Package ‘projectR’
March 26, 2024

Type Package
Title Functions for the projection of weights from PCA, CoGAPS, NMF, correlation, and clustering
Version 1.19.2
Author Gaurav Sharma, Charles Shin, Jared Slosberg, Loyal Goff, Genevieve Stein-O’Brien
Description Functions for the projection of data into the spaces defined by PCA, CoGAPS, NMF, correlation, and clustering.
License GPL (==2)
Imports methods, cluster, stats, limma, NMF, ROCR, ggalluvial, RColorBrewer, dplyr, fgsea, reshape2, viridis, scales, Matrix, MatrixModels, msigdbr, ggplot2, cowplot, ggrepel, umap, tsn
Suggests BiocStyle, CoGAPS, gridExtra, grid, testthat, devtools, knitr, rmarkdown, ComplexHeatmap, gplots, SeuratObject
LazyData TRUE
LazyDataCompression gzip
RoxygenNote 7.3.1
Encoding UTF-8
VignetteBuilder knitr
biocViews FunctionalPrediction, GeneRegulation, BiologicalQuestion, Software
BugReports https://support.bioconductor.org/t/projectR/
URL https://github.com/genesofeve/projectR/
Depends R (>= 4.0.0)
git_url https://git.bioconductor.org/packages/projectR
git_branch devel
git_last_commit fd96af3
git_last_commit_date 2024-02-21
Repository Bioconductor 3.19
Date/Publication 2024-03-25
Maintainer Genevieve Stein-O’Brien <gsteinobrien@gmail.com>
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>alluvialMat</td>
<td>3</td>
</tr>
<tr>
<td>AP.RNAseq6l3c3t</td>
<td>4</td>
</tr>
<tr>
<td>aucMat</td>
<td>4</td>
</tr>
<tr>
<td>bonferroniCorrectedDifferences</td>
<td>5</td>
</tr>
<tr>
<td>cluster2pattern</td>
<td>5</td>
</tr>
<tr>
<td>cluster2pattern-class</td>
<td>6</td>
</tr>
<tr>
<td>clusterPlotR</td>
<td>7</td>
</tr>
<tr>
<td>correlateR</td>
<td>8</td>
</tr>
<tr>
<td>correlateR-class</td>
<td>9</td>
</tr>
<tr>
<td>CR.RNAseq6l3c3t</td>
<td>9</td>
</tr>
<tr>
<td>cr_microglial</td>
<td>9</td>
</tr>
<tr>
<td>geneMatchR</td>
<td>10</td>
</tr>
<tr>
<td>getTSNE</td>
<td>11</td>
</tr>
<tr>
<td>getUMAP</td>
<td>11</td>
</tr>
<tr>
<td>glial_counts</td>
<td>12</td>
</tr>
<tr>
<td>initialize,cluster2pattern-method</td>
<td>12</td>
</tr>
<tr>
<td>initialize,correlateR-method</td>
<td>13</td>
</tr>
<tr>
<td>initialize,rotatoR-method</td>
<td>13</td>
</tr>
<tr>
<td>intersectorR</td>
<td>14</td>
</tr>
<tr>
<td>map.ESepiGen4c1l</td>
<td>15</td>
</tr>
<tr>
<td>map.RNAseq6l3c3t</td>
<td>15</td>
</tr>
<tr>
<td>microglial_counts</td>
<td>16</td>
</tr>
<tr>
<td>multivariateAnalysisR</td>
<td>16</td>
</tr>
<tr>
<td>multivariateAnalysisR_seurat_test</td>
<td>17</td>
</tr>
<tr>
<td>p.ESepiGen4c1l</td>
<td>18</td>
</tr>
<tr>
<td>p.RNAseq6l3c3t</td>
<td>18</td>
</tr>
<tr>
<td>pd.ESepiGen4c1l</td>
<td>19</td>
</tr>
<tr>
<td>pd.RNAseq6l3c3t</td>
<td>19</td>
</tr>
<tr>
<td>pdVolcano</td>
<td>20</td>
</tr>
<tr>
<td>plotConfidenceIntervals</td>
<td>20</td>
</tr>
<tr>
<td>plotVolcano</td>
<td>21</td>
</tr>
<tr>
<td>projectionDriveR</td>
<td>22</td>
</tr>
<tr>
<td>projectR</td>
<td>23</td>
</tr>
<tr>
<td>retinal_patterns</td>
<td>26</td>
</tr>
<tr>
<td>rotatoR</td>
<td>27</td>
</tr>
<tr>
<td>rotatoR-class</td>
<td>28</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvial Map</td>
<td></td>
</tr>
<tr>
<td>AP.RNAseq6l3c3t</td>
<td></td>
</tr>
<tr>
<td>AUC Mat</td>
<td></td>
</tr>
<tr>
<td>Bonferroni Corrected Differences</td>
<td></td>
</tr>
<tr>
<td>Cluster2Pattern</td>
<td></td>
</tr>
<tr>
<td>Cluster2Pattern-class</td>
<td></td>
</tr>
<tr>
<td>ClusterPlotR</td>
<td></td>
</tr>
<tr>
<td>CorrelateR</td>
<td></td>
</tr>
<tr>
<td>CorrelateR-class</td>
<td></td>
</tr>
<tr>
<td>CR.RNAseq6l3c3t</td>
<td></td>
</tr>
<tr>
<td>CR Microglial</td>
<td></td>
</tr>
<tr>
<td>GeneMatchR</td>
<td></td>
</tr>
<tr>
<td>GetTSNE</td>
<td></td>
</tr>
<tr>
<td>GetUMAP</td>
<td></td>
</tr>
<tr>
<td>Glial Counts</td>
<td></td>
</tr>
<tr>
<td>Initialize, Cluster2Pattern-Method</td>
<td></td>
</tr>
<tr>
<td>Initialize, CorrelateR-Method</td>
<td></td>
</tr>
<tr>
<td>Initialize, RotatoR-Method</td>
<td></td>
</tr>
<tr>
<td>IntersectorR</td>
<td></td>
</tr>
<tr>
<td>Map.ESepiGen4c1l</td>
<td></td>
</tr>
<tr>
<td>Map.RNAseq6l3c3t</td>
<td></td>
</tr>
<tr>
<td>Microglial Counts</td>
<td></td>
</tr>
<tr>
<td>Multivariate Analysis R</td>
<td></td>
</tr>
<tr>
<td>Multivariate Analysis R_seurat_test</td>
<td></td>
</tr>
<tr>
<td>P.ESepiGen4c1l</td>
<td></td>
</tr>
<tr>
<td>P.RNAseq6l3c3t</td>
<td></td>
</tr>
<tr>
<td>PD.ESepiGen4c1l</td>
<td></td>
</tr>
<tr>
<td>PD.RNAseq6l3c3t</td>
<td></td>
</tr>
<tr>
<td>PDVolcano</td>
<td></td>
</tr>
<tr>
<td>PlotConfidence Intervals</td>
<td></td>
</tr>
<tr>
<td>PlotVolcano</td>
<td></td>
</tr>
<tr>
<td>ProjectionDriveR</td>
<td></td>
</tr>
<tr>
<td>ProjectR</td>
<td></td>
</tr>
<tr>
<td>Retinal Patterns</td>
<td></td>
</tr>
<tr>
<td>RotatoR</td>
<td></td>
</tr>
<tr>
<td>RotatoR-class</td>
<td></td>
</tr>
</tbody>
</table>
alluvialMat

