Package ‘missMethyl’

May 25, 2024

Type Package

Title Analysing Illumina HumanMethylation BeadChip Data

Version 1.39.0

Date 2020-09-16

Author Belinda Phipson and Jovana Maksimovic

Maintainer Belinda Phipson <phipson.b@wehi.edu.au>, Jovana Maksimovic <jovana.maksimovic@petermac.org>, Andrew Lonsdale <andrew.lonsdale@petermac.org>

Depends R (>= 3.6.0), IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b4.hg19

Imports AnnotationDbi, BiasedUrn, Biobase, BiocGenerics, GenomicRanges, GO.db, IlluminaHumanMethylation450kmanifest, IlluminaHumanMethylationEPICmanifest, IRanges, limma, methods, methylumi, minfi, org.Hs.eg.db, ruv, S4Vectors, statmod, stringr, SummarizedExperiment

VignetteBuilder knitr

Suggests BiocStyle, edgeR, knitr, minfiData, rmarkdown, tweeDEseqCountData, DMRcate, ExperimentHub

Description Normalisation, testing for differential variability and differential methylation and gene set testing for data from Illumina’s Infinium HumanMethylation arrays. The normalisation procedure is subset-quantile within-array normalisation (SWAN), which allows Infinium I and II type probes on a single array to be normalised together. The test for differential variability is based on an empirical Bayes version of Levene’s test. Differential methylation testing is performed using RUV, which can adjust for systematic errors of unknown origin in high-dimensional data by using negative control probes. Gene ontology analysis is performed by taking into account the number of probes per gene on the array, as well as taking into account multi-gene associated probes.

License GPL-2
Introduction to the missMethyl package

Description

missMethyl is a library for the analysis of Illumina’s 450K human methylation BeadChip. Specifically, functions for SWAN normalisation and differential variability analysis are provided. SWAN normalisation uses probe specific information, and the differential variability procedure uses linear models which can handle any designed experiment.
Normalisation of the 450K arrays can be performed using the function `SWAN`.
Differential variability analysis can be performed by calling `varFit` followed by `topVar` for a list of the top ranked differentially variable CpGs between conditions.
More detailed help documentation is provided in each function’s help page.

Author(s)

Belinda Phipson and Jovana Maksimovic
Maintainer: Belinda Phipson <belinda.phipson@mcri.edu.au>, Jovana Maksimovic <jovana.maksimovic@petermac.org>

References

Description

Compute estimated coefficients, standard errors and LogVarRatios for a given set of contrasts.

Usage

```r
contrasts.varFit(fit, contrasts = NULL)
```

Arguments

- `fit` List containing a linear model fit produced by `varFit`. The fit object should be of class `MArrayLM`.
- `contrasts` Numeric matrix with rows corresponding to coefficients in `fit` and columns containing contrasts.
Details

This function calls the contrasts.fit function in limma to compute coefficients and standard errors for the specified contrasts corresponding to a linear model fit obtained from the varFit function. LogVarRatios are also computed in terms of the contrasts. A contrasts matrix can be computed using the makeContrasts function.

Value

A list object of the same class as fit.

Author(s)

Belinda Phipson

See Also

varFit, contrasts.fit, makeContrasts

Examples

Randomly generate data for a 3 group problem with 100 CpG sites and 4 # arrays in each group.
library(limma)
y<-matrix(rnorm(1200),ncol=12)
group<-factor(rep(c(1,2,3),each=4))
design<-model.matrix(~0+group)
colnames(design)<-c("grp1","grp2","grp3")
design

Fit linear model for differential variability
Please always specify the coef parameter in the call to varFit
vfit<-varFit(y,design,coef=c(1,2,3))

Specify contrasts
contr<-makeContrasts(grp2-grp1,grp3-grp1,grp3-grp2,levels=colnames(design))

Compute contrasts from fit object
vfit.contr<-contrasts.varFit(vfit,contrasts=contr)

summary(decideTests(vfit.contr))

Look at top table of results for first contrast
topVar(vfit.contr,coef=1)
densityByProbeType

Plot the beta value distributions of the Infinium I and II probe types relative to the overall beta value distribution.

Description
Plot the overall density distribution of beta values and the density distributions of the Infinium I and II probe types.

Usage
densityByProbeType(
 data,
 legendPos = "top",
 colors = c("black", "red", "blue"),
 main = "",
 lwd = 3,
 cex.legend = 1
)

Arguments
data A MethylSet or a matrix or a vector. We either use the getBeta function to get Beta values (in the first case) or we assume the matrix or vector contains Beta values.
legendPos The x and y co-ordinates to be used to position the legend. They can be specified by keyword or in any way which is accepted by xy.coords. See legend for details.
colors Colors to be used for the different beta value density distributions. Must be a vector of length 3.
main Plot title.
lwd The line width to be used for the different beta value density distributions.
cex.legend The character expansion factor for the legend text.

details
The density distribution of the beta values for a single sample is plotted. The density distributions of the Infinium I and II probes are then plotted individually, showing how they contribute to the overall distribution. This is useful for visualising how using SWAN affects the data.

Value
No return value. Plot is produced as a side-effect.

Author(s)
Jovana Maksimovic
getAdj

Extract values adjusted for unwanted variation by RUVm

Description
Extract values adjusted for unwanted variation by RUVm.

Usage
getAdj(Y, fit)

Arguments
Y A matrix of M-values.
fit The list list object produced by RUVfit.

Details
This function extracts values adjusted for unwanted variation by RUVm. These values are ONLY intended to be used for visualisation purposes. It is NOT recommended that they are used for any further analysis.

Value
An matrix of M-values.

Author(s)
Jovana Maksimovic

See Also
MArrayLM
getINCs

Examples

if(require(minfi) & require(minfiData) & require(limma)) {
 # Get methylation data for a 2 group comparison
 meth <- getMeth(MsetEx)
 unmeth <- getUnmeth(MsetEx)
 Mval <- log2((meth + 100)/(unmeth + 100))

 group <- factor(pData(MsetEx)$Sample_Group, labels=c(0,1))
 design <- model.matrix(~group)

 # Perform initial analysis to empirically identify negative control features
 # when not known a priori
 lFit <- lmFit(Mval,design)
 lFit2 <- eBayes(lFit)
 lTop <- topTable(lFit2,coef=2,num=Inf)

 # The negative control features should *not* be associated with factor of
 # interest but *should* be affected by unwanted variation
 ctl <- rownames(Mval) %in% rownames(lTop[lTop$adj.P.Val > 0.5,])

 # Perform RUV adjustment and fit
 fit <- RUVfit(Y=Mval, X=group, ctl=ctl)
 fit2 <- RUVadj(Y=Mval, fit=fit)

 # get adjusted values
 Madj <- getAdj(Y=Mval,fit=fit)
}

getINCs

Extract intensity data for Illumina negative controls found on 450k or EPIC arrays.

description

Extracts the intensity data for the Illumina negative controls found on 450k or EPIC arrays and returns a matrix of M-values (log2 ratio of the green to red intensities).

Usage

getINCs(rgSet)

Arguments

rgSet An object of class RGChannelSet.
Details

The getINCs function extracts the intensity data for the INCs from an `RGChannelSet` object. The function retrieves both the green and red channel intensity values and returns the data as the log2 ratio of the green to red intensities. Essentially, the INCs are being treated like Type II probes for which the M-values are also given as the log2 ratio of the green to red intensities.

Value

An matrix of M-values.

Author(s)

Jovana Maksimovic

See Also

`RGChannelSet`

Examples

```r
if (require(minfi) & require(minfiData)) {
  INCs <- getINCs(RGsetEx)
  head(INCs)
  dim(INCs)
}
```

`getLeveneResiduals`
Obtain Levene residuals

Description

Obtain absolute or squared Levene residuals for each CpG given a series of methylation arrays

Usage

```r
getLeveneResiduals(data, design = NULL, type = NULL)
```

Arguments

- **data**: Object of class matrix of M values, with rows corresponding to features of interest such as CpG sites and columns corresponding to samples or arrays.
- **design**: The design matrix of the experiment, with rows corresponding to arrays/samples and columns to coefficients to be estimated. Defaults to the unit vector.
- **type**: Character string, "AD" for absolute residuals or "SQ" for squared residuals. Default is "AD".
getLeveneResiduals

Details

This function will return absolute or squared Levene residuals given a matrix of M values and a design matrix. This can be used for graphing purposes or for downstream analysis such as gene set testing based on differential variability rather than differential methylation. If no design matrix is given, the residuals are determined by treating all samples as coming from one group.

