qPCR.example.techReps)
> rownames(exprs(qPCRBatch.qPCR.techReps))[1:8]

[1] "gene_aj_TechReps.1" "gene_aj_TechReps.2" "gene_al_TechReps.1" "gene_al_TechReps.2" "gene_ax_TechReps.1" "gene_ax_TechReps.2" "gene_bo_TechReps.1" "gene_bo_TechReps.2"
```

It is likely that before continuing with the analysis, the user would wish to average the technical replicates by using the arithmetic mean of the raw Cq values. This can be achieved using the combineTechReps function, which will produce a new qPCRBatch object, with all tech reps reduced to one reading:

```r
> combinedTechReps <- combineTechReps(qPCRBatch.qPCR.techReps)
> combinedTechReps

qPCRBatch (storageMode: lockedEnvironment)
  assayData: 8 features, 3 samples
    element names: exprs
  protocolData: none
  phenoData
    sampleNames: one three two
    varLabels: sample
    varMetadata: labelDescription
  featureData: none
  experimentData: use 'experimentData(object)'
```

Annotation:
3 Dealing with undetermined values

When an RT-qPCR experiment does not produce a reading after a certain number of cycles (the cycle threshold), the reading is given as undetermined. These are represented in qPCRBatch objects as NA. Different users may have different ideas about how many cycles they wish to allow before declaring a detector as not present in the sample. There are two methods for the user to decide what to do with numbers above a given cycle threshold:

First the user might decide that anything above 38 cycles means there is nothing present in their sample, instead of the standard 40 used by the taqman software. They can replace the value of all readings above 38 as NA using the following:

Firstly read in the taqman example file which has 96 detectors, with 4 replicates for mia (case) and 4 non-mia (control):

```r
> path <- system.file("exData", package = "NormqPCR")
> taqman.example <- file.path(path, "/example.txt")
> qPCRBatch.taqman <- read.taqman(taqman.example)
```

We can see that for the detector: Cc120.Rn00570287_m1 we have these readings for the different samples:

```r
> exprs(qPCRBatch.taqman)["Cc120.Rn00570287_m1",]
   fp1.day3.v fp2.day3.v fp5.day3.mia fp6.day3.mia fp.3.day.3.v
   NA       NA      35.74190   34.05922   35.02052
   fp.4.day.3.v fp.7.day.3.mia fp.8.day.3.mia
   NA      35.93689   36.57921
```

We can now use the `replaceAboveCutOff` method in order to replace anything above 35 with NA:

```r
> qPCRBatch.taqman.replaced <- replaceAboveCutOff(qPCRBatch.taqman,
+       newVal = NA, cutOff = 35)
> exprs(qPCRBatch.taqman.replaced)["Cc120.Rn00570287_m1",]
   fp1.day3.v fp2.day3.v fp5.day3.mia fp6.day3.mia fp.3.day.3.v
   NA       NA     NA       NA       NA
   fp.4.day.3.v fp.7.day.3.mia fp.8.day.3.mia
   NA      NA       NA
```

It may also be the case that the user wants to get rid of all NA values, and replace them with an arbitrary number. This can be done using the `replaceNAs` method. So if the user wanted to replace all NAs with 40, it can be done as follows:
In addition, the situation sometimes arises where some readings for a given detector are above a given cycle threshold, but some others are not. The user may decide for example that if a given number of readings are NAs, then all of the readings for this detector should be NAs. This is important because otherwise an unusual reading for one detector might lead to an inaccurate estimate for the expression of a given gene.

This process will necessarily be separate for the different sample types, since you might expect a given gene to show expression in one sample type compared to another. Therefore it is necessary to designate the replicates per sample type using a contrast matrix. It is also necessary to make a sampleMaxMatrix which gives a maximum number of NAs allowed for each sample type.

So in the example file above we two sample types, with 4 biological replicates for each, the contrastMatrix and sampleMaxMatrix might be contructed like this:

```r
> sampleNames(qPCRBatch.taqman)
[1] "fp1.day3.v"  "fp2.day3.v"  "fp5.day3.mia"  "fp6.day3.mia"
[5] "fp.3.day.3.v"  "fp.4.day.3.v"  "fp.7.day.3.mia"  "fp.8.day.3.mia"

> a <- c(0,0,1,1,0,0,1,1)  # one for each sample type, with 1 representing
> b <- c(1,1,0,0,1,1,0,0)  # position of sample type in samplenames vector
> contM <- cbind(a,b)
> colnames(contM) <- c("case","control")  # set the names of each sample type
> rownames(contM) <- sampleNames(qPCRBatch.taqman)  # set row names
> contM
   case control
fp1.day3.v   0     1
fp2.day3.v   0     1
fp5.day3.mia 1     0
fp6.day3.mia 1     0
fp.3.day.3.v 0     1
fp.4.day.3.v 0     1
fp.7.day.3.mia 1     0
fp.8.day.3.mia 1     0
```
> sMaxM <- t(as.matrix(c(3,3))) # now make the contrast matrix
> colnames(sMaxM) <- c("case","control") # make sure these line up with samples
> sMaxM

<table>
<thead>
<tr>
<th></th>
<th>case</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

More details on contrast matrices can be found in the limma manual, which requires a similar matrix when testing for differential expression between samples.

For example, if the user decides that if at least 3 out of 4 readings are NAs for a given detector, then all readings should be NA, they can do the following, using the `makeAllNewVal` method:

> qPCRBatch.taqman.replaced <- makeAllNewVal(qPCRBatch.taqman, contM, + sMaxM, newVal=NA)

Here you can see for the Ccl20.Rn00570287_m1 detector, the control values have been made all NA, whereas before 3 were NA and one was 35. However the case values have been kept, since they were all below the NA threshold. It is important to filter the data in this way to ensure the correct calculations are made downstream when calculating variation and other parameters.