alluvialMat alluvialMat

Description

Function to provide alluvial matrix for generating alluvial plot

Usage

alluvialMat(
 projection,
 annotations,
 annotationName = "Cell type",
 annotationType = "Cell",
 plot = TRUE,
 minPropExplained = 0.75,
 pvalThreshold = 0.05,
 qvalThreshold = 0.05
)

Arguments

- **projection**: a projection generated from `projectR`, ensure that full = TRUE while generating projection
- **annotations**: a character vector of annotations for the data
- **annotationName**: a character for collective name of the annotations, default is "Cell type"
- **annotationType**: a character indicating the type of data annotated, default is "Cell"
- **plot**: logical indicating whether to return the alluvial plot, default is TRUE
- **minPropExplained**: threshold for minimum proportion of samples that correspond to a pattern to be used for plotting
- **pvalThreshold**: threshold level of significance for p-value
- **qvalThreshold**: threshold level of significance for Benjamini-Hochberg corrected p-value

Value

A matrix to generate alluvial plots

Examples

projection <- projectR(data=p.ESepiGen4c1l$mRNA.Seq, loadings=AP.RNAseq613c3t$Amean, dataNames = map.ESepiGen4c1l[["GeneSymbols"]], full = TRUE)
alluvialMat(projection, pd.ESepiGen4c1l$Condition)
AP.RNAseq6t3c3t

CoGAPS patterns and genes weights for p.RNAseq6t3c3t

Description

AP.RNAseq6t3c3t contains the output of the gapsRun function in the CoGAPS package for data = p.RNAseq6t3c3t

Usage

AP.RNAseq6t3c3t

Format

A list of 12 items

aucMat

Description

Calculates AUC values for each set of weights for each label and outputs the results as a matrix

Usage

aucMat(labels, weights)

Arguments

| labels | a vector of labels whose length is equal to the number of columns in the weight matrix |
| weights | a matrix of weights from projection analysis |

Value

A matrix of AUC values for each set of weights classifying each label.