Value

Returns a list with three components: data contains a matrix of absolute or squared residuals, AvgVar is a vector of sample variances and LogVarRatio corresponds to the columns of the design matrix and is usually the ratios of the log of the group variances.

Author(s)

Belinda Phipson

References

See Also

varFit

Examples

Randomly generate data for a 2 group problem with 100 CpG sites and 5 # arrays in each group
y <- matrix(rnorm(1000),ncol=10)
group <- factor(rep(c(1,2),each=5))
design <- model.matrix(~group)

Get absolute Levene Residuals
resid <- getLeveneResiduals(y,design)

Plot the first CpG
barplot(resid$data[1,],col=rep(c(2,4),each=5),
ylab="Absolute Levene Residuals",names=group)
getMappedEntrezIDs

Get mapped Entrez Gene IDs from CpG probe names

Description

Given a set of CpG probe names and optionally all the CpG sites tested, this function outputs a list containing the mapped Entrez Gene IDs as well as the numbers of probes per gene, and a vector indicating significance.

Usage

getMappedEntrezIDs(
 sig.cpg,
 all.cpg = NULL,
 array.type = c("450K", "EPIC"),
 anno = NULL,
 genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR", "ExonBnd")
)

Arguments

sig.cpg Character vector of significant CpG sites used for testing gene set enrichment.
all.cpg Character vector of all CpG sites tested. Defaults to all CpG sites on the array.
array.type The Illumina methylation array used. Options are "450K" or "EPIC".
anno Optional. A DataFrame object containing the complete array annotation as generated by the minfi getAnnotation function. Speeds up execution, if provided.
genomic.features Character vector or scalar indicating whether the gene set enrichment analysis should be restricted to CpGs from specific genomic locations. Options are "ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR", "ExonBnd"; and the user can select any combination. Defaults to "ALL".

Details

This function is used by the gene set testing functions gometh and gsameth. It maps the significant CpG probe names to Entrez Gene IDs, as well as all the CpG sites tested. It also calculates the numbers of probes for gene. Input CpGs are able to be restricted by genomic features using the genomic.features argument.

Genes associated with each CpG site are obtained from the annotation package IlluminaHumanMethylation450kanno.ilmn12.hg19 if the array type is "450K". For the EPIC array, the annotation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19 is used. To use a different annotation package, please supply it using the anno argument.
Value

A list with the following elements

- sig.eg: mapped Entrez Gene IDs for the significant probes
- universe: mapped Entrez Gene IDs for all probes on the array, or for all the CpG probes tested.
- freq: table output with numbers of probes associated with each gene
- equiv: table output with equivalent numbers of probes associated with each gene taking into account multi-gene bias
- de: a vector of ones and zeroes of the same length of universe indicating which genes in the universe are significantly differentially methylated.
- fract.counts: a dataframe with 2 columns corresponding to the Entrez Gene IDS for the significant probes and the associated weight to account for multi-gene probes.

Author(s)

Belinda Phipson

See Also

gometh, gsameth

Examples

```r
## Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(org.Hs.eg.db)
library(limma)
ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)

# Randomly select 1000 CpGs to be significantly differentially methylated
sigcpgs <- sample(rownames(ann), 1000, replace = FALSE)

# All CpG sites tested
allcpgs <- rownames(ann)

mappedEz <- getMappedEntrezIDs(sigcpgs, allcpgs, array.type = "450K")
names(mappedEz)

# Entrez IDs of the significant genes
mappedEz$sig.eg[1:10]

# Entrez IDs for the universe
mappedEz$universe[1:10]

# Number of CpGs per gene
mappedEz$freq[1:10]

# Equivalent numbers of CpGs measured per gene
mappedEz$equiv[1:10]

A vector of 0s and 1s indicating which genes in the universe are significant
mappedEz$de[1:10]

## End(Not run)
```
gometh

Gene ontology testing for Illumina methylation array data

Description

Tests gene ontology enrichment for significant CpGs from Illumina's Infinium HumanMethylation450 or MethylationEPIC array, taking into account two different sources of bias: 1) the differing number of probes per gene present on the array, and 2) CpGs that are annotated to multiple genes.

Usage

```r
gometh(
  sig.cpg,
  all.cpg = NULL,
  collection = c("GO", "KEGG"),
  array.type = c("450K", "EPIC"),
  plot.bias = FALSE,
  prior.prob = TRUE,
  anno = NULL,
  equiv.cpg = TRUE,
  fract.counts = TRUE,
  genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR", "ExonBnd"),
  sig.genes = FALSE
)
```

Arguments

- **sig.cpg**: Character vector of significant CpG sites to test for GO term enrichment.
- **all.cpg**: Character vector of all CpG sites tested. Defaults to all CpG sites on the array.
- **collection**: The collection of pathways to test. Options are "GO" and "KEGG". Defaults to "GO".
- **array.type**: The Illumina methylation array used. Options are "450K" or "EPIC". Defaults to "450K".
- **plot.bias**: Logical, if true a plot showing the bias due to the differing numbers of probes per gene will be displayed.
- **prior.prob**: Logical, if true will take into account the probability of significant differential methylation due to numbers of probes per gene. If false, a hypergeometric test is performed ignoring any bias in the data.
- **anno**: Optional. A DataFrame object containing the complete array annotation as generated by the `minfi getAnnotation` function. Speeds up execution, if provided.
- **equiv.cpg**: Logical, if true then equivalent numbers of cpgs are used for odds calculation rather than total number cpgs. Only used if `prior.prob=TRUE`.
- **fract.counts**
- **genomic.features**
fract.counts Logical, if true then fractional counting of CpGs is used to account for CpGs that are annotated to multiple genes. Only used if `prior.prob=TRUE`.

genomic.features Character vector or scalar indicating whether the gene set enrichment analysis should be restricted to CpGs from specific genomic locations. Options are "ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR", "ExonBnd", and the user can select any combination. Defaults to "ALL".

sig.genes Logical, if true then the significant differentially methylated genes that overlap with the gene set of interest is outputted as the final column in the results table. Default is FALSE.

Details

This function takes a character vector of significant CpG sites, maps the CpG sites to Entrez Gene IDs, and tests for GO term or KEGG pathway enrichment using a Wallenius' non central hypergeometric test, taking into account the number of CpG sites per gene on the 450K/EPIC array and multi-gene annotated CpGs. Geeleher et al. (2013) showed that a severe bias exists when performing gene set analysis for genome-wide methylation data that occurs due to the differing numbers of CpG sites profiled for each gene. *gometh* is based on the *goseq* method (Young et al., 2010), and is a modification of the *goana* function in the *limma* package. If `prior.prob` is set to FALSE, then prior probabilities are not used and it is assumed that each gene is equally likely to have a significant CpG site associated with it.

The testing now also takes into account that some CpGs are annotated to multiple genes. For a small number of gene families, this previously caused their associated GO categories/gene sets to be erroneously overrepresented and thus highly significant. If `fract.counts=FALSE` then CpGs are allowed to map to multiple genes (this is NOT recommended).

A new feature of *gometh* and *gsameth* is the ability to restrict the input CpGs by genomic feature with the argument `genomic.features`. The possible options include "ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR" and "ExonBnd", and the user may specify any combination. Please note that "ExonBnd" is not an annotated feature on 450K arrays. For example if you are interested in the promoter region only, you could specify `genomic.features = c("TSS1500", "TSS200", "1stExon")`.

The default behaviour is to test all input CpGs `sig.cpg` even if the user specifies "ALL" and one or more other features.

Genes associated with each CpG site are obtained from the annotation package *IlluminaHumanMethylation450kanno.ilmn12.hg19* if the array type is "450K". For the EPIC array, the annotation package *IlluminaHumanMethylationEPICanno.ilm10b4.hg19* is used. To use a different annotation package, please supply it using the anno argument.

If you are interested in which genes overlap with the genes in the gene set, setting `sig.genes` to TRUE will output an additional column in the results data frame that contains all the significant differentially methylated gene symbols, comma separated. The default is FALSE.

In order to get a list which contains the mapped Entrez gene IDs, please use the `getMappedEntrezIDs` function. *gometh* tests all GO or KEGG terms, and false discovery rates are calculated using the method of Benjamini and Hochberg (1995). The `topGSA` function can be used to display the top 20 most enriched pathways.