```r
> exprs(qPCRBatch.taqman.replaced)["Ccl20.Rn00570287_m1",]

<table>
<thead>
<tr>
<th></th>
<th>fp1.day3.v</th>
<th>fp2.day3.v</th>
<th>fp5.day3.mia</th>
<th>fp6.day3.mia</th>
<th>fp.3.day.3.v</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>35.74190</td>
<td>34.05922</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>fp.4.day.3.v</td>
<td>fp.7.day.3.mia</td>
<td>fp.8.day.3.mia</td>
<td>NA</td>
<td>35.93689</td>
</tr>
</tbody>
</table>
```

4 Selection of most stable reference/housekeeping genes

This section contains two subsections containing different methods for the selection of appropriate housekeeping genes.

4.1 geNorm

We describe the selection of the best (most stable) reference/housekeeping genes using the method of Vandesompele et al (2002) [3] (in the sequel: Vand02) which is called geNorm. We first load the package and the data

```r
> options(width = 68)
> data(geNorm)
> str(exprs(geNorm.qPCRBatch))
```
We start by ranking the selected reference/housekeeping genes. The geNorm algorithm implemented in function `selectHKs` proceeds stepwise; confer Section "Materials and methods" in Vand02. That is, the gene stability measure M of all candidate genes is computed and the gene with the highest M value is excluded. Then, the gene stability measure M for the remaining gene is calculated and so on. This procedure is repeated until two respectively, minNrHK genes remain.

```r
> tissue <- as.factor(c(rep("BM", 9), rep("FIB", 20), rep("LEU", 13), + rep("NB", 34), rep("POOL", 9)))
> res.BM <- selectHKs(geNorm.qPCRBatch[, tissue == "BM"], method = "geNorm", + Symbols = featureNames(geNorm.qPCRBatch), + minNrHK = 2, log = FALSE)
```

```
HPRT1  YWHAZ  RPL13A  UBC  GAPD  SDHA
0.5160313 0.5314564 0.5335963 0.5700961 0.6064919 0.6201470
TBP  HMBS  E2M  ACTB
0.6397969 0.7206013 0.7747634 0.8498739
HPRT1  RPL13A  YWHAZ  UBC  GAPD  SDHA
0.4705664 0.5141375 0.5271169 0.5554718 0.5575295 0.5738460
TBP  HMBS  E2M
0.6042110 0.6759176 0.7671985
HPRT1  RPL13A  SDHA  YWHAZ  UBC  GAPD
0.4391222 0.4733732 0.5243665 0.5253471 0.5403137 0.5560120
TBP  HMBS
0.5622094 0.6210820
HPRT1  RPL13A  YWHAZ  UBC  SDHA  GAPD
0.4389069 0.4696398 0.4879728 0.5043292 0.5178634 0.5245346
TBP
0.5563591
HPRT1  RPL13A  UBC  YWHAZ  GAPD  SDHA
0.4292808 0.4447874 0.4594181 0.4728920 0.5012107 0.5566762
UBC  RPL13A  HPRT1  YWHAZ  GAPD
0.4195958 0.4204997 0.4219179 0.442631 0.4841646
RPL13A  UBC  YWHAZ  HPRT1
0.3699163 0.3978736 0.4173706 0.4419220
UBC  RPL13A  YWHAZ
0.3559286 0.3761358 0.3827933
```
We obtain the following ranking of genes (see Table 3 in Vand02)

> ranks <- data.frame(c(1, 1:9), res.BM$ranking, res.POOL$ranking,
+ res.FIB$ranking, res.LEU$ranking,
+ res.NB$ranking)
> names(ranks) <- c("rank", "BM", "POOL", "FIB", "LEU", "NB")
> ranks

<table>
<thead>
<tr>
<th>rank</th>
<th>BM</th>
<th>POOL</th>
<th>FIB</th>
<th>LEU</th>
<th>NB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RPL13A</td>
<td>GAPD</td>
<td>GAPD</td>
<td>UBC</td>
<td>GAPD</td>
</tr>
<tr>
<td>2</td>
<td>UBC</td>
<td>SDHA</td>
<td>HPRT1</td>
<td>YWHAZ</td>
<td>HPRT1</td>
</tr>
<tr>
<td>3</td>
<td>YWHAZ</td>
<td>HMBS</td>
<td>YWHAZ</td>
<td>B2M</td>
<td>SDHA</td>
</tr>
<tr>
<td>4</td>
<td>HPRT1</td>
<td>HPRT1</td>
<td>UBC</td>
<td>GAPD</td>
<td>UBC</td>
</tr>
<tr>
<td>5</td>
<td>GAPD</td>
<td>TBP</td>
<td>ACTB</td>
<td>RPL13A</td>
<td>HMBS</td>
</tr>
<tr>
<td>6</td>
<td>SDHA</td>
<td>UBC</td>
<td>TBP</td>
<td>TBP</td>
<td>YWHAZ</td>
</tr>
<tr>
<td>7</td>
<td>TBP</td>
<td>RPL13A</td>
<td>SDHA</td>
<td>SDHA</td>
<td>TBP</td>
</tr>
<tr>
<td>8</td>
<td>HMBS</td>
<td>YWHAZ</td>
<td>RPL13A</td>
<td>HPRT1</td>
<td>ACTB</td>
</tr>
<tr>
<td>9</td>
<td>B2M</td>
<td>ACTB</td>
<td>B2M</td>
<td>HMBS</td>
<td>RPL13A</td>
</tr>
<tr>
<td>10</td>
<td>ACTB</td>
<td>B2M</td>
<td>HMBS</td>
<td>ACTB</td>
<td>B2M</td>
</tr>
</tbody>
</table>

Remark 1:
Since the computation is based on gene ratios, the two most stable control genes in each cell type cannot be ranked.
We plot the average expression stability M for each cell type (see Figure 2 in Vand02).

