Package: AnnotationHub
Authors: Bioconductor Package Maintainer [cre],
Martin Morgan [aut],
Marc Carlson [ctb],
Dan Tenenbaum [ctb],
Sonali Arora [ctb],
Valerie Oberchain [ctb],
Kayla Morrell [ctb],
Lori Shepherd [aut]
Modified: 27 May, 2016
Compiled: Mon Aug 19 16:24:01 2024
The AnnotationHub
server provides easy R / Bioconductor access to
large collections of publicly available whole genome resources,
e.g,. ENSEMBL genome fasta or gtf files, UCSC chain resources, ENCODE
data tracks at UCSC, etc.
The AnnotationHub package provides a client interface to resources stored at the AnnotationHub web service.
library(AnnotationHub)
The AnnotationHub package is straightforward to use.
Create an AnnotationHub
object
ah = AnnotationHub()
Now at this point you have already done everything you need in order
to start retrieving annotations. For most operations, using the
AnnotationHub
object should feel a lot like working with a familiar
list
or data.frame
.
Lets take a minute to look at the show method for the hub object ah
ah
## AnnotationHub with 69666 records
## # snapshotDate(): 2024-08-01
## # $dataprovider: Ensembl, BroadInstitute, UCSC, Haemcode, FANTOM5,DLRP,IUPHAR,HPRD,STRING,SWISSP...
## # $species: Homo sapiens, Mus musculus, Drosophila melanogaster, Rattus norvegicus, Bos taurus, ...
## # $rdataclass: GRanges, TwoBitFile, BigWigFile, EnsDb, Rle, SQLiteFile, ChainFile, TxDb, Inparan...
## # additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer,
## # rdatadateadded, preparerclass, tags, rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH5012"]]'
##
## title
## AH5012 | Chromosome Band
## AH5013 | STS Markers
## AH5014 | FISH Clones
## AH5015 | Recomb Rate
## AH5016 | ENCODE Pilot
## ... ...
## AH117053 | Ensembl 112 EnsDb for Zonotrichia albicollis
## AH117054 | Ensembl 112 EnsDb for Zalophus californianus
## AH117055 | Ensembl 112 EnsDb for Zosterops lateralis melanops
## AH117056 | Human Phenotype Ontology database
## AH117057 | Mouse Phenotype Ontology database
You can see that it gives you an idea about the different types of data that are present inside the hub. You can see where the data is coming from (dataprovider), as well as what species have samples present (species), what kinds of R data objects could be returned (rdataclass). We can take a closer look at all the kinds of data providers that are available by simply looking at the contents of dataprovider as if it were the column of a data.frame object like this:
unique(ah$dataprovider)
## [1] "UCSC"
## [2] "Ensembl"
## [3] "RefNet"
## [4] "Inparanoid8"
## [5] "NHLBI"
## [6] "ChEA"
## [7] "Pazar"
## [8] "NIH Pathway Interaction Database"
## [9] "Haemcode"
## [10] "BroadInstitute"
## [11] "PRIDE"
## [12] "Gencode"
## [13] "CRIBI"
## [14] "Genoscope"
## [15] "MISO, VAST-TOOLS, UCSC"
## [16] "Stanford"
## [17] "dbSNP"
## [18] "BioMart"
## [19] "GeneOntology"
## [20] "KEGG"
## [21] "URGI"
## [22] "EMBL-EBI"
## [23] "MicrosporidiaDB"
## [24] "FungiDB"
## [25] "TriTrypDB"
## [26] "ToxoDB"
## [27] "AmoebaDB"
## [28] "PlasmoDB"
## [29] "PiroplasmaDB"
## [30] "CryptoDB"
## [31] "TrichDB"
## [32] "GiardiaDB"
## [33] "The Gene Ontology Consortium"
## [34] "ENCODE Project"
## [35] "SchistoDB"
## [36] "NCBI/UniProt"
## [37] "GENCODE"
## [38] "http://www.pantherdb.org"
## [39] "RMBase v2.0"
## [40] "snoRNAdb"
## [41] "tRNAdb"
## [42] "NCBI"
## [43] "DrugAge, DrugBank, Broad Institute"
## [44] "DrugAge"
## [45] "DrugBank"
## [46] "Broad Institute"
## [47] "HMDB, EMBL-EBI, EPA"
## [48] "STRING"
## [49] "OMA"
## [50] "OrthoDB"