Examples

projectR(data=p.ESepiGen4t1$mRNA.Seq, loadings=AP.RNAseq6t3c3t$Amean, dataNames = map.ESepiGen4t1[["GeneSymbols"]]) -> projection
aucMat(pd.ESepiGen4t1$Condition, projection)
bonferroniCorrectedDifferences

Description
Calculate weighted/unweighted mean difference for each gene between 2 groups

Usage
```
bonferroniCorrectedDifferences(
  group1,
  group2,
  pvalue,
  diff_weights = NULL,
  mode = "CI"
)
```

Arguments
- **group1**: count matrix 1
- **group2**: count matrix 2
- **pvalue**: significance value to threshold
- **diff_weights**: loadings to weight the differential expression
- **mode**: statistical approach, confidence intervals(CI) or pvalues(PV)

cluster2pattern

Generic cluster2pattern function

Description
Function to make patterns of continuous weights from clusters.

Usage
```
cluster2pattern(clusters, NP, data, ...)

## S4 method for signature 'character'
cluster2pattern(clusters, data)

## S4 method for signature 'numeric'
cluster2pattern(clusters, data)

## S4 method for signature 'kmeans'
```

cluster2pattern(clusters, data)

S4 method for signature 'hclust'
cluster2pattern(clusters, NP, data = NA)

Arguments

- **clusters**: a cluster object which could be either an hclust or a kmeans object
- **NP**: number of desired patterns
- **data**: data used to make clusters object
- **...**: Additional arguments to cluster2pattern

Value

An object of class pclust containing pattern weights corresponding for each cluster.

Examples

```r
k.RNAseq6l3c3t <- kmeans(t(p.RNAseq6l3c3t), 3)
cluster2pattern(clusters = k.RNAseq6l3c3t, data = p.RNAseq6l3c3t)

distp <- dist(t(p.RNAseq6l3c3t))
hc.RNAseq6l3c3t <- hclust(distp)
cluster2pattern(clusters = hc.RNAseq6l3c3t, NP = 3, data = p.RNAseq6l3c3t)
```

cluster2pattern-class

cluster2pattern

Description

class of cluster2pattern output.

Slots

- **clusterMatrix**: matrix of continuous values for projection that is output of cluster2pattern function
clusterPlotR

Generic clusterPlotR function

Description
plotting function for clustering objects

Usage
clusterPlotR(cData, cls, x, NC, ...)

S4 method for signature 'ANY,kmeans'
clusterPlotR(
cData = NA,
cls = NA,
x = NA,
NC = NA,
annoIndx = NA,
label = NULL,
...
)

S4 method for signature 'ANY,hclust'
clusterPlotR(
cData = NA,
cls = NA,
x = NA,
NC = NA,
annoIndx = NA,
label = NULL,
...
)

Arguments
cData data used to get clusters
cls a cluster (kmeans or hclust) object
x a vector of length equal to number of samples to use for plotting
NC vector of integers indicating which clusters to use
... additional parameters for plotting. ex. pch,cex,col,labels, xlab, etc.
annoIndx vector indexing into subsets for plotting
label character vector to use for plotting text, defaults is NULL

Value
A plot of the mean behavior for each cluster
Examples

```r
## Not run:
k.RNAseq6l3c3t<-kmeans(p.RNAseq6l3c3t,22)
clusterPlotR(p.RNAseq6l3c3t, cls=k.RNAseq6l3c3t, NC=1, x=pd.RNAseq6l3c3t$days, col=pd.RNAseq6l3c3t$color)
## End(Not run)
```

correlateR
correlateR

Description

Function to extract genes highly correlated with a gene or reference expression pattern.

Usage

```r
correlateR(genes, dat, threshtype = "R", threshold = 0.7, absR = FALSE, ...)
```

Arguments

- `genes` gene or character vector of genes for reference expression pattern
- `dat` matrix or data frame with genes to be used for to calculate correlation
- `threshtype` Default "R" indicates thresholding by R value or equivalent. Alternatively, "N" indicates a numerical cut off.
- `threshold` numeric indicating value at which to make threshold.
- `absR` logical indicating where to include both positive and negatively correlated genes
- `...` addtion inputs to cor, such as method

Details

If threshtype is "R" than threshold must be between -1 and 1. Otherwise if top N correlated genes are required, set threshtype as "N" and set threshold = N, i.e, the number of correlated genes required.

Value

A correlation matrix

Examples

```r
cor2T<-correlateR(genes="T", dat=p.RNAseq6l3c3t, threshtype="N", threshold=10, absR=TRUE)
```
correlateR-class

correlateR

Description

class of `correlateR` output.