For more generalised gene set testing where the user can specify the gene set/s of interest to be tested, please use the `gsameth` function. If you are interested in performing gene set testing following a region analysis, then the functions `goregion` and `gsaregion` can be used.
Value

A data frame with a row for each GO or KEGG term and the following columns:

- **Term**: GO term if testing GO pathways
- **Ont**: ontology that the GO term belongs to if testing GO pathways. "BP" - biological process, "CC" - cellular component, "MF" - molecular function.
- **Pathway**: the KEGG pathway being tested if testing KEGG terms.
- **N**: number of genes in the GO or KEGG term
- **DE**: number of genes that are differentially methylated
- **P.DE**: p-value for over-representation of the GO or KEGG term
- **FDR**: False discovery rate
- **SigGenesInSet**: Significant differentially methylated genes overlapping with the gene set of interest.

Author(s)

Belinda Phipson

References

See Also

- gometh, goregion, gsaregion, getMappedEntrezIDs

Examples

```r
## Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(limma)
ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
# Randomly select 1000 CpGs to be significantly differentially methylated
sigcpgs <- sample(rownames(ann),1000,replace=FALSE)
```
All CpG sites tested
allcpgs <- rownames(ann)

GO testing with prior probabilities taken into account
Plot of bias due to differing numbers of CpG sites per gene
gst <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",
 plot.bias = TRUE, prior.prob = TRUE, anno = ann)

Total number of GO categories significant at 5% FDR
table(gst$FDR<0.05)

Table of top GO results
topGSA(gst)

GO testing ignoring bias
gst.bias <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",
 prior.prob = FALSE, anno = ann)

Total number of GO categories significant at 5% FDR ignoring bias
table(gst.bias$FDR<0.05)

Table of top GO results ignoring bias
topGSA(gst.bias)

GO testing ignoring multi-mapping CpGs
gst.multi <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "GO",
 plot.bias = TRUE, prior.prob = TRUE, fract.counts = FALSE,
 anno = ann)
topGSA(gst.multi, n=10)

Restrict to CpGs in promoter regions
gst.promoter <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs,
 collection = "GO", anno = ann,
 genomic.features=c("TSS200", "TSS1500", "1stExon"))
topGSA(gst.promoter)

KEGG testing
kegg <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = "KEGG",
 prior.prob = TRUE, anno = ann)

Table of top KEGG results
topGSA(kegg)

Add significant genes to KEGG output
kegg.siggenes <- gometh(sig.cpg = sigcpgs, all.cpg = allcpgs,
 collection = "KEGG", anno = ann, sig.genes = TRUE)

Output top 5 KEGG pathways
topGSA(kegg.siggenes, n=5)

End(Not run)
Description

Tests gene ontology or KEGG pathway enrichment for differentially methylated regions (DMRs) identified from Illumina’s Infinium HumanMethylation450 or MethylationEPIC array, taking into account the differing number of probes per gene present on the array.

Usage

goregion(
 regions,
 all.cpg = NULL,
 collection = c("GO", "KEGG"),
 array.type = c("450K", "EPIC"),
 plot.bias = FALSE,
 prior.prob = TRUE,
 anno = NULL,
 equiv.cpg = TRUE,
 fract.counts = TRUE,
 genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3\'UTR", "5\'UTR", "ExonBnd"),
 sig.genes = FALSE
)

Arguments

- **regions**: GRanges object of DMR coordinates to test for GO term enrichment.
- **all.cpg**: Character vector of all CpG sites tested. Defaults to all CpG sites on the array.
- **collection**: The collection of pathways to test. Options are "GO" and "KEGG". Defaults to "GO".
- **array.type**: The Illumina methylation array used. Options are "450K" or "EPIC". Defaults to "450K".
- **plot.bias**: Logical, if true a plot showing the bias due to the differing numbers of probes per gene will be displayed.
- **prior.prob**: Logical, if true will take into account the probability of significant differentially methylation due to numbers of probes per gene. If false, a hypergeometric test is performed ignoring any bias in the data.
- **anno**: Optional. A DataFrame object containing the complete array annotation as generated by the `minfi::getAnnotation` function. Speeds up execution, if provided.
- **equiv.cpg**: Logical, if true then equivalent numbers of cpgs are used for odds calculation rather than total number cpgs. Only used if `prior.prob=TRUE`.
- **fract.counts**: Logical, if true then fractional counting of cpgs is used to account for cpgs that map to multiple genes. Only used if `prior.prob=TRUE`.
- **genomic.features**: Character vector or scalar indicating whether the gene set enrichment analysis should be restricted to CpGs from specific genomic locations. Options are "ALL", "TSS200", "TSS1500", "Body", "1stExon", "3\'UTR", "5\'UTR", "ExonBnd"; and the user can select any combination. Defaults to "ALL".
goregion

sig.genes Logical, if true then the significant differentially methylated genes that overlap with the gene set of interest is outputted as the final column in the results table. Default is FALSE.

Details

This function takes a GRanges object of DMR coordinates, maps them to CpG sites on the array and then to Entrez Gene IDs, and tests for GO term or KEGG pathway enrichment using Wallenius’ noncentral hypergeometric test, taking into account the number of CpG sites per gene on the 450K/EPIC array. If prior.prob is set to FALSE, then prior probabilities are not used and it is assumed that each gene is equally likely to have a significant CpG site associated with it. Please note that we have tested goregion and gsaregion extensively using the DMRCate package to identify differentially methylated regions (Peters, et al., 2015).

The testing now also takes into account that some CpGs map to multiple genes. For a small number of gene families, this previously caused their associated GO categories/gene sets to be erroneously overrepresented and thus highly significant. If fract.counts=FALSE then CpGs are allowed to map to multiple genes (this is NOT recommended).

Genes associated with each CpG site are obtained from the annotation package IlluminaHumanMethylation450kanno.ilmn12.hg19 if the array type is "450K". For the EPIC array, the annotation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19 is used. To use a different annotation package, please supply it using the anno argument.

In order to get a list which contains the mapped Entrez gene IDS, please use the getMappedEntrezIDs function. goregion tests all GO or KEGG terms, and false discovery rates are calculated using the method of Benjamini and Hochberg (1995). The topGSA function can be used to display the top 20 most enriched pathways.

If you are interested in which genes overlap with the genes in the gene set, setting sig.genes to TRUE will output an additional column in the results data frame that contains all the significant differentially methylated gene symbols, comma separated. The default is FALSE.

For more generalised gene set testing where the user can specify the gene set/s of interest to be tested, please use the gsaregion function.

Value

A data frame with a row for each GO or KEGG term and the following columns:

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>GO term if testing GO pathways</td>
</tr>
<tr>
<td>Ont</td>
<td>ontology that the GO term belongs to if testing GO pathways. "BP" - biological process, "CC" - cellular component, "MF" - molecular function.</td>
</tr>
<tr>
<td>Pathway</td>
<td>the KEGG pathway being tested if testing KEGG terms.</td>
</tr>
<tr>
<td>N</td>
<td>number of genes in the GO or KEGG term</td>
</tr>
<tr>
<td>DE</td>
<td>number of genes that are differentially methylated</td>
</tr>
<tr>
<td>P.DE</td>
<td>p-value for over-representation of the GO or KEGG term term</td>
</tr>
<tr>
<td>FDR</td>
<td>False discovery rate</td>
</tr>
<tr>
<td>SigGenesInSet</td>
<td>Significant differentially methylated genes overlapping with the gene set of interest.</td>
</tr>
</tbody>
</table>
Author(s)
Jovana Maksimovic

References

See Also
gometh,gsameth,gsaregion

Examples
Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
library(limma)
library(DMRcate)
library(ExperimentHub)