```r
> library(RColorBrewer)
> mypalette <- brewer.pal(5, "Set1")
> matplot(cbind(res.BM$meanM, res.POOL$meanM, res.FIB$meanM,
+             res.LEU$meanM, res.NB$meanM), type = "b",
+     ylab = "Average expression stability $M$",
+     xlab = "Number of remaining control genes",
+     axes = FALSE, pch = 19, col = mypalette,
+     ylim = c(0.2, 1.22), lty = 1, lwd = 2,
+     main = "Figure 2 in Vandesompele et al. (2002)"
> axis(1, at = 1:9, labels = as.character(10:2))
> axis(2, at = seq(0.2, 1.2, by = 0.2), labels = seq(0.2, 1.2, by = 0.2))
> box()
> abline(h = seq(0.2, 1.2, by = 0.2), lty = 2, lwd = 1, col = "grey")
> legend("topright", legend = c("BM", "POOL", "FIB", "LEU", "NB"),
+         fill = mypalette)
```
Second, we plot the pairwise variation for each cell type (see Figure 3 (a) in Vand02)

> mypalette <- brewer.pal(8, "YlGnBu")
> barplot(cbind(res.POOL$variation, res.LEU$variation, res.NB$variation,
> + res.FIB$variation, res.BM$variation), beside = TRUE,
> + col = mypalette, space = c(0, 2),
> + names.arg = c("POOL", "LEU", "NB", "FIB", "BM"),
> + ylab = "Pairwise variation V",
> + main = "Figure 3(a) in Vandesompele et al. (2002)"

Figure 2 in Vandesompele et al. (2002)
Remark 2:
Vand02 recommend a cut-off value of 0.15 for the pairwise variation. Below this bound the inclusion of an additional housekeeping gene is not required.
4.2 NormFinder

The second method for selection reference/housekeeping genes implemented in package is the method derived by [1] (in the sequel: And04) called NormFinder.
The ranking contained in Table 3 of And04 can be obtained via

```r
> data(Colon)
> Colon

qPCRBatch (storageMode: lockedEnvironment)
assayData: 13 features, 40 samples
  element names: exprs
protocolData: none
phenoData
  sampleNames: I459N 90 ... I-C1056T (40 total)
  varLabels: Sample.no. Classification
  varMetadata: labelDescription
featureData
  featureNames: UBC UBB ... TUBA6 (13 total)
  fvarLabels: Symbol Gene.name
  fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Table 1 in Andersen et al. (2004)

> Class <- pData(Colon)[,"Classification"]
> res.Colon <- stabMeasureRho(Colon, group = Class, log = FALSE)
> sort(res.Colon) # see Table 3 in Andersen et al (2004)