## [51] "PathBank"
## [52] "EBI/EMBL"
## [53] "NCBI,DBCLS"
## [54] "FANTOM5,DLRP,IUPHAR,HPRD,STRING,SWISSPROT,TREMBL,ENSEMBL,CELLPHONEDB,BADERLAB,SINGLECELLSIGNALR,HOMOLOGENE"
## [55] "WikiPathways"
## [56] "VAST-TOOLS"
## [57] "pyGenomeTracks "
## [58] "NA"
## [59] "UoE"
## [60] "TargetScan,miRTarBase,USCS,ENSEMBL"
## [61] "TargetScan"
## [62] "QuickGO"
## [63] "CIS-BP"
## [64] "CTCFBSDB 2.0"
## [65] "HOCOMOCO v11"
## [66] "JASPAR 2022"
## [67] "Jolma 2013"
## [68] "SwissRegulon"
## [69] "ENCODE SCREEN v3"
## [70] "MassBank"
## [71] "excluderanges"
## [72] "ENCODE"
## [73] "GitHub"
## [74] "Stanford.edu"
## [75] "Publication"
## [76] "CHM13"
## [77] "UCSChub"
## [78] "Google DeepMind"
## [79] "UWashington"
## [80] "Bioconductor"
## [81] "ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/"
## [82] "ENCODE cCREs"
## [83] "The Human Phenotype Ontology"
## [84] "MGI"
In the same way, you can also see data from different species inside the hub by looking at the contents of species like this:
head(unique(ah$species))
## [1] "Homo sapiens" "Vicugna pacos" "Dasypus novemcinctus" "Otolemur garnettii"
## [5] "Papio hamadryas" "Papio anubis"
And this will also work for any of the other types of metadata present. You can learn which kinds of metadata are available by simply hitting the tab key after you type ‘ah$’. In this way you can explore for yourself what kinds of data are present in the hub right from the command line. This interface also allows you to access the hub programatically to extract data that matches a particular set of criteria.
Another valuable types of metadata to pay attention to is the rdataclass.
head(unique(ah$rdataclass))
## [1] "GRanges" "data.frame" "Inparanoid8Db" "TwoBitFile" "ChainFile"
## [6] "SQLiteConnection"
The rdataclass allows you to see which kinds of R objects the hub will return to you. This kind of information is valuable both as a means to filter results and also as a means to explore and learn about some of the kinds of annotation objects that are widely available for the project. Right now this is a pretty short list, but over time it should grow as we support more of the different kinds of annotation objects via the hub.
Now lets try getting the Chain Files from UCSC using the query and subset methods to selectively pare down the hub based on specific criteria.
The query method lets you search rows for
specific strings, returning an AnnotationHub
instance with just the
rows matching the query.
From the show method, one can easily see that one of the dataprovider is UCSC and there is a rdataclass for ChainFile
One can get chain files for Drosophila melanogaster from UCSC with:
dm <- query(ah, c("ChainFile", "UCSC", "Drosophila melanogaster"))
dm
## AnnotationHub with 45 records
## # snapshotDate(): 2024-08-01
## # $dataprovider: UCSC
## # $species: Drosophila melanogaster
## # $rdataclass: ChainFile
## # additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer,
## # rdatadateadded, preparerclass, tags, rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH15102"]]'
##
## title
## AH15102 | dm3ToAnoGam1.over.chain.gz
## AH15103 | dm3ToApiMel3.over.chain.gz
## AH15104 | dm3ToDm2.over.chain.gz
## AH15105 | dm3ToDm6.over.chain.gz
## AH15106 | dm3ToDp3.over.chain.gz
## ... ...
## AH15142 | dm2ToDroVir3.over.chain.gz
## AH15143 | dm2ToDroWil1.over.chain.gz
## AH15144 | dm2ToDroYak1.over.chain.gz
## AH15145 | dm2ToDroYak2.over.chain.gz
## AH15146 | dm1ToDm2.over.chain.gz
Query has worked and you can now see that the only species present is Drosophila melanogaster.