Follow the example for the dmrcate function to get some EPIC data from
ExperimentHub
eh <- ExperimentHub()
FlowSorted.Blood.EPIC <- eh["EH1136"]
tcell <- FlowSorted.Blood.EPIC[,colData(FlowSorted.Blood.EPIC)$CD4T==100 |
 colData(FlowSorted.Blood.EPIC)$CD8T==100]
detP <- detectionP(tcell)
remove <- apply(detP, 1, function (x) any(x > 0.01))
tcell <- tcell[!remove,]
tcell <- preprocessFunnorm(tcell)
#Subset to chr2 only
tcell <- tcell[seqnames(tcell) == "chr2",]
tcellms <- getM(tcell)
tcellms.noSNPs <- rmSNPandCH(tcellms, dist=2, mafcut=0.05)
tcell$Replicate[tcell$Replicate=="] <- tcell$Sample_Name[tcell$Replicate=="]
goregion

```r
tcellms.noSNPs <- avearrays(tcellms.noSNPs, tcell$Replicate)
tcell <- tcell[,!duplicated(tcell$Replicate)]
tcell <- tcell[rownames(tcellms.noSNPs),]
colnames(tcellms.noSNPs) <- colnames(tcell)
assays(tcell)["M"] <- tcellms.noSNPs
assays(tcell)["Beta"] <- ilogit2(tcellms.noSNPs)

# Perform region analysis
type <- factor(tcell$CellType)
design <- model.matrix(~type)
myannotation <- cpg.annotate("array", tcell, arraytype = "EPIC",
                           analysis.type="differential", design=design,
                           coef=2)
# Run DMRCate with beta value cut-off filter of 0.1
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2, betacutoff = 0.1)
regions <- extractRanges(dmrcoutput)
length(regions)

ann <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
# All CpG sites tested (limited to chr 2)
allcpgs <- rownames(tcell)
# GO testing with prior probabilities taken into account
# Plot of bias due to differing numbers of CpG sites per gene
gst <- goregion(regions = regions, all.cpg = allcpgs, collection = "GO",
                 array.type = "EPIC", plot.bias = TRUE, prior.prob = TRUE,
                 anno = ann)
# Table of top GO results
topGSA(gst, n=10)

# KEGG testing
kegg <- goregion(regions = regions, all.cpg = allcpgs, collection = "KEGG",
                 array.type = "EPIC", prior.prob=TRUE, anno = ann)
# Table of top KEGG results
topGSA(kegg, n=10)

# Restrict to promoter regions
gst.prom <- goregion(regions = regions, all.cpg = allcpgs, collection = "GO",
                     array.type = "EPIC", plot.bias = TRUE, prior.prob = TRUE,
                     anno = ann, genomic.features = c("TSS200","TSS1500"))
topGSA(gst.prom, n=10)

# Add significant genes in gene set to KEGG output
kegg <- goregion(regions = regions, all.cpg = allcpgs, collection = "KEGG",
                 array.type = "EPIC", prior.prob=TRUE, anno = ann,
                 sig.genes = TRUE)
# Table of top KEGG results
topGSA(kegg, n=5)

## End(Not run)
```


Description

Given a user specified list of gene sets to test, gsameth tests whether significantly differentially methylated CpG sites are enriched in these gene sets.

Usage

gsameth(
 sig.cpg,
 all.cpg = NULL,
 collection,
 array.type = c("450K", "EPIC"),
 plot.bias = FALSE,
 prior.prob = TRUE,
 anno = NULL,
 equiv.cpg = TRUE,
 fract.counts = TRUE,
 genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR",
 "ExonBnd"),
 sig.genes = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sig.cpg</td>
<td>Character vector of significant CpG sites to test for gene set enrichment.</td>
</tr>
<tr>
<td>all.cpg</td>
<td>Character vector of all CpG sites tested. Defaults to all CpG sites on the array.</td>
</tr>
<tr>
<td>collection</td>
<td>A list of user specified gene sets to test. Can also be a single character vector gene set. Gene identifiers must be Entrez Gene IDs.</td>
</tr>
<tr>
<td>array.type</td>
<td>The Illumina methylation array used. Options are "450K" or "EPIC". Defaults to "450K".</td>
</tr>
<tr>
<td>plot.bias</td>
<td>Logical, if true a plot showing the bias due to the differing numbers of probes per gene will be displayed</td>
</tr>
<tr>
<td>prior.prob</td>
<td>Logical, if true will take into account the probability of significant differentially methylated due to numbers of probes per gene. If false, a hypergeometric test is performed ignoring any bias in the data.</td>
</tr>
<tr>
<td>anno</td>
<td>Optional. A DataFrame object containing the complete array annotation as generated by the minfi getAnnotation function. Speeds up execution, if provided.</td>
</tr>
<tr>
<td>equiv.cpg</td>
<td>Logical, if true then equivalent numbers of cgps are used for odds calculation rather than total number cgps. Only used if prior.probdTRUE.</td>
</tr>
<tr>
<td>fract.counts</td>
<td>Logical, if true then fractional counting of cgps is used to account for cgps that map to multiple genes. Only used if prior.probdTRUE.</td>
</tr>
</tbody>
</table>
gsameth

genomic.features
Character vector or scalar indicating whether the gene set enrichment analysis should be restricted to CpGs from specific genomic locations. Options are "ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR", "ExonBnd"; and the user can select any combination. Defaults to "ALL".

sig.genes
Logical, if true then the significant differentially methylated genes that overlap with the gene set of interest is outputted as the final column in the results table. Default is FALSE.

Details

This function extends gometh, which only tests GO and KEGG pathways. gsameth can take a list of user specified gene sets and test whether the significant CpG sites are enriched in these pathways. gsameth maps the CpG sites to Entrez Gene IDs and tests for pathway enrichment using Wallenius' concentration hypergeometric test, taking into account the number of CpG sites per gene on the 450K/EPIC arrays. Please note the gene ids for the collection of gene, sets must be Entrez Gene IDs. If prior.prob is set to FALSE, then prior probabilities are not used and it is assumed that each gene is equally likely to have a significant CpG site associated with it.

The testing now also takes into account that some CpGs map to multiple genes. For a small number of gene families, this previously caused their associated GO categories/gene sets to be erroneously overrepresented and thus highly significant. If fract.counts=FALSE then CpGs are allowed to map to multiple genes (this is NOT recommended).

A new feature of gometh and gsameth is the ability to restrict the input CpGs by genomic feature with the argument genomic.features. The possible options include "ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR" and "ExonBnd", and the user may specify any combination. Please note that "ExonBnd" is not an annotated feature on 450K arrays. For example if you are interested in the promoter region only, you could specify genomic.features = c("TSS1500", "TSS200", "1stExon"). The default behaviour is to test all input CpGs sig.cpg even if the user specifies "ALL" and one or more other features.

Genes associated with each CpG site are obtained from the annotation package IlluminaHumanMethylation450kanno.ilmn12.hg19 if the array type is "450K". For the EPIC array, the annotation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19 is used. To use a different annotation package, please supply it using the anno argument.

In order to get a list which contains the mapped Entrez gene IDS, please use the getMappedEntrezIDs function.

If you are interested in which genes overlap with the genes in the gene set, setting sig.genes to TRUE will output an additional column in the results data frame that contains all the significant differentially methylated gene symbols, comma separated. The default is FALSE.

Value

A data frame with a row for each gene set and the following columns:

- N: number of genes in the gene set
- DE: number of genes that are differentially methylated
- P.DE: p-value for over-representation of the gene set
SigGenesInSet Significant differentially methylated genes overlapping with the gene set of interest.

Author(s)

Belinda Phipson

References

See Also
gometh, getMappedEntrezIDs

Examples

```r
## Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(org.Hs.eg.db)
library(limma)
ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)
# Randomly select 1000 CpGs to be significantly differentially methylated
sigcpgs <- sample(rownames(ann),1000,replace=FALSE)
# All CpG sites tested
allcpgs <- rownames(ann)
# Use org.Hs.eg.db to extract a GO term
GOtoID <- suppressMessages(select(org.Hs.eg.db, keys=keys(org.Hs.eg.db),
columns=c("ENTREZID","GO"),
keytype="ENTREZID"))
setname1 <- GOtoID$GO[1]
setname1
keep.set1 <- GOtoID$GO %in% setname1
set1 <- GOtoID$ENTREZID[keep.set1]
setname2 <- GOtoID$GO[2]
setname2
keep.set2 <- GOtoID$GO %in% setname2
set2 <- GOtoID$ENTREZID[keep.set2]
```
Make the gene sets into a list
sets <- list(set1, set2)
names(sets) <- c(setname1,setname2)
Testing with prior probabilities taken into account
Plot of bias due to differing numbers of CpG sites per gene
gst <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,
 plot.bias = TRUE, prior.prob = TRUE)
topGSA(gst)
Add significant gene symbols in each set to output
gst <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,
 plot.bias = TRUE, prior.prob = TRUE, sig.genes = TRUE)
topGSA(gst)
Testing ignoring bias
gst.bias <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,
 prior.prob = FALSE)
topGSA(gst.bias)
Restrict to CpGs in gene bodies
gst.body <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,
 genomic.features = "Body")
topGSA(gst.body)

End(Not run)

gsaregion

Generalised gene set testing for Illumina’s methylation array data

Description

Given a user specified list of gene sets to test, gsaregion tests whether differentially methylated regions (DMRs) identified from Illumina’s Infinium HumanMethylation450 or MethylationEPIC array are enriched, taking into account the differing number of probes per gene present on the array.