      UBC   GAPD TPT1   UBB  TUBA6   RPS13
0.1821707 0.2146061 0.2202956 0.2471573 0.2700641 0.2813039

  NACA  CFL1  SUI1  ACTB  CLTC  RPS23
0.2862397 0.2870467 0.3139404 0.3235918 0.3692880 0.3784909

  FLJ20030
0.3935173

> data(Bladder)
> Bladder

qPCRBatch (storageMode: lockedEnvironment)
assayData: 14 features, 28 samples
  element names: exprs
protocolData: none
phenoData
```

11
sampleNames: 335-6 1131-1 ... 1356-1 (28 total)
varLabels: Sample.no. Grade
varMetadata: labelDescription
featureData
featureNames: ATP5B HSPCB ... FLJ20030 (14 total)
fvarLabels: Symbol Gene.name
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: Table 1 in Andersen et al. (2004)

> grade <- pData(Bladder)[,"Grade"]
> res.Bladder <- stabMeasureRho(Bladder, group = grade,
+ log = FALSE)
> sort(res.Bladder)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSPCB</td>
<td>0.1539598</td>
</tr>
<tr>
<td>TEGT</td>
<td>0.1966556</td>
</tr>
<tr>
<td>ATP5B</td>
<td>0.1987227</td>
</tr>
<tr>
<td>UBC</td>
<td>0.2033477</td>
</tr>
<tr>
<td>RPS23</td>
<td>0.2139626</td>
</tr>
<tr>
<td>RPS13</td>
<td>0.2147852</td>
</tr>
<tr>
<td>CFL1</td>
<td>0.2666129</td>
</tr>
<tr>
<td>FLJ20030</td>
<td>0.2672918</td>
</tr>
<tr>
<td>TPT1</td>
<td>0.2691553</td>
</tr>
<tr>
<td>UBB</td>
<td>0.2826051</td>
</tr>
<tr>
<td>FLOT2</td>
<td>0.2960429</td>
</tr>
<tr>
<td>GAPD</td>
<td>0.3408742</td>
</tr>
<tr>
<td>S100A6</td>
<td>0.3453435</td>
</tr>
<tr>
<td>ACTB</td>
<td>0.3497295</td>
</tr>
</tbody>
</table>

Of course, we can also reproduce the geNorm ranking also included in Table 3 of And04.

> selectHKs(Colon, log = FALSE, trace = FALSE,
+ Symbols = featureNames(Colon))$ranking

1 1 3 4 5 6
"RPS23" "TPT1" "RPS13" "SUI1" "UBC" "GAPD"
7 8 9 10 11 12
"TUBA6" "UBB" "NACA" "CFL1" "CLTC" "ACTB"
13
"FLJ20030"

> selectHKs(Bladder, log = FALSE, trace = FALSE,
+ Symbols = featureNames(Bladder))$ranking

1 1 3 4 5 6
"CFL1" "UBC" "ATP5B" "HSPCB" "GAPD" "TEGT"
7 8 9 10 11 12
"RPS23" "RPS13" "TPT1" "FLJ20030" "FL0T2" "UBB"
13 14
"ACTB" "S100A6"
As we are often interested in more than one reference/housekeeping gene we also implemented a step-wise procedure of the NormFinder algorithm explained in Section “Average control gene” in the supplementary information of And04. This procedure is available via function `selectHKs`.

```r
> Class <- pData(Colon)[,"Classification"]
> selectHKs(Colon, group = Class, log = FALSE, trace = TRUE,
+        Symbols = featureNames(Colon), minNrHKs = 12,
+        method = "NormFinder")$ranking

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UBC</td>
<td>GAPD</td>
<td>TPT1</td>
<td>UBB</td>
<td>TUBA6</td>
<td>RPS13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1821707</td>
<td>0.2146061</td>
<td>0.2202956</td>
<td>0.2471573</td>
<td>0.2700641</td>
<td>0.2813039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NACA</td>
<td>CFL1</td>
<td>SUI1</td>
<td>ACTB</td>
<td>CLTC</td>
<td>RPS23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2862397</td>
<td>0.2870467</td>
<td>0.3139404</td>
<td>0.3235918</td>
<td>0.3692880</td>
<td>0.3784909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLJ20030</td>
<td></td>
</tr>
<tr>
<td>0.3935173</td>
<td></td>
</tr>
<tr>
<td>GAPD</td>
<td>TPT1</td>
<td>UBB</td>
<td>NACA</td>
<td>CFL1</td>
<td>RPS13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1375298</td>
<td>0.1424519</td>
<td>0.1578360</td>
<td>0.1657364</td>
<td>0.1729069</td>
<td>0.1837057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUBA6</td>
<td>SUI1</td>
<td>ACTB</td>
<td>RPS23</td>
<td>FLJ20030</td>
<td>CLTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1849021</td>
<td>0.2065531</td>
<td>0.2131651</td>
<td>0.2188277</td>
<td>0.2359623</td>
<td>0.2447588</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPT1</td>
<td>NACA</td>
<td>UBB</td>
<td>RPS13</td>
<td>CFL1</td>
<td>TUBA6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1108474</td>
<td>0.1299802</td>
<td>0.1356690</td>
<td>0.1411173</td>
<td>0.1474242</td>
<td>0.1532953</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLJ20030</td>
<td></td>
</tr>
<tr>
<td>0.1583031</td>
<td>0.1586250</td>
<td>0.1682972</td>
<td>0.1686139</td>
<td>0.1926907</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBB</td>
<td>TUBA6</td>
<td>ACTB</td>
<td>CFL1</td>
<td>RPS13</td>
<td>SUI1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0965646</td>
<td>0.09674897</td>
<td>0.10753445</td>
<td>0.10830099</td>
<td>0.10801680</td>
<td>0.12612399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTB</td>
<td>NACA</td>
<td>FLJ20030</td>
<td>RPS23</td>
<td>CLTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1277313</td>
<td>0.13422958</td>
<td>0.14609897</td>
<td>0.16530522</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPS13</td>
<td>SUI1</td>
<td>TUBA6</td>
<td>NACA</td>
<td>FLJ20030</td>
<td>CFL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09085973</td>
<td>0.09647829</td>
<td>0.09943424</td>
<td>0.10288912</td>
<td>0.11097074</td>
<td>0.11428399</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTB</td>
<td>RPS23</td>
<td>CLTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.11495336</td>
<td>0.12635109</td>
<td>0.13286210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACTB</td>
<td>TUBA6</td>
<td>CFL1</td>
<td>FLJ20030</td>
<td>NACA</td>
<td>CLTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.09215478</td>
<td>0.09499893</td>
<td>0.09674032</td>
<td>0.10528784</td>
<td>0.10718604</td>
<td>0.10879846</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUI1</td>
<td>RPS23</td>
<td></td>
</tr>
<tr>
<td>0.11368091</td>
<td>0.13134766</td>
<td></td>
</tr>
<tr>
<td>SUI1</td>
<td>NACA</td>
<td>FLJ20030</td>
<td>RPS23</td>
<td>TUBA6</td>
<td>CFL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08281504</td>
<td>0.08444905</td>
<td>0.08922236</td>
<td>0.09072667</td>
<td>0.10559279</td>
<td>0.1093755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLTC</td>
<td></td>
</tr>
<tr>
<td>0.1314281</td>
<td></td>
</tr>
<tr>
<td>NACA</td>
<td>CFL1</td>
<td>TUBA6</td>
<td>FLJ20030</td>
<td>CLTC</td>
<td>RPS23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08336046</td>
<td>0.08410148</td>
<td>0.09315528</td>
<td>0.09775742</td>
<td>0.10499056</td>
<td>0.10554332</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
In case of the Bladder dataset the two top ranked genes are HSPCB and RPS13; see Figure 1 in And04.