The metadata underlying this hub object can be retrieved by you
df <- mcols(dm)
By default the show method will only display the first 5 and last 5 rows. There are already thousands of records present in the hub.
length(ah)
## [1] 69666
Lets look at another example, where we pull down only Inparanoid8 data from the hub and use subset to return a smaller base object (here we are finding cases where the genome column is set to panda).
ahs <- query(ah, c('inparanoid8', 'ailuropoda'))
ahs
## AnnotationHub with 1 record
## # snapshotDate(): 2024-08-01
## # names(): AH10451
## # $dataprovider: Inparanoid8
## # $species: Ailuropoda melanoleuca
## # $rdataclass: Inparanoid8Db
## # $rdatadateadded: 2014-03-31
## # $title: hom.Ailuropoda_melanoleuca.inp8.sqlite
## # $description: Inparanoid 8 annotations about Ailuropoda melanoleuca
## # $taxonomyid: 9646
## # $genome: inparanoid8 genomes
## # $sourcetype: Inparanoid
## # $sourceurl: http://inparanoid.sbc.su.se/download/current/Orthologs/A.melanoleuca
## # $sourcesize: NA
## # $tags: c("Inparanoid", "Gene", "Homology", "Annotation")
## # retrieve record with 'object[["AH10451"]]'
We can perform the same query using the BiocHubsShiny()
function from the
eponymous package. In the ‘dataprovider’ field we enter inparanoid8
and
ailuropoda
in the species field.
BiocHubsShiny::BiocHubsShiny()
By default 6 entries are displayed per page, we can change this using the drop down menu at the top of the table. We can also navigate through different pages using the page scrolling feature at the bottom right of the table.
We can select the rows of interest and send the metadata back to
the R session using the ‘Send metadata’ button. The resource identifiers
are located in the “HUBID” column of the metadata table (ah_meta
) returned.
AnnotationHub
to retrieve dataLooking back at our chain file example, if we are interested in the file dm1ToDm2.over.chain.gz, we can gets its metadata using
dm
## AnnotationHub with 45 records
## # snapshotDate(): 2024-08-01
## # $dataprovider: UCSC
## # $species: Drosophila melanogaster
## # $rdataclass: ChainFile
## # additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer,
## # rdatadateadded, preparerclass, tags, rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH15102"]]'
##
## title
## AH15102 | dm3ToAnoGam1.over.chain.gz
## AH15103 | dm3ToApiMel3.over.chain.gz
## AH15104 | dm3ToDm2.over.chain.gz
## AH15105 | dm3ToDm6.over.chain.gz
## AH15106 | dm3ToDp3.over.chain.gz
## ... ...
## AH15142 | dm2ToDroVir3.over.chain.gz
## AH15143 | dm2ToDroWil1.over.chain.gz
## AH15144 | dm2ToDroYak1.over.chain.gz
## AH15145 | dm2ToDroYak2.over.chain.gz
## AH15146 | dm1ToDm2.over.chain.gz
dm["AH15146"]
## AnnotationHub with 1 record
## # snapshotDate(): 2024-08-01
## # names(): AH15146
## # $dataprovider: UCSC
## # $species: Drosophila melanogaster
## # $rdataclass: ChainFile
## # $rdatadateadded: 2014-12-15
## # $title: dm1ToDm2.over.chain.gz
## # $description: UCSC liftOver chain file from dm1 to dm2
## # $taxonomyid: 7227
## # $genome: dm1
## # $sourcetype: Chain
## # $sourceurl: http://hgdownload.cse.ucsc.edu/goldenpath/dm1/liftOver/dm1ToDm2.over.chain.gz
## # $sourcesize: NA
## # $tags: c("liftOver", "chain", "UCSC", "genome", "homology")
## # retrieve record with 'object[["AH15146"]]'
We can download the file using
dm[["AH15146"]]
## loading from cache
## Chain of length 11
## names(11): chr2L chr2R chr3L chr3R chr4 chrX chrU chr2h chr3h chrXh chrYh
Each file is retrieved from the AnnotationHub server and the file is also cache locally, so that the next time you need to retrieve it, it should download much more quickly.