Slots

- `corM` correlation matrix obtained from `correlateR`

CR.RNAseq6l3c3t

CogapsResult object for p.RNAseq6l3c3t

Description

CR.RNAseq6l3c3t contains the output of the CoGAPS function in the CoGAPS package for data = p.RNAseq6l3c3t

Usage

CR.RNAseq6l3c3t

Format

A `CogapsResult` object

cr_microglial

CogapsResult object for microglial_counts

Description

`cr_microglial` contains the output of the CoGAPS function in the CoGAPS package for data = microglial_counts

Usage

cr_microglial

Format

A `CogapsResult` object
geneMatchR

Generic geneMatchR function

Description

Matches genes across datasets

Usage

```r
geneMatchR(
  data1, 
  data2, 
  data1Names = NULL, 
  data2Names = NULL, 
  merge = FALSE, 
  ...
)
```

Arguments

- `data1`: a data matrix, typically genes by samples
- `data2`: an amplitude matrix, typically genes by factors
- `data1Names`: rownames of data matrix, for eg genenames
- `data2Names`: rownames of amplitude matrix to be matched to rownames of datamatrix
- `merge`: logical indicating whether or not to merged data sets
- `...`: Additional arguments to geneMatchR

Value

A list of genes (intersection) in both datasets. (if merge = TRUE, Also returns merged data.)

Examples

```r
geneMatchR(data1=p.ESepiGen4c1$mRNA.Seq, data2=p.RNAseq6l3c3t, data1Names=map.ESepiGen4c1l[["GeneSymbols"]])
```
getTSNE

Description
Function to provide tSNE of projection

Usage
```
getTSNE(projection, axis = 2, ...)```

**Arguments**
- `projection`: matrix, a projection generated from `projectR`
- `axis`: integer, either 1 umap of projection or 2 for umap of transpose of projection
- `...`: additional arguments passed to `tsne`

**Examples**
```
projection <- projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=AP.RNAseq6l3c3t$Amean,
dataNames = map.ESepiGen4c1l[["GeneSymbols"]], full = TRUE)
projectionTSNE <- getTSNE(projection)
```

**getUMAP**

**Description**
Function to provide umap of projection

**Usage**
```
getUMAP(projection, axis = 2, umapMethod = "naive", umapConfig = umap.defaults)```

Arguments
- `projection`: matrix, a projection generated from `projectR`
- `axis`: integer, either 1 umap of projection or 2 for umap of transpose of projection
- `umapMethod`: character, implementation. Available methods are 'naive' (an implementation written in pure R) and 'umap-learn' (requires python package 'umap-learn')
- `umapConfig`: umap.config, a list of parameters to customize umap embedding

Value
A umap of projection
Examples

```r
library(umap)
projection <- projectR(data=p.ESepiGen4c1l$mRNA.Seq,loadings=AP.RNAseq6l3c3t$Amean,
dataNames = map.ESepiGen4c1l[["GeneSymbols"}], full = TRUE)
umapConfig = umap.defaults
umapConfig$n_neighbors = 3
projectionUMAP <- getUMAP(projection,umapConfig = umapConfig)
```

glial_counts

log-normalized count data from astrocytes and oligodendrocytes in the p6 mouse cortex.

Description

log-normalized count data from astrocytes and oligodendrocytes in the p6 mouse cortex.

Usage

```r
glial_counts
```

Format

A gene (rows) by cell (column) matrix

initialize,cluster2pattern-method

Constructor for cluster2pattern

Description

Constructor for cluster2pattern

Usage

```r
## S4 method for signature 'cluster2pattern'
initialize(.Object, clusterMatrix, ...)
```

Arguments

- `.Object` clusterMatrix object
- `clusterMatrix` matrix of continuous values for projection that is output of cluster2pattern function
- `...` additional arguments to initialize cluster2pattern

Value

initialized cluster2pattern object
initialize,correlateR-method

Constructor for correlateR

Description

Constructor for correlateR

Usage

```R
## S4 method for signature 'correlateR'
initialize(.Object, corM, ...)
```

Arguments

- `.Object` : correlateR object
- `corM` : correlation matrix obtained from correlateR
- `...` : additional arguments to initialize correlateR

Value

initialized correlateR object

initialize,rotatoR-method

Constructor for rotatoR

Description

Constructor for rotatoR

Usage

```R
## S4 method for signature 'rotatoR'
initialize(.Object, rotatedM, ...)
```

Arguments

- `.Object` : rotatoR object
- `rotatedM` : rotated matrix from rotatoR function
- `...` : additional arguments to initialize rotatoR

Value

initialized rotatoR object
intersectoR

Generic intersectoR function

Description

A function to find and test the intersecting values of two sets of objects, presumably the genes associated with patterns in two different datasets. Both the input objects need to be of the same type either kmeans or hclust.