> grade <- pData(Bladder)[,"Grade"]
> selectHKs(Bladder, group = grade, log = FALSE, trace = FALSE,
+ Symbols = featureNames(Bladder), minNrHKs = 13,
+ method = "NormFinder")$ranking

5 Normalization by means of reference/housekeeping genes

5.1 \(\Delta C_q \) method using a single housekeeper

The \(\Delta C_q \) method normalises detectors within a sample by subtracting the cycle time value of the housekeeper gene from the other genes. This can be done in NormqPCR as follows:

for the example dataset from "ReadqPCR" we must first read in the data:

> path <- system.file("exData", package = "NormqPCR")
> taqman.example <- file.path(path, "example.txt")
> qPCR.example <- file.path(path, "qPCR.example.txt")
> qPCRBatch.taqman <- read.taqman(taqman.example)

We then need to supply a housekeeper gene to be subtracted:
```r
> hkgs <- "Actb-Rn00667869_m1"
> qPCRBatch.norm <- deltaCq(qPCRBatch = qPCRBatch.taqman, hkgs = hkgs, calc="arith")
> head(exprs(qPCRBatch.norm))

<table>
<thead>
<tr>
<th>fp1.day3.v</th>
<th>fp2.day3.v</th>
<th>fp5.day3.mia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actb.Rn00667869_m1</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Adipoq.Rn00595250_m1</td>
<td>0.016052</td>
<td>-0.116520</td>
</tr>
<tr>
<td>Adrblk1.Rn00562822_m1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Agtrl1.Rn00580252_s1</td>
<td>4.899380</td>
<td>5.035841</td>
</tr>
<tr>
<td>Aipl.Rn00564931_m1</td>
<td>12.531942</td>
<td>11.808657</td>
</tr>
<tr>
<td>B2m.Rn00560865_m1</td>
<td>0.741558</td>
<td>0.890717</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fp6.day3.mia</th>
<th>fp.3.day.3.v</th>
<th>fp.4.day.3.v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actb.Rn00667869_m1</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>Adipoq.Rn00595250_m1</td>
<td>2.540987</td>
<td>-0.178971</td>
</tr>
<tr>
<td>Adrblk1.Rn00562822_m1</td>
<td>6.642561</td>
<td>NA</td>
</tr>
<tr>
<td>Agtrl1.Rn00580252_s1</td>
<td>5.680837</td>
<td>5.220796</td>
</tr>
<tr>
<td>Aipl.Rn00564931_m1</td>
<td>12.239549</td>
<td>12.394802</td>
</tr>
<tr>
<td>B2m.Rn00560865_m1</td>
<td>2.234605</td>
<td>0.505516</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fp.7.day.3.mia</th>
<th>fp.8.day.3.mia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actb.Rn00667869_m1</td>
<td>0.000000</td>
</tr>
<tr>
<td>Adipoq.Rn00595250_m1</td>
<td>2.458509</td>
</tr>
<tr>
<td>Adrblk1.Rn00562822_m1</td>
<td>3.737100</td>
</tr>
<tr>
<td>Agtrl1.Rn00580252_s1</td>
<td>4.794776</td>
</tr>
<tr>
<td>Aipl.Rn00564931_m1</td>
<td>12.110000</td>
</tr>
<tr>
<td>B2m.Rn00560865_m1</td>
<td>1.927563</td>
</tr>
</tbody>
</table>

This returns a new qPCRBatch, with new values in the exprs slot. This will be compatible with many other bioconductor and R packages, such as heatmap.

Note these numbers might be negative. For further analysis requiring positive values only, \(2^\Delta Cq\) can be used to transform the data into \(2^{\Delta CT}\) values.

### 5.2 \(\Delta Cq\) method using a combination of housekeeping genes

If the user wishes to normalise by more than one housekeeping gene, for example if they have found a more than one housekeeping gene using the NormFinder/geNorm algorithms described above, they can. This is implemented by calculating the average of these values to form a "pseudo-housekeeper" which is subtracted from the other values. So using the same dataset as above, using housekeeping genes GAPDH, Beta-2-microglobulin and Beta-actin, the following steps would be taken:

```r
> hkgs <- c("Actb-Rn00667869_m1", "B2m-Rn00560865_m1", "Gapdh-Rn99999916_s1")
> qPCRBatch.norm <- deltaCq(qPCRBatch = qPCRBatch.taqman, hkgs = hkgs, calc="arith")
> head(exprs(qPCRBatch.norm))
```

```
fp1.day3.v fp2.day3.v fp5.day3.mia
Actb.Rn00667869_m1 -1.2998917 -1.2816963 -1.380296
Adipoq.Rn00595250_m1 -1.2838397 -1.3982163 1.553227
Adrbk1.Rn00562822_m1 NA NA 5.186332
Agtrl1.Rn00564931_s1 3.5994883 3.7541447 5.017068
Alpl.Rn00560865_m1 11.2320503 10.5269607 11.654870
B2m.Rn00560865_m1 -0.5583337 -0.3909793 0.660174
fp6.day3.mia fp.3.day.3.v fp.4.day.3.v
Actb.Rn00667869_m1 -1.5106197 -1.1644617 -1.1714227
Adipoq.Rn00595250_m1 1.0303673 -1.3434327 -1.7346857
Adrbk1.Rn00562822_m1 5.1319413 NA NA
Agtrl1.Rn00564931_s1 4.1702173 4.0563343 3.2539413
Alpl.Rn00560865_m1 10.7289293 11.2303403 10.6014733
B2m.Rn00560865_m1 0.7239853 -0.6589457 -0.2938247
fp.7.day.3.mia fp.8.day.3.mia
Actb.Rn00667869_m1 -1.323712 -1.286277
Adipoq.Rn00595250_m1 1.134797 1.450198
Adrbk1.Rn00562822_m1 2.413388 5.587291
Agtrl1.Rn00564931_s1 3.471064 4.058925
Alpl.Rn00560865_m1 10.786288 10.968909
B2m.Rn00560865_m1 0.603851 0.616992

5.3 2−ΔΔCq method using a single housekeeper

It is possible to use the 2−ΔΔCq method for calculating relative gene expression between two sample types. Both the same well and the separate well methods as detailed in [2] can be used for this purpose, and will produce the same answers, but with different levels of variation. By default detectors in the same sample will be paired with the housekeeper, and the standard deviation used will be that of the differences between detectors and the housekeepers. However, if the argument paired=FALSE is added, standard deviation between case and control will be calculated as \(s = \sqrt{s_1^2 + s_2^2} \), where \(s_1 \) is the standard deviation for the detector readings and \(s_2 \) is the standard deviation the housekeeper gene readings. The latter approach is not recommended when the housekeeper and genes to be compared are from the same sample, as is the case when using the taqman cards, but is included for completeness and for situations where readings for the housekeeper might be taken from a separate biological replicate (for example in a post hoc manner due to the originally designated housekeeping genes not performing well), or for when NormqPCR is used for more traditional qPCR where the products undergo amplifications from separate wells.

for the example dataset from "ReadqPCR" we must first read in the data:

> path <- system.file("exData", package = "NormqPCR")
deltaDeltacq also requires a contrast matrix. This is to contain columns which will be used to specify the samples representing case and control which are to be compared, in a similar way to the "limma" package. these columns should contain 1s or 0s which refer to the samples in either category:

```r
> contM <- cbind(c(0,0,1,0,1,0,1,0),c(1,1,0,1,0,1,0,1))
> colnames(contM) <- c("interestingPhenotype","wildTypePhenotype")
> rownames(contM) <- sampleNames(qPCRBatch.taqman)
> contM

   interestingPhenotype wildTypePhenotype
fp1.day3.v 0                   1
fp2.day3.v 0                   1
fp5.day3.mia 1                  0
fp6.day3.mia 1                  0
fp.3.day.3.v 0                  1
fp.4.day.3.v 0                  1
fp.7.day.3.mia 1                0
fp.8.day.3.mia 1                0
```