Usage

```r
gsaregion(
    regions,  
    all.cpg = NULL, 
    collection, 
    array.type = c("450K", "EPIC"), 
    plot.bias = FALSE, 
    prior.prob = TRUE, 
    anno = NULL, 
    equiv.cpg = TRUE, 
    fract.counts = TRUE,
)```
gsaregion

```r
genomic.features = c("ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR", "ExonBnd"),
sig.genes = FALSE
```

**Arguments**

- `regions` **GRanges** Object of DMR coordinates to test for GO term enrichment.
- `all.cpg` Character vector of all CpG sites tested. Defaults to all CpG sites on the array.
- `collection` A list of user specified gene sets to test. Can also be a single character vector gene set. Gene identifiers must be Entrez Gene IDs.
- `array.type` The Illumina methylation array used. Options are "450K" or "EPIC". Defaults to "450K".
- `plot.bias` Logical, if true a plot showing the bias due to the differing numbers of probes per gene will be displayed.
- `prior.prob` Logical, if true will take into account the probability of significant differentially methylation due to numbers of probes per gene. If false, a hypergeometric test is performed ignoring any bias in the data.
- `anno` Optional. A DataFrame object containing the complete array annotation as generated by the `minfi` `getAnnotation` function. Speeds up execution, if provided.
- `equiv.cpg` Logical, if true then equivalent numbers of cpgs are used for odds calculation rather than total number cpgs. Only used if `prior.prob=TRUE`.
- `fract.counts` Logical, if true then fractional counting of cpgs is used to account for cpgs that map to multiple genes. Only used if `prior.prob=TRUE`.
- `genomic.features` Character vector or scalar indicating whether the gene set enrichment analysis should be restricted to CpGs from specific genomic locations. Options are "ALL", "TSS200", "TSS1500", "Body", "1stExon", "3'UTR", "5'UTR", "ExonBnd"; and the user can select any combination. Defaults to "ALL".
- `sig.genes` Logical, if true then the significant differentially methylated genes that overlap with the gene set of interest is outputted as the final column in the results table. Default is FALSE.

**Details**

This function extends `goregion`, which only tests GO and KEGG pathways. `gsaregion` can take a list of user specified gene sets and test whether the significant DMRs are enriched in these pathways. This function takes a GRanges object of DMR coordinates, maps them to CpG sites on the array and then to Entrez Gene IDs, and tests for enrichment using Wallenius' noncentral hypergeometric test, taking into account the number of CpG sites per gene on the 450K/EPIC array. If `prior.prob` is set to FALSE, then prior probabilities are not used and it is assumed that each gene is equally likely to have a significant CpG site associated with it.

The testing now also takes into account that some CpGs map to multiple genes. For a small number of gene families, this previously caused their associated GO categories/gene sets to be erroneously overrepresented and thus highly significant. If `fract.counts=FALSE` then CpGs are allowed to map to multiple genes (this is NOT recommended).
Genes associated with each CpG site are obtained from the annotation package `IlluminaHumanMethylation450kanno.ilmn12.hg19` if the array type is "450K". For the EPIC array, the annotation package `IlluminaHumanMethylationEPICanno.ilm10b4.hg19` is used. To use a different annotation package, please supply it using the `anno` argument.

In order to get a list which contains the mapped Entrez gene IDs, please use the `getMappedEntrezIDs` function. The `topGSA` function can be used to display the top 20 most enriched pathways.

If you are interested in which genes overlap with the genes in the gene set, setting `sig.genes` to TRUE will output an additional column in the results data frame that contains all the significant differentially methylated gene symbols, comma separated. The default is FALSE.

**Value**

A data frame with a row for each gene set and the following columns:

- `N`: number of genes in the gene set
- `DE`: number of genes that are differentially methylated
- `P.DE`: p-value for over-representation of the gene set
- `SigGenesInSet`: Significant differentially methylated genes overlapping with the gene set of interest.

**Author(s)**

Jovana Maksimovic

**References**


**See Also**

gometh, goregion, gsameth, getMappedEntrezIDs
## Not run: # to avoid timeout on Bioconductor build
library(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
library(limma)
library(DMRcate)
library(ExperimentHub)
library(org.Hs.eg.db)

# Follow the example for the dmrcate function to get some EPIC data from ExperimentHub
eh <- ExperimentHub()
FlowSorted.Blood.EPIC <- eh["EH1136"]
detP <- detectionP(tcell)
remove <- apply(detP, 1, function (x) any(x > 0.01))
tcell <- tcell[!remove,]
tcell <- preprocessFunnorm(tcell)
#Subset to chr2 only
tcell <- tcell[seqnames(tcell) == "chr2",]
tcelms <- getM(tcell)
tcelms.noSNPs <- rmSNPandCH(tcelms, dist=2, mafcut=0.05)
tcelms$Replicate[is.na(tcelms$Replicate)] <- tcelms$Sample_Name[tcelms$Replicate==""]
tcelms.noSNPs <- avearrays(tcelms.noSNPs, tcelms$Replicate)
tcell <- tcell[,!duplicated(tcell$Replicate)]
tcell <- tcell[rownames(tcelms.noSNPs),]
colnames(tcelms.noSNPs) <- colnames(tcell)
assays(tcell)[["M"]]<- tcelms.noSNPs
assays(tcell)[["Beta"]]<- ilogit2(tcelms.noSNPs)

# Perform region analysis
type <- factor(tcell$CellType)
design <- model.matrix(~type)
myannotation <- cpg.annotate("array", tcell, arraytype = "EPIC",
analysis.type="differential", design=design, coef=2)
# Run DMRCate with beta value cut-off filter of 0.1
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2, betacutoff = 0.1)
regions <- extractRanges(dmrcoutput)
length(regions)
ann <- getAnnotation(IlluminaHumanMethylationEPICanno.ilm10b4.hg19)
# All CpG sites tested (limited to chr 2)
allcpgs <- rownames(tcell)
# Use org.Hs.eg.db to extract a GO term
GOToID <- suppressMessages(select(org.Hs.eg.db, keys=keys(org.Hs.eg.db),
columns=c("ENTREZID","GO"),
keytype="ENTREZID"))
keep.set1 <- GOToID$GO %in% "GO:0010951"
set1 <- GOToID$ENTREZID[keep.set1]
keep.set2 <- GOToID$GO %in% "GO:0042742"
set2 <- GOToID$ENTREZID[keep.set2]
```r
keep.set3 <- GOtoID$GO %in% "GO:0031295"
set3 <- GOtoID$ENTREZID[keep.set3]
Make the gene sets into a list
sets <- list(set1, set2, set3)
names(sets) <- c("GO:0010951","GO:0042742","GO:0031295")

Testing with prior probabilities taken into account
Plot of bias due to differing numbers of CpG sites per gene
gst <- gsaregion(regions = regions, all.cpg = allcpgs, collection = sets,
 array.type = "EPIC", plot.bias = TRUE, prior.prob = TRUE,
 anno = ann)
topGSA(gst)

Add significant genes in gene set to output
gst <- gsaregion(regions = regions, all.cpg = allcpgs, collection = sets,
 array.type = "EPIC", plot.bias = TRUE, prior.prob = TRUE,
 anno = ann, sig.genes = TRUE)
topGSA(gst)
```

### Description

Given a user defined list of gene sets, `gsaseq` will test whether significantly differentially expressed genes are enriched in these gene sets.

### Usage