Usage

```r
intersectoR(pSet1, pSet2, pval, ...)
## S4 method for signature 'kmeans,kmeans'
intersectoR(pSet1 = NA, pSet2 = NA, pval = 0.05, full = FALSE)
## S4 method for signature 'hclust,hclust'
intersectoR(pSet1 = NA, pSet2 = NA, pval = 0.05, full = FALSE, k = NULL)
```

Arguments

- `pSet1`: an object for a set of patterns where each entry is a set of genes associated with a single pattern
- `pSet2`: an object for a second set of patterns where each entry is a set of genes associated with a single pattern
- `pval`: the maximum p-value considered significant
- `...`: additional parameters depending on input object
- `full`: logical indicating whether to return full data frame of significantly overlapping sets. Default is false will return summary matrix.
- `k`: Numeric giving cut height for hclust objects, if a vector is given arguments will be applied to pSet1 and pSet2 in that order

Value

A list containing: Overlap matrix, overlap index, and overlapping sets.

Examples

```r
ESepiGen4c1lmRNASeq <- p.ESepiGen4c1l$mRNA.Seq
rownames(ESepiGen4c1lmRNASeq) <- map.ESepiGen4c1l$GeneSymbols

k.RNAseq6l3c3t<-kmeans(p.RNAseq6l3c3t,22)
k.ESepiGen4c1l<-kmeans(ESepiGen4c1lmRNASeq,10)
intersectoR(k.RNAseq6l3c3t, k.ESepiGen4c1l, pval=.05)

h.RNAseq6l3c3t<-hclust(as.dist(1-(cor(t(p.RNAseq6l3c3t))))
```


map.ESepiGen4c1l

h.ESepiGen4c1l<-hclust(as.dist(1-(cor(t(ESepiGen4c1lmRNASeq)))))
intersectoR(pSet1=h.ESepiGen4c1l, pSet2=h.RNAseq6l3c3t, pval=.05, k=c(3,4))

map.ESepiGen4c1l

RNAseqing and ChIPSeq of matched genes in differentiated human iPS cells

Description

map.ESepiGen4c1l contains gene annotations

Usage

map.ESepiGen4c1l

Format

A data frame with 93 rows and 9 variables:

References

map.RNAseq6l3c3t

RNAseqing from human 3 iPS & 3 ES cell lines in 3 experimental condition at 3 time points

Description

map.RNAseq6l3c3t contains gene annotations for polyA bulk sequencing of 6 cell lines in 3 experimental condition at 3 time points.

Usage

map.RNAseq6l3c3t

Format

A data frame with 108 rows and 54 variables:
microglial_counts
log-normalized count data from microglial cells in the p6 mouse cortex.

Description
log-normalized count data from microglial cells in the p6 mouse cortex.

Usage

```r
microglial_counts
```

Format
A gene (rows) by cell (column) matrix

multivariateAnalysisR
Generic multivariateAnalysisR function

Description
Performs multivariate analysis across specified clusters in datasets

Usage

```r
multivariateAnalysisR(
  significanceLevel = 0.05,
  patternKeys,
  seuratobj,
  dictionaries,
  customNames = NULL,
  exclusive = TRUE,
  exportFolder = "",
  ANOVAwidth = 1000,
  ANOVAheight = 1000,
  CIwidth = 1000,
  CIheight = 1000,
  CISpacing = 1
)
```
Arguments

- **significanceLevel**: double value for testing significance in ANOVA test
- **patternKeys**: list of strings indicating pattern subsets from seuratobj to be analyzed
- **seuratobj**: Seurat Object Data containing patternKeys in meta.data
- **dictionaries**: list of dictionaries indicating clusters to be compared
- **customNames**: list of custom names for clusters in corresponding order
- **exclusive**: boolean value for determining interpolation between params in clusters
- **exportFolder**: name of folder to store exported graphs and CSV files
- **ANOVAnumwidth**: width of ANOVA png
- **ANOVAnumheight**: height of ANOVA png
- **CIwidth**: width of CI png
- **CIheight**: height of CI png
- **CIspsacing**: spacing between each CI in CI graph

Value

A sorted list of ANOVA and CI results; ANOVA and Confidence Intervals are visualized and exported in both PNG and CSV

Description

Truncated Seurat Object with latent space projection done to unspecified cells in different stages for multivariateAnalysisR analysis

Usage

`multivariateAnalysisR_seurat_test`

Format

A Seurat Object with 31034 observations of 4 variables in meta.data:
p.ESepiGen4c11
RNAseqing and ChIPSeq of matched genes in differentiated human iPS cells

Description

p.ESepiGen4c11 contains log2(RPKM + 1) values for polyA bulk sequencing and log2 counts of normalized ChIPSeq reads of 1 cell lines with 2 replicates in 4 experimental conditions at a single time point.