AnnotationHub
objectsWhen you create the AnnotationHub
object, it will set up the object
for you with some default settings. See ?AnnotationHub
for ways to
customize the hub source, the local cache, and other instance-specific
options, and ?getAnnotationHubOption
to get or set package-global
options for use across sessions.
If you look at the object you will see some helpful information about it such as where the data is cached and where online the hub server is set to.
ah
## AnnotationHub with 69666 records
## # snapshotDate(): 2024-08-01
## # $dataprovider: Ensembl, BroadInstitute, UCSC, Haemcode, FANTOM5,DLRP,IUPHAR,HPRD,STRING,SWISSP...
## # $species: Homo sapiens, Mus musculus, Drosophila melanogaster, Rattus norvegicus, Bos taurus, ...
## # $rdataclass: GRanges, TwoBitFile, BigWigFile, EnsDb, Rle, SQLiteFile, ChainFile, TxDb, Inparan...
## # additional mcols(): taxonomyid, genome, description, coordinate_1_based, maintainer,
## # rdatadateadded, preparerclass, tags, rdatapath, sourceurl, sourcetype
## # retrieve records with, e.g., 'object[["AH5012"]]'
##
## title
## AH5012 | Chromosome Band
## AH5013 | STS Markers
## AH5014 | FISH Clones
## AH5015 | Recomb Rate
## AH5016 | ENCODE Pilot
## ... ...
## AH117053 | Ensembl 112 EnsDb for Zonotrichia albicollis
## AH117054 | Ensembl 112 EnsDb for Zalophus californianus
## AH117055 | Ensembl 112 EnsDb for Zosterops lateralis melanops
## AH117056 | Human Phenotype Ontology database
## AH117057 | Mouse Phenotype Ontology database
By default the AnnotationHub
object is set to the latest
snapshotData
and a snapshot version that matches the version of
Bioconductor that you are using. You can also learn about these data
with the appropriate methods.
snapshotDate(ah)
## [1] "2024-08-01"
If you are interested in using an older version of a snapshot, you can
list previous versions with the possibleDates()
like this:
pd <- possibleDates(ah)
pd
## [1] "2013-03-19" "2013-03-21" "2013-03-26" "2013-04-04" "2013-04-29" "2013-06-24" "2013-06-25"
## [8] "2013-06-26" "2013-06-27" "2013-10-29" "2013-11-20" "2013-12-19" "2014-02-12" "2014-02-13"
## [15] "2014-03-31" "2014-04-27" "2014-05-11" "2014-05-13" "2014-05-14" "2014-05-22" "2014-07-02"
## [22] "2014-07-09" "2014-12-15" "2014-12-24" "2015-01-08" "2015-01-14" "2015-03-09" "2015-03-11"
## [29] "2015-03-12" "2015-03-25" "2015-03-26" "2015-05-06" "2015-05-07" "2015-05-08" "2015-05-11"
## [36] "2015-05-14" "2015-05-21" "2015-05-22" "2015-05-26" "2015-07-17" "2015-07-27" "2015-07-31"
## [43] "2015-08-10" "2015-08-13" "2015-08-14" "2015-08-17" "2015-08-26" "2015-12-28" "2015-12-29"
## [50] "2016-01-25" "2016-03-07" "2016-05-03" "2016-05-25" "2016-06-06" "2016-07-20" "2016-08-15"
## [57] "2016-10-11" "2016-11-03" "2016-11-08" "2016-11-09" "2016-11-13" "2016-11-14" "2016-12-22"
## [64] "2016-12-28" "2017-01-05" "2017-02-07" "2017-04-03" "2017-04-04" "2017-04-05" "2017-04-10"
## [71] "2017-04-11" "2017-04-13" "2017-04-24" "2017-04-25" "2017-05-31" "2017-06-06" "2017-06-07"
