
Package ‘VariantTools’
March 12, 2024

Type Package

Title Tools for Exploratory Analysis of Variant Calls

Version 1.45.1

Author Michael Lawrence, Jeremiah Degenhardt, Robert Gentleman

Maintainer Michael Lawrence <michafla@gene.com>

Description Explore, diagnose, and compare variant calls using filters.

Depends R (>= 3.5.0), S4Vectors (>= 0.17.33), IRanges (>= 2.13.12),
GenomicRanges (>= 1.31.8), VariantAnnotation (>= 1.11.16),
methods

Imports Rsamtools (>= 1.31.2), BiocGenerics, Biostrings, parallel,
GenomicFeatures (>= 1.31.3), Matrix, rtracklayer (>= 1.39.7),
BiocParallel, GenomeInfoDb, BSgenome, Biobase

Suggests RUnit, LungCancerLines (>= 0.0.6), RBGL, graph, gmapR (>=
1.21.3), TxDb.Hsapiens.UCSC.hg19.knownGene, org.Hs.eg.db

License Artistic-2.0

LazyLoad yes

biocViews Genetics, GeneticVariability, Sequencing

git_url https://git.bioconductor.org/packages/VariantTools

git_branch devel

git_last_commit a901276

git_last_commit_date 2024-03-01

Repository Bioconductor 3.19

Date/Publication 2024-03-11

Contents
annotateWithControlDepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
callGenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
callSampleSpecificVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
callVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1



2 annotateWithControlDepth

callWildtype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
extractCoverageForPositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
FilterConstructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
matchVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
pileupVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
postFilterVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
qaVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
tallyVariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
variantGR2Vcf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
vignette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Index 22

annotateWithControlDepth

Annotate Case with Control Depth

Description

Matches the case variants to the (typically unfiltered) control variants and returns case, with the
additional metadata columns control.alt.depth and control.total.depth, corresponding to
altDepth(control) and totalDepth(control), respectively.

Usage

annotateWithControlDepth(case, control, control.cov)

Arguments

case The variants of interest, as a VRanges.

control The control variants, typically unfiltered, as a VRanges.

control.cov The control coverage, as an RleList.

Details

If a case variant is not found in control, a count of 0 is assigned to control.alt.depth, under
the assumption that the control object is not filtered, i.e., it contains the raw tallies.

Value

case, plus two new metadata columns, control.alt.depth and control.total.depth

Author(s)

Michael Lawrence



callGenotypes 3

See Also

callSampleSpecificVariants, which uses this function.

Examples

bams <- LungCancerLines::LungCancerBamFiles()
data(vignette)
case <- callVariants(tallies_H1993)
control <- tallies_H2073
control.cov <- coverage(bams$H2073)
annotateWithControlDepth(case, control, control.cov)

callGenotypes Call Genotypes

Description

Calls genotypes from a set of tallies (such as a VRanges or VCF file) and the coverage (currently as
a BigWigFile). We call the genotype with the highest likelihood, where the likelihood is based on
a binomial model of the variant frequency.

Usage

## S4 method for signature 'VRanges'
callGenotypes(variants, cov,
param = CallGenotypesParam(variants),
BPPARAM = defaultBPPARAM())

## S4 method for signature 'TabixFile'
callGenotypes(variants, cov,
param = CallGenotypesParam(variants),
BPPARAM = defaultBPPARAM())

CallGenotypesParam(genome,
gq.breaks = c(0, 5, 20, 60, Inf),
p.error = 0.05,
which = tileGenome(seqinfo(genome), ntile=ntile),
ntile = 100L)

Arguments

variants Either VRanges as returned by tallyVariants, or a TabixFile object pointing
to a VCF file. Typically, these tallies are not filtered by e.g. callVariants,
because it would seem more appropriate to filter on the genotype quality.

cov The coverage, as an RleList or a BigWigFile.

param Parameters controlling the genotyping, constructed by CallGenotypesParam.
The default value uses the genome from variants.

genome An object with a getSeq method representing the genomic sequence used during
tallying.



4 callGenotypes

gq.breaks A numeric vector representing an increasing sequence of genotype quality breaks
to segment the wildtype runs.

p.error The binomial probability for an error. This is used to calculate the expected
frequency of hom-ref and hom-alt variants.

which A GenomicRangesList indicating the genomic regions in which to compute the
genotypes. The default is to partition the genome into ntile tiles.

ntile When which is missing, this indicates the number of tiles to generate from the
genome.

BPPARAM A BiocParallelParam object communicating the parallelization strategy. One
job is created per tile.

Details

In general, the behavior is very similar to that of the GATK UnifiedGenotyper (see references). For
every position in the tallies, we compute a binomial likelihood for each of wildtype (0/0), het (0/1)
and hom-alt (1/1), assuming the alt allele frequency to be p.error, 0.5 and 1 - p.error, respec-
tively. The genotype with the maximum likelihood is chosen as the genotype, and the genotype
quality is computed by taking the fraction of the maximum likelihood over the sum of the three
likelihoods.

We assume that any position not present in the input tallies is wildtype (0/0) and compute the quality
for every such position, using the provided coverage data. For scalability reasons, we segment runs
of these positions according to user-specified breaks on the genotype quality. The segments become
special records in the returned VRanges, where the range represents the segment, the ref is the first
reference base, alt is <NON_REF> and the totalDepth is the mean of the coverage.

The genotype information is recorded as metadata columns named according to gVCF conventions:

GT The genotype call string: 0/0, 0/1, 1/1.

GQ The numeric genotype quality, phred scaled. For wildtype runs, this is minimum over the run.

PL A 3 column matrix with the likelihood for each genotype, phred scaled. We take the minimum
over wildtype runs.

MIN_DP The minimum coverage over a wildtype run; NA for single positions.