Usage

p.ESepiGen4c11

Format

p.ESepiGen4c11 is a list of 6 data frames each with 93 rows and between 4 and 9 variables:

References

p.RNAseq6l3c3t
RNAseqing from human 3 iPS & 3 ES cell lines in 3 experimental condition at 3 time points

Description

p.RNAseq6l3c3 contains log2(RPKM + 1) values for polyA bulk sequencing of 6 cell lines in 3 experimental condition at 3 time points.

Usage

p.RNAseq6l3c3t

Format

A data frames with 108 rows and 54 variables:
pd.ESepiGen4c1l

RNAseqing and ChIPSeq of matched genes in differentiated human iPS cells

Description

pd.ESepiGen4c1l.4cond contains sample phenotype and experimental information.

Usage

pd.ESepiGen4c1l

Format

A data frames with 9 rows and 2 variables:

References

pd.RNAseq6l3c3t

RNAseqing from human 3 iPS & 3 ES cell lines in 3 experimental condition at 3 time points

Description

pd.RNAseq6l3c3t contains sample phenotype and experimental information for polyA bulk sequencing of 6 cell lines in 3 experimental condition at 3 time points.

Usage

pd.RNAseq6l3c3t

Format

A data frames with 54 rows and 38 variables:
pdVolcano

Description
Generate volcano plot and gate genes based on fold change and pvalue, includes vectors that can be used with fast gene set enrichment (fgsea)

Usage
pdVolcano(
 result,
 FC = 0.2,
 pvalue = NULL,
 subset = NULL,
 filter.inf = FALSE,
 label.num = 5L,
 display = TRUE
)

Arguments
result result output from projectionDriveR function in PV mode
FC fold change threshold, default at 0.2
pvalue significance threshold, default set stored pvalue
subset vector of gene names to subset the plot by
filter.inf remove genes that have pvalues below machine double minimum value
label.num Number of genes to label on either side of the volcano plot, default 5
display boolean. Whether or not to plot and display volcano plots

Value
A list with weighted and unweighted differential expression metrics

plotConfidenceIntervals

Description
Generate point and line confidence intervals from provided estimates.
Usage

plotConfidenceIntervals(
 confidence_intervals,
 interval_name = c("low", "high"),
 pattern_name = NULL,
 sort = TRUE,
 genes = NULL,
 weights = NULL,
 weights_clip = 0.99,
 weights_vis_norm = "none",
 weighted = FALSE
)

Arguments

confidence_intervals
 A dataframe of features x estimates.
interval_name
 Estimate column names. Default: c("low","high")
pattern_name
 string to use as the title for plots.
sort
 Boolean. Sort genes by their estimates (default = TRUE)
genes
 a vector with names of genes to include in plot. If sort=F, estimates will be plotted in this order.
weights
 optional. weights of features to include as annotation.
weights_clip
 optional. quantile of data to clip color scale for improved visualization. Default: 0.99
weights_vis_norm
 Which version of weights to visualize as a heatmap. Options are "none" (uses provided weights) or "quantiles". Default: none
weighted
 specifies whether the confidence intervals in use are weighted by the pattern and labels plots accordingly

Value

A list with pointrange estimates and a heatmap of pattern weights.

Description

Volcano plotting function

Usage

plotVolcano(stats, metadata, FC, pvalue, title)
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stats</td>
<td>data frame with differential expression statistics</td>
</tr>
<tr>
<td>metadata</td>
<td>metadata from pdVolcano</td>
</tr>
<tr>
<td>FC</td>
<td>Fold change threshold</td>
</tr>
<tr>
<td>pvalue</td>
<td>p value threshold</td>
</tr>
<tr>
<td>title</td>
<td>plot title</td>
</tr>
</tbody>
</table>

Description

Calculate weighted expression difference between two groups (group1 - group2)