## [78] "2017-06-08" "2017-06-29" "2017-08-28" "2017-08-31" "2017-09-07" "2017-10-18" "2017-10-23"
## [85] "2017-10-24" "2017-10-27" "2017-11-24" "2017-10-26" "2017-10-20" "2017-12-21" "2018-01-18"
## [92] "2018-02-20" "2018-04-11" "2018-04-13" "2018-04-16" "2018-04-19" "2018-04-20" "2018-04-23"
## [99] "2018-04-30" "2018-06-27" "2018-07-31" "2018-08-01" "2018-08-20" "2018-10-04" "2018-10-11"
## [106] "2018-10-15" "2018-10-16" "2018-10-18" "2018-10-22" "2018-10-24" "2018-12-20" "2019-01-14"
## [113] "2019-02-14" "2019-02-15" "2019-04-15" "2019-04-18" "2019-04-22" "2019-04-29" "2019-05-01"
## [120] "2019-05-02" "2019-09-17" "2019-10-08" "2019-10-17" "2019-10-21" "2019-10-22" "2019-10-28"
## [127] "2019-10-29" "2020-01-28" "2020-02-28" "2020-10-14" "2020-05-01" "2020-04-27" "2020-05-11"
## [134] "2020-06-18" "2020-07-20" "2020-09-03" "2020-10-20" "2020-10-26" "2020-10-27" "2020-12-16"
## [141] "2021-01-14" "2021-02-24" "2021-04-12" "2021-04-19" "2021-04-30" "2021-05-04" "2021-05-14"
## [148] "2021-05-17" "2021-05-18" "2021-06-15" "2021-08-03" "2021-09-10" "2021-09-23" "2021-10-08"
## [155] "2021-10-13" "2021-10-15" "2021-10-18" "2021-10-20" "2022-01-20" "2022-01-31" "2022-04-12"
## [162] "2022-04-18" "2022-04-21" "2022-06-28" "2022-07-22" "2022-04-25" "2022-09-09" "2022-09-29"
## [169] "2022-09-30" "2022-10-17" "2022-10-18" "2022-10-19" "2022-10-26" "2022-10-31" "2022-10-30"
## [176] "2023-03-21" "2023-03-28" "2023-04-03" "2023-04-06" "2023-05-15" "2023-06-20" "2023-04-24"
## [183] "2023-04-25" "2023-09-27" "2023-09-29" "2023-10-03" "2023-10-05" "2023-10-19" "2023-10-20"
## [190] "2023-10-21" "2023-10-23" "2024-02-09" "2024-03-18" "2024-04-02" "2024-04-29" "2024-04-30"
## [197] "2024-08-01" "2024-08-01"
Set the dates like this:
snapshotDate(ah) <- pd[1]
Resources in AnnotationHub aren’t loaded with the standard R
package approach
and therefore can’t be loaded on cluster nodes with library(). There are a
couple of options to sharing AnnotationHub objects across a cluster when
researchers are using the same R install and want access to the same
annotations.
As an example, we create a TxDb object from a GRanges stored in AnnotationHub contributed by contributed by Timothée Flutre. The GRanges was created from a GFF file and contains gene information for Vitis vinifera.
One option is that each user downloads the resource with hub[[“AH50773”]] and the GRanges is saved in the cache. Each subsequent call to hub[[“AH50773”]] retrieves the resource from the cache which is very fast.
The necessary code extracts the resource then calls makeTxDbFromGRanges().
library(AnnotationHub)
hub <- AnnotationHub()
gr <- hub[["AH50773"]] ## downloaded once
txdb <- makeTxDbFromGRanges(gr) ## build on the fly
Another approach is that one user builds the TxDb and saves it as a .sqlite file. The cluster admin installs this in a common place on all cluster nodes and each user can load it with loadDb(). Loading the file is as quick and easy as calling library() on a TxDb package.