```r
gsaseq(
 sig.de, # Character vector of significant differentially expressed genes to test for gene set enrichment. Must be Entrez Gene ID format.
 universe, # Character vector of all genes analysed in the experiment. Must be Entrez Gene ID format.
 collection, # A list of user specified gene sets to test. Can also be a single character vector gene set. Gene identifiers must be Entrez Gene IDs.
 plot.bias = FALSE, # Whether to plot bias due to differing numbers of CpG sites per gene
 gene.length = NULL, # Whether to sort gene sets by length
 sort = TRUE # Whether to sort gene sets
)
```

### Arguments

- **sig.de**: Character vector of significant differentially expressed genes to test for gene set enrichment. Must be Entrez Gene ID format.
- **universe**: Character vector of all genes analysed in the experiment. Must be Entrez Gene ID format.
- **collection**: A list of user specified gene sets to test. Can also be a single character vector gene set. Gene identifiers must be Entrez Gene IDs.
plot.bias Logical, if true a plot showing gene length bias related to differential expression will be displayed.

gene.length A vector containing the gene lengths for each gene in the same order as universe.

sort Logical, if TRUE then the output dataframe is sorted by p-value.

Details

This function is a generalised version of goana and kegga from the limma package in that it can take a user-defined list of differentially expressed genes and perform gene set enrichment analysis, and is not limited to only testing GO and KEGG categories. It is not as flexible as goana and kegga. Please note the vector of differentially expressed genes and list of gene sets must be Entrez Gene IDs.

The gsaseq function will test for enrichment using a hypergeometric test if the gene.length parameter is NULL. If the gene.length parameter is supplied then the p-values are derived from Wallenius' noncentral hypergeometric distribution from the BiasedUrn package. Please note that the gene.length parameter must be in the same order and of the same length as the universe parameter.

Value

A data frame with a row for each gene set and the following columns:

N number of genes in the gene set
DE number of genes that are differentially expressed
P.DE p-value for over-representation of the gene set

Author(s)

Belinda Phipson

See Also

goana,kegga,camera,roast

Examples

## Not run: # to avoid timeout on Bioconductor build
library(org.Hs.eg.db)
# Use org.Hs.eg.db to extract GO terms
GOtoID <- suppressMessages(select(org.Hs.eg.db, keys=keys(org.Hs.eg.db),
 columns=c("ENTREZID","GO"),
 keytype="ENTREZID"))
head(GOtoID)

# Define the universe as random sample of 20000 genes in the annotation
universe <- sample(unique(GOtoID$ENTREZID),20000)
# Randomly sample 500 genes as DE
de.genes <- sample(universe, 500)

# Generate random gene lengths for genes in universe
# This is based on the true distribution of log(gene length) of genes in the
# hg19 genome
logGL <- rnorm(length(universe), mean=7.9, sd=1.154)
genelength <- exp(logGL)

# Define a list of gene sets containing two GO terms
setname1 <- GOtoID$GO[1]
setname1
keep.set1 <- GOtoID$GO %in% setname1
set1 <- GOtoID$ENTREZID[keep.set1]
setname2 <- GOtoID$GO[2]
setname2
keep.set2 <- GOtoID$GO %in% setname2
set2 <- GOtoID$ENTREZID[keep.set2]

# Make the gene sets into a list
sets <- list(set1, set2)
names(sets) <- c(setname1, setname2)

# Test for enrichment of gene sets with no gene length bias
# The genes are randomly selected so we don't expect significant results
gsaseq(sig.de = de.genes, universe = universe, collection = sets)

# Test for enrichment of gene sets taking into account gene length bias
# Since the gene lengths are randomly generated this shouldn't make much
# difference to the results
# Using log(gene length) or gene length doesn't make a difference to the
# p-values because the probability weighting function is transformation
# invariant
gsaseq(sig.de = de.genes, universe = universe, collection = sets,
gene.length = genelength)

## End(Not run)

---

**RUVadj**

**RUV adjust**

**Description**

Post-process and summarize the results of call to `RUVfit`.

**Usage**

```r
RUVadj(
 Y,
 fit,
)```
```r
var.type = c("ebayes", "standard", "pooled"),
p.type = c("standard", "rsvar", "evar"),
cpginfo = NULL,
...
)
```

Arguments

- **Y**
 - The original data matrix used in the call to `RUVfit`.
- **fit**
 - A RUV model fit (a list) as returned by `RUVfit`.
- **var.type**
 - Which type of estimate for sigma2 should be used from the call to `variance_adjust`? The options are "ebayes", "standard", or "pooled." See `variance_adjust` for details.
- **p.type**
 - Which type of p-values should be used from the call to `variance_adjust`? The options are "standard", "rsvar", or "evar".
- **cpginfo**
 - A matrix or dataframe containing information about the CpGs. This information is included in the summary that is returned.
- **...**
 - Other parameters that can be passed to `ruv` function `ruv_summary`.

Details

This function post-processes the results of a call to `RUVfit` and then summarizes the output. The post-processing step primarily consists of a call to `ruv_summary` and `variance_adjust`, which computes various adjustments to variances, t-statistics, and p-values. See `variance_adjust` for details. The `var.type` and `p.type` options determine which of these adjustments are used.

After post-processing, the results are summarized into a list containing 4 objects: 1) the data matrix `Y`; 2) a dataframe `R` containing information about the rows (samples); 3) a dataframe `C` containing information about the columns (features, e.g. genes), and 4) a list `misc` of other information returned by `RUVfit`.

Value

- **Y**
 - The original data matrix.
- **R**
 - A dataframe of sample-wise information, including `X`, `Z`, and any other data passed in with `rowinfo`.
- **C**
 - A dataframe of cpg-wise information, including p-values, estimated regression coefficients, estimated variances, column means, an index of the negative controls, and any other data passed in with `cpginfo`.
- **misc**
 - A list of additional information returned by `RUVfit`.

Author(s)

Jovana Maksimovic <jovana.maksimovic@mcri.edu.au>
References

Gagnon-Bartsch, Jacob, and Speed. 2013. Removing Unwanted Variation from High Dimensional Data with Negative Controls. Available at: http://statistics.berkeley.edu/tch-reports/820.

See Also

`MArrayLM, RUV2, RUV4, RUVinv, RUVinv, p.adjust, get_empirical_variances, sigmashrink`

Examples

```r
if(require(minfi) & require(minfiData) & require(limma)) {

  # Get methylation data for a 2 group comparison
  meth <- getMeth(MsetEx)
  unmeth <- getUnmeth(MsetEx)
  Mval <- log2((meth + 100)/(unmeth + 100))

  group<-factor(pData(MsetEx)$Sample_Group)
  design<-model.matrix(~group)

  # Perform initial analysis to empirically identify negative control features
  # when not known a priori
  lFit <- lmFit(Mval,design)
  lFit2 <- eBayes(lFit)
  lTop <- topTable(lFit2,coef=2,num=Inf)

  # The negative control features should *not* be associated with factor of
  # interest but *should* be affected by unwanted variation
  ctl <- rownames(Mval) %in% rownames(lTop[lTop$adj.P.Val > 0.5,])

  # Perform RUV adjustment and fit
  fit <- RUVfit(Y=Mval, X=group, ctl=ctl)
  fit2 <- RUVadj(Y=Mval, fit=fit)

  # Look at table of top results
  top <- topRUV(fit2)
}
```
RUVfit

Remove unwanted variation when testing for differential methylation

Description

Provides an interface similar to lmFit from limma to the RUV2, RUV4, RUVinv and RUVrinv functions from the ruv package, which facilitates the removal of unwanted variation in a differential methylation analysis. A set of negative control variables, as described in the references, must be specified.

Usage

RUVfit(
 Y,
 X,
 ctl,
 Z = 1,
 k = NULL,
 method = c("inv", "rinv", "ruv4", "ruv2"),
 ...
)

Arguments

Y numeric matrix with rows corresponding to the features of interest such as CpG sites and columns corresponding to samples or arrays.

X The factor(s) of interest. A m by p matrix, where m is the number of samples and p is the number of factors of interest. Very often p = 1. Factors and dataframes are also permissible, and converted to a matrix by design.matrix.

ctl logical vector, length == nrow(Y). Features that are to be used as negative control variables are indicated as TRUE, all other features are FALSE.

Z Any additional covariates to include in the model, typically a m by q matrix. Factors and dataframes are also permissible, and converted to a matrix by design.matrix. Alternatively, may simply be 1 (the default) for an intercept term. May also be NULL.

k integer, required if method is "ruv2" or "ruv4". Indicates the number of unwanted factors to use. Can be 0.

method character string, indicates which ruv method should be used.

... additional arguments that can be passed to RUV2, RUV4, RUVinv and RUVrinv. See linked function documentation for details.

Details

This function depends on the ruv package and is used to estimate and adjust for unwanted variation in a differential methylation analysis. Briefly, the unwanted factors W are estimated using negative
control variables. Y is then regressed on the variables X, Z, and W. For methylation data, the analysis is performed on the M-values, defined as the log base 2 ratio of the methylated signal to the unmethylated signal.