Usage

```r
projectionDriveR(
  cellgroup1,
  cellgroup2,
  loadings,
  pattern_name,
  loadingsNames = NULL,
  pvalue = 1e-05,
  display = TRUE,
  normalize_pattern = TRUE,
  mode = "CI"
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellgroup1</td>
<td>gene x cell count matrix for cell group 1</td>
</tr>
<tr>
<td>cellgroup2</td>
<td>gene x cell count matrix for cell group 2</td>
</tr>
<tr>
<td>loadings</td>
<td>A matrix of continuous values defining the features</td>
</tr>
<tr>
<td>pattern_name</td>
<td>column of loadings for which drivers will be calculated</td>
</tr>
<tr>
<td>loadingsNames</td>
<td>a vector with names of loading rows defaults to rownames</td>
</tr>
<tr>
<td>pvalue</td>
<td>confidence level. Default 1e-5</td>
</tr>
<tr>
<td>display</td>
<td>boolean. Whether or not to display confidence intervals</td>
</tr>
<tr>
<td>normalize_pattern</td>
<td>Boolean. Whether or not to normalize pattern weights</td>
</tr>
<tr>
<td>mode</td>
<td>statistical approach, confidence intervals or pvalues. default CI</td>
</tr>
</tbody>
</table>

Value

A list with unweighted/weighted mean differences and differential genes that meet the provided significance threshold.
projectR

Generic projectR function

Description

A function for the projection of new data into a previously defined feature space.

Usage

```r
projectR(data, loadings, dataNames = NULL, loadingsNames = NULL, ...) 
## S4 method for signature 'matrix,matrix'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE,
  family = "gaussianff",
  bootstrapPval = FALSE,
  bootIter = 1000
)

## S4 method for signature 'dgCMatrix,matrix'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE,
  family = "gaussianff"
)

## S4 method for signature 'matrix,LinearEmbeddingMatrix'
projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE,
  model = NA,
  family = "gaussianff",
  bootstrapPval = FALSE,
  bootIter = 1000
)```
## S4 method for signature 'matrix,prcomp'

projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE
)

## S4 method for signature 'matrix,rotatoR'

projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE
)

## S4 method for signature 'matrix,correlateR'

projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  NP = NA,
  full = FALSE,
  bootstrapPval = FALSE,
  bootIter = 1000
)

## S4 method for signature 'matrix,hclust'

projectR(
  data,
  loadings,
  dataNames = NULL,
  loadingsNames = NULL,
  full = FALSE,
  targetNumPatterns,
  sourceData,
  bootstrapPval = FALSE,
  bootIter = 1000
)

## S4 method for signature 'matrix,kmeans'

)
projectR(  
data,  
loadings,  
dataNames = NULL,  
loadingsNames = NULL,  
full = FALSE,  
sourceData,  
bootstrapPval = FALSE,  
bootIter = 1000  
)

## S4 method for signature 'matrix,cluster2pattern'
projectR(  
data,  
loadings,  
dataNames = NULL,  
loadingsNames = NULL,  
full = FALSE,  
sourceData,  
bootstrapPval = FALSE,  
bootIter = 1000  
)

Arguments

data Target dataset into which you will project. It must of type matrix.
loadings loadings learned from source dataset.
dataNames a vector containing unique name, i.e. gene names, for the rows of the target dataset to be used to match features with the loadings, if not provided by rownames(data). Order of names in vector must match order of rows in data.
loadingsNames a vector containing unique names, i.e. gene names, for the rows of loadings to be used to match features with the data, if not provided by rownames(loadings). Order of names in vector must match order of rows in loadings.
NP vector of integers indicating which columns of loadings object to use. The default of NP=NA will use entire matrix.
full logical indicating whether to return the full model solution. By default only the new pattern object is returned.
family VGAM family function for model fitting (default: "gaussianff")
bootstrapPval logical to indicate whether to generate p-values using bootstrap, not available for prcomp and rotatoR objects
bootIter number of bootstrap iterations, default = 1000
model Optional arguments to choose method for projection
targetNumPatterns desired number of patterns with hclust
sourceData data used to create cluster object
Details

loadings can belong to one of several classes depending on upstream analysis. Currently permitted classes are matrix, CogapsResult, CoGAPS, pclust, prcomp, rotateR, and correlateR. Please note that loadings should not contain NA.

Value

A matrix of sample weights for each input basis in the loadings matrix (if full=TRUE, full model solution is returned).

Examples

```r
projectR(data=p.ESEpiGen4c11$mRNA.Seq,loadings=AP.RNAseq6l3c3tAmean, dataNames = map.ESEpiGen4c11["GeneSymbols"])

library("CoGAPS")
CR.RNAseq6l3c3t <- CoGAPS(p.RNAseq6l3c3t, params = new("CogapsParams", nPatterns=5))
projectR(data=p.ESEpiGen4c11$mRNA.Seq,loadings=CR.RNAseq6l3c3t, dataNames = map.ESEpiGen4c11["GeneSymbols"])

pca.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))
pca.ESEpiGen4c11<-projectR(data=p.ESEpiGen4c11$mRNA.Seq, loadings=pca.RNAseq6l3c3t, dataNames = map.ESEpiGen4c11["GeneSymbols"])

r.RNAseq6l3c3t<-rotateR(1,1,-1,-1,pca.RNAseq6l3c3trotation[,1:2])
pca.ESEpiGen4c11<-projectR(data=p.ESEpiGen4c11$mRNA.Seq, loadings=r.RNAseq6l3c3t, dataNames = map.ESEpiGen4c11["GeneSymbols"])

c.RNAseq6l3c3t<-correlateR(genes="T", dat=p.RNAseq6l3c3t, threshtype="N", threshold=10, absR=TRUE)
cor.ESEpiGen4c11<-projectR(data=p.ESEpiGen4c11$mRNA.Seq, loadings=c.RNAseq6l3c3t, NP="PositiveCOR", dataNames = map.ESEpiGen4c11["GeneSymbols"])

library("projectR")
data(p.RNAseq6l3c3t)
nP<-3
kClust<-kmeans(t(p.RNAseq6l3c3t),centers=nP)
kpattern<-cluster2pattern(clusters = kClust, NP = nP, data = p.RNAseq6l3c3t)
p<-as.matrix(p.RNAseq6l3c3t)
projectR(p,kpattern)
```