We can now normalise each sample by a given housekeeping gene and then look at the ratio of expression between the case and control samples. Results show (by column): 1) Name of gene represented by detector. 2) Case ΔCq for the detector: the average cycle time for this detector in the samples denoted as "case" - the housekeeper cycle time. 3) the standard deviation for the cycle times used to calculate the value in column 2). 4) Control ΔCq for the detector: the average cycle time for this detector in the samples denoted as "controller", or the "callibrator" samples - the housekeeper cycle time. 5) The standard deviation for the cycle times used to calculate the value in column 4). 6) 2^ΔΔCq - The difference between the ΔCq values for case and control. We then find 2^- of this value. 7) and 8) correspond to 1 s.d. either side of the mean value, as detailed in [2].

```r
> hkg <- "Actb-Rn00667869_m1"
> ddCq.taqman <- deltaDeltaCq(qPCRBatch = qPCRBatch.taqman, maxNACase=1, maxNAControl=1,
+    hkg=hkg, contrastN=contM, case="interestingPhenotype",
+    control="wildTypePhenotype", statCalc="geom", hkgCalc="arith")
> head(ddCq.taqman)

   ID 2^-dCt.interestingPhenotype
1  Actb.Rn00667869_m1 1.000e+00
```
We can also average the taqman data using the separate samples/wells method. Here standard deviation is calculated separately and then combined, as described above. Therefore the pairing of housekeeper with the detector value within the same sample is lost. This can potentially increase variance.

```r
dl <- "Actb-Rn00667869_m1"
ddCqAvg.taqman <- deltaDeltaCq(qPCRBatch = qPCRBatch.taqman, maxNACase=1, maxNAControl=1, + hkg=hkg, contrastM=contM, case="interestingPhenotype", + control="wildTypePhenotype", paired=FALSE, statCalc="geom", + hkgCalc="arith")
```

```r
do(ddCqAvg.taqman)
```

<table>
<thead>
<tr>
<th>ID</th>
<th>2^-dCt.interestingPhenotype</th>
<th>2^-ddCt</th>
<th>2^-ddCt.min</th>
<th>2^-ddCt.max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Actb.Rn00667869_m1</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>Adipoq.Rn00595250_m1</td>
<td>1.587e-01</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>Adrbk1.Rn00562822_m1</td>
<td>2.602e-02</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Agtrl1.Rn00580252_s1</td>
<td>2.300e-02</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>Alpl.Rn00564931_m1</td>
<td>1.892e-04</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>B2m.Rn00560865_m1</td>
<td>2.464e-01</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

```

```r
do(ddCqAvg.taqman)
```

<table>
<thead>
<tr>
<th>ID</th>
<th>2^-dCt.wildTypePhenotype</th>
<th>2^-ddCt</th>
<th>2^-ddCt.min</th>
<th>2^-ddCt.max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000e+00</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>2.280e-02</td>
<td>1.171e+00</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>3.266e-02</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>1.014e-02</td>
<td>3.434e-02</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>4.770e-05</td>
<td>2.298e-04</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>2.498e-02</td>
<td>5.965e-01</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2^-ddCt</td>
<td>2^-ddCt.min</td>
<td>2^-ddCt.max</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>0.000e+00</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>2.131e-01</td>
<td>0.135</td>
<td>540192243</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>8.584e-03</td>
<td>0.669721905042939</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>6.107e-05</td>
<td>0.823327272466571</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>7.668e-02</td>
<td>0.413128242070071</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

5.4 $2^{\Delta\Delta Cq}$ method using a combination of housekeeping genes

If the user wishes to normalise by more than one housekeeping gene, for example if they have found a more than one housekeeping gene using the NormFinder/geNorm algorithms described above, they can. This is implemented by calculating the average of these values using the geometric mean to form a "pseudo-housekeeper" which is subtracted from the other values. For the dataset above, using housekeeping genes GAPDH, Beta-2-microglobulin and Beta-actin:

```r
> qPCRBatch.taqman <- read.taqman(taqman.example)
> contM <- cbind(c(0,1,1,0,0,0,1,1),c(1,0,0,1,1,0,1,0))
> colnames(contM) <- c("interestingPhenotype","wildTypePhenotype")
> rownames(contM) <- sampleNames(qPCRBatch.taqman)
> hkgs<-c("Actb-Rn00667869_m1", "B2m-Rn00560865_m1", "Gapdh-Rn999999916_s1")
> ddCq.gM.taqman <- deltaDeltaCq(qPCRBatch = qPCRBatch.taqman, maxNACase=1, maxNAControl=1, + hkgs=hkgs, contrastM=contM, case="interestingPhenotype", + control="wildTypePhenotype", statCalc="arith", hkgCalc="arith")
> head(ddCq.gM.taqman)

ID 2^-dCt.interestingPhenotype
1 Actb.Rn00667869_m1 2.594e+00
2 Adipoq.Rn00595250_m1 4.083e-01
3 Adrbk1.Rn00562822_m1 4.182e-02
4 Agtrl1.Rn00580252_s1 5.520e-02
5 Alpl.Rn00564931_m1 4.767e-04
6 B2m.Rn00560865_m1 6.367e-01

interestingPhenotype.sd 2^-dCt.wildTypePhenotype
1 0.09819 2.345e+00
2 0.24929 2.713e+00
3 1.45844 NA
```
There is also the option of using the mean housekeeper method using shared variance between the samples being compared, similar to the second deltaDeltaCq method shown above.