Value

A list containing:

- `betaHat`: The estimated coefficients of the factor(s) of interest. A $p \times n$ matrix.
- `sigma2`: Estimates of the features’ variances. A vector of length n.
- `t`: t statistics for the factor(s) of interest. A $p \times n$ matrix.
- `p`: P-values for the factor(s) of interest. A $p \times n$ matrix.
- `fstats`: F statistics for testing all of the factors in X simultaneously.
- `fpvals`: P-values for testing all of the factors in X simultaneously.
- `multiplier`: The constant by which $sigma2$ must be multiplied in order to get an estimate of the variance of `betaHat`.
- `df`: The number of residual degrees of freedom.
- `W`: The estimated unwanted factors.
- `alpha`: The estimated coefficients of W.
- `byx`: The coefficients in a regression of Y on X (after both Y and X have been “adjusted” for Z). Useful for projection plots.
- `bwx`: The coefficients in a regression of W on X (after X has been "adjusted" for $Z"). Useful for projection plots.
- `fullW0`: Can be used to speed up future calls of `RUVfit`.
- `include.intercept`: included. intercept. Included for reference.
- `method`: Character variable with value indicating which RUV method was used. Included for reference.

Author(s)

Jovana Maksimovic

References

SWAN

Subset-quantile Within Array Normalisation for Illumina Infinium HumanMethylation450 BeadChips

Description

Subset-quantile Within Array Normalisation (SWAN) is a within array normalisation method for the Illumina Infinium HumanMethylation450 platform. It allows Infinium I and II type probes on a single array to be normalized together.

Usage

SWAN(data, verbose = FALSE)

S3 method for class 'MethyLumiSet'
SWAN(data, verbose = FALSE)

S3 method for class 'RGChannelSet'
SWAN(data, verbose = FALSE)

Default S3 method:
SWAN(data, verbose = FALSE)
Arguments

data An object of class either MethylSet, RGChannelSet or MethyLumiSet.
verbose Should the function be verbose?

Details

The SWAN method has two parts. First, an average quantile distribution is created using a subset of probes defined to be biologically similar based on the number of CpGs underlying the probe body. This is achieved by randomly selecting N Infinium I and II probes that have 1, 2 and 3 underlying CpGs, where N is the minimum number of probes in the 6 sets of Infinium I and II probes with 1, 2 or 3 probe body CpGs. If no probes have previously been filtered out e.g. sex chromosome probes, etc. N=11,303. This results in a pool of 3N Infinium I and 3N Infinium II probes. The subset for each probe type is then sorted by increasing intensity. The value of each of the 3N pairs of observations is subsequently assigned to be the mean intensity of the two probe types for that row or ‘quantile’. This is the standard quantile procedure. The intensities of the remaining probes are then separately adjusted for each probe type using linear interpolation between the subset probes.

Value

An object of class MethylSet.
NULL
NULL
NULL

Note

SWAN uses a random subset of probes to perform the within-array normalization. In order to achieve reproducible results, the seed needs to be set using set.seed.

Author(s)

Jovana Maksimovic

References

See Also

RGChannelSet and MethylSet as well as MethyLumiSet and IlluminaMethylationManifest.

Examples

if (require(minfi) & require(minfiData)) {
 set.seed(100)
 datSwan1 <- SWAN(RGsetEx)
dat <- preprocessRaw(RGsetEx)
set.seed(100)
datSwan2 <- SWAN(dat)

head(getMeth(datSwan2)) == head(getMeth(datSwan1))
}

topGSA

Get table of top 20 enriched pathways

Description
After using gsameth, calling topGSA will output the top 20 most significantly enriched pathways.

Usage
topGSA(gsa, number = 20, sort = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gsa</td>
<td>Matrix, from output of gsameth.</td>
</tr>
<tr>
<td>number</td>
<td>Scalar, number of pathway results to output. Default is 20.</td>
</tr>
<tr>
<td>sort</td>
<td>Logical, should the table be ordered by p-value. Default is TRUE.</td>
</tr>
</tbody>
</table>

Details
This function will output the top 20 most significant pathways from a pathway analysis using the gsameth function. The output is ordered by p-value.

Value
A matrix ordered by P.DE, with a row for each gene set and the following columns:

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>number of genes in the gene set</td>
</tr>
<tr>
<td>DE</td>
<td>number of genes that are differentially methylated</td>
</tr>
<tr>
<td>P.DE</td>
<td>p-value for over-representation of the gene set</td>
</tr>
<tr>
<td>FDR</td>
<td>False discovery rate, calculated using the method of Benjamini and Hochberg (1995)</td>
</tr>
<tr>
<td>SigGenesInSet</td>
<td>Significant differentially methylated genes overlapping with the gene set of interest.</td>
</tr>
</tbody>
</table>

Author(s)
Belinda Phipson
See Also
gsameth

Examples

```r
library(IlluminaHumanMethylation450kanno.ilmn12.hg19)
library(org.Hs.eg.db)
library(limma)
ann <- getAnnotation(IlluminaHumanMethylation450kanno.ilmn12.hg19)

# Randomly select 1000 CpGs to be significantly differentially methylated
sigcpgs <- sample(rownames(ann), 1000, replace = FALSE)

# All CpG sites tested
allcpgs <- rownames(ann)

# Use org.Hs.eg.db to extract a GO term
GOtoID <- toTable(org.Hs.egGO2EG)
setname1 <- GOtoID$go_id[1]
set1 <- GOtoID$gene_id[GOtoID$go_id %in% setname1]
setname2 <- GOtoID$go_id[2]
set2 <- GOtoID$gene_id[GOtoID$go_id %in% setname2]

# Make the gene sets into a list
sets <- list(set1, set2)
names(sets) <- c(setname1, setname2)

# Testing with prior probabilities taken into account
# Plot of bias due to differing numbers of CpG sites per gene
gst <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,
plot.bias = TRUE, prior.prob = TRUE)
topGSA(gst)

# Testing ignoring bias
gst.bias <- gsameth(sig.cpg = sigcpgs, all.cpg = allcpgs, collection = sets,
prior.prob = FALSE)
topGSA(gst.bias)
```

description

Extract a table of the top-ranked CpGs from a linear model fit after performing a differential methylation analysis using RUVfit and RUVadj.
Usage

topRUV(fitsum, number = 10, sort.by = c("p", "F.p"), p.BH = 1)

Arguments

fitsum An object containing the summary fit object produced by RUVadj. The object should be a list.
number integer, maximum number of genes to list. Default is 10.
sort.by character string, what the results should be sorted by. Default is unadjusted p-value.
p.BH numeric, cutoff value for Benjamini-Hochberg adjusted p-values. Only features with lower p-values are listed. Must be between 0 and 1. Default is 1.

Details

This function summarises the results of a differential methylation analysis performed using RUVfit, followed by RUVadj. The top ranked CpGs are sorted by p-value.

Value

Produces a dataframe with rows corresponding to the top number CpGs and the following columns:

F.p F.p.BH p.X1 p.BH.X1 b.X1 sigma2 var.b.X1 fit.ctl mean

F.p P-values for testing all of the factors of interest simultaneously.
F.p.BH Benjamini-Hochberg adjusted p-values for testing all of the factors of interest simultaneously.
p.X1 p-values for the factor of interest.
p.BH.X1 Benjamini-Hochberg adjusted p-values for the factor of interest.
b.X1 The estimated coefficients of the factor of interest.
sigma2 Estimate of the methylation variance.
var.b.X1 Variance estimate of betahat.
fit.ctl logical, indicating whether CpG was designated as a negative control.
mean The mean methylation (M-value).

Author(s)

Jovana Maksimovic <jovana.maksimovic@mcri.edu.au>

References

Examples

```r
if(require(minfi) & require(minfiData) & require(limma)){

  # Get methylation data for a 2 group comparison
  meth <- getMeth(MsetEx)
  unmeth <- getUnmeth(MsetEx)
  Mval <- log2((meth + 100)/(unmeth + 100))

  group <- factor(pData(MsetEx)$Sample_Group)
  design <- model.matrix(~group)

  # Perform initial analysis to empirically identify negative control features
  # when *not* known a priori
  lFit <- lmFit(Mval,design)
  lFit2 <- eBayes(lFit)
  lTop <- topTable(lFit2,coef=2,num=Inf)

  # The negative control features should *not* be associated with factor of
  # interest but *should* be affected by unwanted variation
  ctl <- rownames(Mval) %in% rownames(lTop[lTop$adj.P.Val > 0.5,])

  # Perform RUV adjustment and fit
  fit <- RUVfit(Y=Mval, X=group, ctl=ctl)
  fit2 <- RUVadj(Y=Mval, fit=fit)

  # Look at table of top results
  top <- topRUV(fit2)
}
```

Description

Extract a table of the top-ranked CpGs from a linear model fit after a differential variability analysis.