retinal_patterns

CoGAPS patterns learned from the developing mouse retina.

Description

CoGAPS patterns learned from the developing mouse retina.
rotatoR

Usage

retinal_patterns

Format

A gene (rows) by pattern (column) matrix

References


---

rotatoR rotatoR

Description

a function for rotating two basis about a point or line in that plane

Usage

rotatoR(x1, y1, x2, y2, basisSET)

Arguments

x1 a value describing a the coordinate of a point in the first basis. If no values are provided for x2
y1 a value describing a the coordinate of a point in the second basis
x2 a value describing a the coordinate of the second point in the second basis
y2 a value describing a the coordinate of the second point in the second basis
basisSET the basis to be rotated

Value

An object of class rotatoR.

Examples

pca.RNAseq6l3c3t<-prcomp(t(p.RNAseq6l3c3t))
r.RNAseq6l3c3t<-rotatoR(1,1,-1,-1,pca.RNAseq6l3c3t$rotation[,1:2])
rotatoR-class

Description

class of rotatoR output.

Slots

  rotatedM  rotated basis set (matrix) that is output of rotatoR function
Index

* datasets
  AP.RNAseq6l3c3t, 4
  CR.RNAseq6l3c3t, 9
  cr_microglial, 9
  glial_counts, 12
  map.ESepiGen4c1l, 15
  map.RNAseq6l3c3t, 15
  microglial_counts, 16
  multivariateAnalysisR_seurat_test, 17
  p.ESepiGen4c1l, 18
  p.RNAseq6l3c3t, 18
  pd.ESepiGen4c1l, 19
  pd.RNAseq6l3c3t, 19
  retinal_patterns, 26

alluvialMat, 3
AP.RNAseq6l3c3t, 4
aucMat, 4

bonferroniCorrectedDifferences, 5

cluster2pattern, 5
cluster2pattern, character-method (cluster2pattern), 5
cluster2pattern, hclust-method (cluster2pattern), 5
cluster2pattern, kmeans-method (cluster2pattern), 5
cluster2pattern, numeric-method (cluster2pattern), 5
cluster2pattern-class, 6
clusterPlotR, 7
clusterPlotR, ANY, hclust-method (clusterPlotR), 7
clusterPlotR, ANY, kmeans-method (clusterPlotR), 7
correlateR, 8
correlateR-class, 9
CR.RNAseq6l3c3t, 9

cr_microglial, 9
geneMatchR, 10
getTSNE, 11
getUMAP, 11

intersectorR, 14
intersectorR, hclust, hclust-method (intersectorR), 14
intersectorR, kmeans, kmeans-method (intersectorR), 14

map.ESepiGen4c1l, 15
map.RNAseq6l3c3t, 15
microglial_counts, 16
multivariateAnalysisR, 16
multivariateAnalysisR_seurat_test, 17

p.ESepiGen4c1l, 18
p.RNAseq6l3c3t, 18
pd.ESepiGen4c1l, 19
pd.RNAseq6l3c3t, 19
pdVolcano, 20
plotConfidenceIntervals, 20
plotVolcano, 21
projectionDriveR, 22
projectR, 23
projectR, dgCMatrix, matrix-method (projectR), 23
projectR, matrix, cluster2pattern-method (projectR), 23
projectR, matrix, correlateR-method (projectR), 23
projectR, matrix, hclust-method (projectR), 23
projectR, matrix, kmeans-method (projectR), 23
projectR, matrix, LinearEmbeddingMatrix-method
  (projectR), 23
projectR, matrix, matrix-method
  (projectR), 23
projectR, matrix, prcomp-method
  (projectR), 23
projectR, matrix, rotatoR-method
  (projectR), 23

retinal_patterns, 26
rotatoR, 27
rotatoR-class, 28