```r
> qPCRBatch.taqman <- read.taqman(taqman.example)
> contM <- cbind(c(0,0,1,1,0,0,1,1),c(1,1,0,0,1,1,0,0))
> colnames(contM) <- c("interestingPhenotype","wildTypePhenotype")
> rownames(contM) <- sampleNames(qPCRBatch.taqman)
> hkgs<-c("Actb-Rn00667869_m1", "B2m-Rn00560865_m1", "Gapdh-Rn99999916_s1")
> ddAvgCq.gM.taqman <-deltaDeltaCq(qPCRBatch = qPCRBatch.taqman, maxNACase=1, maxNAControl=1, + hkgs=hkgs, contrastM=contM, case="interestingPhenotype", + control="wildTypePhenotype", paired=FALSE, statCalc="arith", + hkgCalc="arith")
> head(ddAvgCq.gM.taqman)
```

```plaintext
ID 2^-dCt.interestingPhenotype
1 Actb.Rn00667869_m1 2.594e+00
2 Adipoq.Rn00595250_m1 4.083e-01
3 Adrbk1.Rn00652822_m1 4.182e-02
4 Agtrl1.Rn00580252_s1 5.520e-02
5 Alpl.Rn00564931_m1 4.767e-04
6 B2m.Rn00560865_m1 6.367e-01

ID 2^-dCt.wildTypePhenotype
1 0.3849 2.345e+00
2 0.4822 2.713e+00
3 1.4545 NA
4 0.6905 7.878e-02
5 0.5846 5.242e-04
6 0.2777 1.390e+00
```

```r
wildTypePhenotype.sd 2^-ddCt 2^-ddCt.min 2^-ddCt.max
1 0.071373 1.10638851325547 1.034e+00 1.184310
2 0.201905 0.150497255530234 1.266e-01 0.178884
3 NA + NA NA
4 0.333840 0.700597907024805 4.505e-01 1.089636
5 0.386280 0.909381199520663 6.769e-01 1.221662
6 0.163975 0.457939394245865 4.411e-01 0.475448
```
2  0.2495  0.150497255530234  1.077e-01  0.210221
3   NA +   NA   NA
4  0.2813  0.700597907024805  4.341e-01  1.130625
5  0.3689  0.909381199520663  6.064e-01  1.363762
6  0.4576  0.457939394245865  3.778e-01  0.555126

TO SHOW EXAMPLE USING GENORM/NORMFINDER DATA

5.5 Compute NRQs

THIS FUNCTION IS STILL EXPERIMENTAL!

We load a dataset including technical replicates.

```r
> path <- system.file("exData", package = "ReadqPCR")
> qPCR.example <- file.path(path, "qPCR.example.txt")
> Cq.data <- read.qPCR(qPCR.example)
```

We combine the technical replicates and in addition compute standard deviations.

```r
> Cq.data1 <- combineTechRepsWithSD(Cq.data)
```

We load efficiencies for the dataset and add them to the dataset.

```r
> Effs <- file.path(path, "Efficiencies.txt")
> Cq.effs <- read.table(file = Effs, row.names = 1, header = TRUE)
> rownames(Cq.effs) <- featureNames(Cq.data)
> effs(Cq.data1) <- as.matrix(Cq.effs[, "efficiency", drop = FALSE])
> se.effs(Cq.data1) <- as.matrix(Cq.effs[, "SD.efficiency", drop = FALSE])
```

Now we can compute normalized relative quantities for the dataset where we consider two of the included features as reference/housekeeping genes.

```r
> res <- ComputeNRQs(Cq.data1, hkgs = c("gene_az", "gene_gx"))
> ## NRQs
> exprs(res)
```

```
caseA caseB controlA controlB
gene_ai 1.9253072 1.3586729 0.6479659 0.8749479
gene_az 1.0567118 1.1438982 1.0331980 0.9134997
gene_bc 1.1024935 0.7193500 0.7030487 1.2140836
gene_by 1.5102316 0.9573047 0.7527082 1.6008850
gene_dh 1.2982037 1.0722522 0.9623335 0.9392871
gene_dm 0.6590246 1.1690720 1.2475372 0.9366210
gene_dq 0.7541955 0.7036408 0.8327917 1.6165326
```
> ## SD of NRQs
> se.exprs(res)

caseA  caseB controlA controlB
gene_ai 1.3996554 0.8787290 0.4855882 1.0034912
gene_az 0.6832730 0.7601966 0.6971054 0.6031927
gene_bc 0.7225348 0.4746146 0.9626570 1.0478385
gene_by 1.1522746 0.6116269 0.6088836 2.0409211
gene_dh 1.2483072 0.7899984 0.6165041 0.9767947
gene_dm 0.4714409 0.7780238 0.6976053 0.7294405
gene_dq 0.7023561 0.4849899 0.5813310 1.4067670
gene_dr 1.4407662 1.0804211 0.4543153 0.5149367
gene_eg 0.7355269 0.5497433 0.5588801 1.0936801
gene_er 0.4301195 0.6119514 0.4471454 1.5115979
gene_ev 1.0094209 2.4267114 0.6337126 0.7782519
gene_fr 1.6760391 1.1119157 0.6226081 0.5040967
gene_fu 0.5041070 0.9135156 1.1153268 0.7234551
gene_gx 0.6046042 0.9027816 0.6713914 1.7394961
gene_hl 0.7633174 0.9123997 1.0000329 0.5005813
gene_Il 1.4621406 0.9540445 0.5678634 0.6075714
gene_iv 1.2668346 0.8039841 0.9995225 0.8171996
gene_jr 0.5749672 0.6786989 0.5595295 0.4405919
References