Usage

```r
topVar(fit, coef = NULL, number = 10, sort = TRUE)
```

Arguments

- **fit**: List containing a linear model fit produced by varFit. The fit object should be of class MArrayLM.
coef
Column number or column name specifying which coefficient of the linear model fit is of interest. It should be the same coefficient that the differential variability testing was performed on. Default is last column of fit object.

number
Maximum number of genes to list. Default is 10.

sort
Logical, default is TRUE. Sorts output according to P-value. FALSE will return results in same order as fit object.

Details
This function summarises the results of a differential variability analysis performed with varFit. The p-values from the comparison of interest are adjusted using Benjamini and Hochberg’s false discovery rate with the function p.adjust. The top ranked CpGs are selected by first ranking the adjusted p-values, then ranking the raw p-values. At this time no other sorting option is catered for.

Value
Produces a dataframe with rows corresponding to the top CpGs and the following columns:

- genelist: one or more columns of annotation for each CpG, if the gene information is available in fit
- AvgVar: average of the absolute or squared Levene residuals across all samples
- DiffVar: estimate of the difference in the Levene residuals corresponding to the comparison of interest
- t: moderated t-statistic
- P.Value: raw p-value
- Adj.P.Value: adjusted p-value

Author(s)
Belinda Phipson

References

See Also
varFit, p.adjust
varFit

Examples

Randomly generate data for a 2 group problem with 100 CpG sites and 5
arrays in each group.

y<-matrix(rnorm(1000),ncol=10)

group<-factor(rep(c(1,2),each=5))
design<-model.matrix(~group)

Fit linear model for differential variability
vfit<-varFit(y,design)

Look at top table of results
topVar(vfit,coef=2)

varFit

Testing for differential variability

Description

Fit linear model on mean absolute or squared deviations for each CpG given a series of methylation
arrays

Usage

varFit(
 data,
 design = NULL,
 coef = NULL,
 type = NULL,
 trend = TRUE,
 robust = TRUE,
 weights = NULL
)

S3 method for class 'MethylSet'
varFit(
 data,
 design = NULL,
 coef = NULL,
 type = NULL,
 trend = TRUE,
 robust = TRUE,
 weights = NULL
)

S3 method for class 'DGEList'

Randomly generate data for a 2 group problem with 100 CpG sites and 5
arrays in each group.

y<-matrix(rnorm(1000),ncol=10)

group<-factor(rep(c(1,2),each=5))
design<-model.matrix(~group)

Fit linear model for differential variability
vfit<-varFit(y,design)

Look at top table of results
topVar(vfit,coef=2)
varFit(
 data,
 design = NULL,
 coef = NULL,
 type = NULL,
 trend = TRUE,
 robust = TRUE,
 weights = NULL
)

Default S3 method:
varFit(
 data,
 design = NULL,
 coef = NULL,
 type = NULL,
 trend = TRUE,
 robust = TRUE,
 weights = NULL
)

Arguments

data
Object of class `MethylSet` or matrix of M-values with rows corresponding to the features of interest such as CpG sites and columns corresponding to samples or arrays.

design
The design matrix of the experiment, with rows corresponding to arrays/samples and columns to coefficients to be estimated. Defaults to the unit vector.

coef
The columns of the design matrix containing the comparisons to test for differential variability. Defaults to all columns of design matrix.

type
Character string, "AD" for absolute residuals or "SQ" for squared residuals. Default is absolute.

trend
Logical, if true fits a mean variance trend on the absolute or squared deviations.

robust
Logical, if true performs robust empirical Bayes shrinkage of the variances for the moderated t statistics.

weights
Non-negative observation weights. Can be a numeric matrix of individual weights, of same size as the object matrix, or a numeric vector of array weights, or a numeric vector of gene/feature weights.

Details

This function depends on the `limma` package and is used to rank features such as CpG sites or genes in order of evidence of differential variability between different comparisons corresponding to the columns of the design matrix. A measure of variability is calculated for each CpG in each sample by subtracting out the group mean and taking the absolute or squared deviation. A linear model is then fitted to the absolute or squared deviations. The residuals of the linear model fit are subjected
to empirical Bayes shrinkage and moderated t statistics (Smyth, 2004) calculated. False discovery rates are calculated using the method of Benjamini and Hochberg (1995).

Please always specify the coef parameter in the call to \texttt{varFit}, which indicates which groups are to be tested for differential variability. If \texttt{coef} is not specified, then group means are estimated based on all the columns of the design matrix and subtracted out before testing for differential variability. If the design matrix contains nuisance parameters, then subsetting the design matrix columns by \texttt{coef} should remove these columns from the design matrix. If the design matrix includes an intercept term, this should be included in \texttt{coef}. The nuisance parameters are included in the linear model fit to the absolute or squared deviations, but should not be considered when subtracting group means to obtain the deviations. Note that design matrices without an intercept term are permitted, and specific contrasts tested using the function \texttt{contrasts.varFit}.

For methylation data, the analysis is performed on the M-values, defined as the log base 2 ratio of the methylated signal to the unmethylated signal. If a \texttt{MethylSet} object is supplied, M-values are extracted with an offset of 100 added to the numerator and denominator.

For testing differential variability on RNA-Seq data, a \texttt{DGEList} object can be supplied directly to the function. A \texttt{voom} transformation is applied before testing for differential variability. The weights calculated in \texttt{voom} are used in the linear model fit.

Since the output is of class \texttt{MArrayLM}, any functions that can be applied to fit objects from \texttt{lmFit} and \texttt{eBayes} can be applied, for example, \texttt{topTable} and \texttt{decideTests}.

\textbf{Value}

Produces an object of class \texttt{MArrayLM} (see \texttt{MArrayLM-class}) containing everything found in a fitted model object produced by \texttt{lmFit} and \texttt{eBayes} as well as a vector containing the sample CpG-wise variances and a matrix of LogVarRatios corresponding to the differential variability analysis.

\textbf{Author(s)}

Belinda Phipson

\textbf{References}

See Also

contrasts.varFit, topVar, getLeveneResiduals, lmFit, eBayes, topTable, decideTests, voom

Examples

Randomly generate data for a 2 group problem with 100 CpG sites and 5
arrays in each # group.

y<-matrix(rnorm(1000),ncol=10)

group<-factor(rep(c(1,2),each=5))
design<-model.matrix(~group)

Fit linear model for differential variability
vfit<-varFit(y,design,coef=c(1,2))

Look at top table of results
topVar(vfit,coef=2)
Index

camera, 28
contrasts.varFit, 3, 44
decideTests, 44
densityBeanPlot, 6
densityByProbeType, 5
densityPlot, 6
design.matrix, 32
eBayes, 44
get_empirical_variances, 31
getAdj, 6
getAnnotation, 10, 12, 16, 20, 24
getINCs, 7
getLeveneResiduals, 8, 44
getMappedEntrezIDs, 10, 14, 22, 25
goana, 28
gometh, 11, 12, 18, 22, 25
goregion, 14, 15, 25
gsameth, 11, 14, 18, 20, 25, 37
gsaregion, 14, 18, 23
gsaseq, 27

IlluminaMethylationManifest, 35

kegga, 28

legend, 5, 6
limma, 32
lmFit, 32, 44

MArrayLM, 6, 31, 39
MethylSet, 35
MethylLumiSet, 35
minfi, 10, 12, 16, 20, 24
missMethyl (missMethyl-package), 2
missMethyl-package, 2

p.adjust, 31
par, 6

RGChannelSet, 8, 35
roast, 28
ruv, 30, 32
RUV2, 31, 32, 34
RUV4, 31, 32, 34
ruv_summary, 30
RUVadj, 29, 39
RUVfit, 29, 30, 32, 39
RUVinv, 31, 32, 34
RUVrinv, 31, 32, 34

sigmaShrink, 31
SWAN, 5, 34
topGSA, 36
topRUV, 34, 37
topTable, 44
topVar, 39, 44

varFit, 9, 41
variance_adjust, 30
voom, 44

xy.coords, 5