Once the .sqlite file is install each user’s code would include:
library(AnnotationDbi) ## if not already loaded
txdb <- loadDb("/locationToFile/mytxdb.sqlite")
Please see HubPub Vignette “CreateAHubPackage”.
vignette("CreateAHubPackage", package="HubPub")
Please see AnnotationHub vignette “TroubleshootingTheHubs”.
vignette("TroubleshootingTheHubs", package="AnnotationHub")
The AnnotationHub uses CRAN package httr
functions HEAD
and GET
for accessing
web resources. This can be problematic if operating behind a proxy. The easiest
solution is to set the httr::set_config
with the proxy information.
proxy <- httr::use_proxy("http://my_user:my_password@myproxy:8080")
## or
proxy <- httr::use_proxy(Sys.getenv('http_proxy'))
httr::set_config(proxy)
AnnotationHub::setAnnotationHubOption("PROXY", proxy)
sessionInfo()
## R version 4.4.1 (2024-06-14)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 22.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_GB
## [4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BSgenome.Hsapiens.UCSC.hg19_1.4.3 BSgenome_1.73.0
## [3] BiocIO_1.15.1 rtracklayer_1.65.0
## [5] VariantAnnotation_1.51.0 SummarizedExperiment_1.35.1
## [7] MatrixGenerics_1.17.0 matrixStats_1.3.0
## [9] Rsamtools_2.21.1 Biostrings_2.73.1
## [11] XVector_0.45.0 txdbmaker_1.1.1
## [13] GenomicFeatures_1.57.0 AnnotationDbi_1.67.0
## [15] Biobase_2.65.0 GenomicRanges_1.57.1
## [17] GenomeInfoDb_1.41.1 IRanges_2.39.2
## [19] S4Vectors_0.43.2 AnnotationHub_3.13.3
## [21] BiocFileCache_2.13.0 dbplyr_2.5.0
## [23] BiocGenerics_0.51.0 BiocStyle_2.33.1
##
## loaded via a namespace (and not attached):
## [1] tidyselect_1.2.1 dplyr_1.1.4 blob_1.2.4
## [4] filelock_1.0.3 bitops_1.0-8 fastmap_1.2.0
## [7] RCurl_1.98-1.16 GenomicAlignments_1.41.0 XML_3.99-0.17
## [10] digest_0.6.37 mime_0.12 lifecycle_1.0.4
## [13] KEGGREST_1.45.1 RSQLite_2.3.7 magrittr_2.0.3
## [16] compiler_4.4.1 progress_1.2.3 rlang_1.1.4
## [19] sass_0.4.9 tools_4.4.1 utf8_1.2.4
## [22] yaml_2.3.10 knitr_1.48 prettyunits_1.2.0
## [25] S4Arrays_1.5.7 bit_4.0.5 curl_5.2.1
## [28] DelayedArray_0.31.11 xml2_1.3.6 abind_1.4-5
## [31] BiocParallel_1.39.0 withr_3.0.1 purrr_1.0.2
## [34] grid_4.4.1 fansi_1.0.6 biomaRt_2.61.3
## [37] cli_3.6.3 rmarkdown_2.28 crayon_1.5.3
## [40] generics_0.1.3 httr_1.4.7 rjson_0.2.21
## [43] DBI_1.2.3 cachem_1.1.0 stringr_1.5.1
## [46] zlibbioc_1.51.1 parallel_4.4.1 BiocManager_1.30.23
## [49] restfulr_0.0.15 vctrs_0.6.5 Matrix_1.7-0
## [52] jsonlite_1.8.8 bookdown_0.40 hms_1.1.3
## [55] bit64_4.0.5 jquerylib_0.1.4 glue_1.7.0
## [58] codetools_0.2-20 stringi_1.8.4 BiocVersion_3.20.0
## [61] UCSC.utils_1.1.0 tibble_3.2.1 pillar_1.9.0
## [64] rappdirs_0.3.3 htmltools_0.5.8.1 GenomeInfoDbData_1.2.12
## [67] httr2_1.0.2 R6_2.5.1 evaluate_0.24.0
## [70] lattice_0.22-6 highr_0.11 png_0.1-8
## [73] memoise_2.0.1 bslib_0.8.0 SparseArray_1.5.31
## [76] xfun_0.47 pkgconfig_2.0.3