Value

For callGenotypes, a VRanges annotated with the genotype call information, as described in the
details.

Author(s)

Michael Lawrence

References

The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA se-
quencing data McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella
K, Altshuler D, Gabriel S, Daly M, DePristo MA, 2010 GENOME RESEARCH 20:1297-303.



callSampleSpecificVariants 5

Examples

bams <- LungCancerLines::LungCancerBamFiles()
data(vignette)
tallies <- tallies_H1993

sampleNames(tallies) <- "H1993"
mcols(tallies) <- NULL

cov <- coverage(bams$H1993)

## simple usage
## (need gmapR to find the genome in the GMAP database, otherwise,
## provide sequence directly as shown later)
if (requireNamespace("gmapR", quietly=TRUE)) {

genotypes <- callGenotypes(tallies, cov,
BPPARAM=BiocParallel::SerialParam())

}

## customize
params <- CallGenotypesParam(genome_p53, p.error = 1/1000)
genotypes <- callGenotypes(tallies, cov, params)

## write to gVCF
writeVcf(genotypes, tempfile("genotypes", fileext="vcf"), index=TRUE)

callSampleSpecificVariants

Call Sample-Specific Variants

Description

Calls sample-specific variants by comparing case and control variants from paired samples, starting
from the BAM files or unfiltered tallies. For example, these variants would be considered somatic
mutations in a tumor vs. normal comparison.

Usage

SampleSpecificVariantFilters(control, control.cov, calling.filters,
power = 0.8, p.value = 0.01)

## S4 method for signature 'BamFile,BamFile'
callSampleSpecificVariants(case, control,
tally.param, calling.filters = VariantCallingFilters(), post.filters =
FilterRules(), ...)

## S4 method for signature 'character,character'
callSampleSpecificVariants(case, control, ...)
## S4 method for signature 'VRanges,VRanges'
callSampleSpecificVariants(case,
control, control.cov, ...)



6 callSampleSpecificVariants

## DEPRECATED
## S4 method for signature 'GenomicRanges,GenomicRanges'
callSampleSpecificVariants(case,
control, control.cov,
calling.filters = VariantCallingFilters(), post.filters =
FilterRules(), ...)

Arguments

case The BAM file for the case, or the called variants as output by callVariants.

control The BAM file for the control, or the raw tallies as output by tallyVariants.

tally.param Parameters controlling the variant tallying step, as typically constructed by TallyVariantsParam.
calling.filters

Filters to use for the initial, single-sample calling against reference, typically
constructed by VariantCallingFilters.

post.filters Filters that are applied after the initial calling step. These consider the set of
variant calls as a whole and remove those with suspicious patterns. They are
only applied to the case sample; only QA filters are applied to control.

... For a BAM file, arguments to pass down to the GenomicRanges method. For the
GenomicRanges method, arguments to pass down to SampleSpecificVariantFilters,
except for control.cov, control.called, control.raw and lr.filter.

control.cov The coverage for the control sample.

power The power cutoff, beneath which a variant will not be called case-specific, due
to lack of power in control.

p.value The binomial p-value cutoff for determining whether the control frequency is
sufficiently extreme (low) compared to the case frequency. A p-value below this
cutoff means that the variant will be called case-specific.

Details

For each sample, the variants are tallied (when the input is BAM), QA filtered (case only), called and
determined to be sample-specific. The callSampleSpecificVariants function is fairly high-level,
but it still allows the user to override the parameters and filters for each stage of the process. See
TallyVariantsParam, VariantQAFilters, VariantCallingFilters and SampleSpecificVariantFilters.

It is safest to pass a BAM file, so that the computations are consistent for both samples. The
GenomicRanges method is provided mostly for optimization purposes, since tallying the variants
over the entire genome is time-consuming. For small gene-size regions, performance should not be
a concern.

This is the algorithm that determines whether a variant is specific to the case sample:

1. Filter out all case calls that were also called in control. The callSampleSpecificVariants
function does not apply the QA filters when calling variants in control. This prevents a variant
from being called specific to case merely due to questionable data in the control.

2. For the remaining case calls, calculate whether there was sufficient power in control under the
likelihood ratio test, for a variant present at the p.lower frequency. If that is below the power
cutoff, discard it.



callVariants 7

3. For the remaining case calls, test whether the control frequency is sufficient extreme (low)
compared to the case frequency, under the binomial model. The null hypothesis is that the fre-
quencies are the same, so if the test p-value is above p.value, discard the variant. Otherwise,
the variant is called case-specific.

Value

A VRanges with the case-specific variants (such as somatic mutations).

Author(s)

Michael Lawrence, Jeremiah Degenhardt

Examples

bams <- LungCancerLines::LungCancerBamFiles()
if (requireNamespace("gmapR", quietly=TRUE)) {

tally.param <- TallyVariantsParam(gmapR::TP53Genome(),
high_base_quality = 23L,
which = gmapR::TP53Which())

callSampleSpecificVariants(bams$H1993, bams$H2073, tally.param)
} else {

data(vignette)
calling.filters <- VariantCallingFilters(read.count = 3L)
called.variants <- callVariants(tallies_H1993, calling.filters)
callSampleSpecificVariants(called.variants, tallies_H2073,

coverage_H2073)
}

callVariants Call Variants

Description

Calls variants from either a BAM file or a VRanges object. The variants are called using a binomial
likelihood ratio test. Those calls are then subjected to a post-filtering step.

Usage

## S4 method for signature 'BamFile'
callVariants(x, tally.param,

calling.filters = VariantCallingFilters(...),
post.filters = FilterRules(),
...)

## S4 method for signature 'character'
callVariants(x, ...)
## S4 method for signature 'VRanges'
callVariants(x,

calling.filters = VariantCallingFilters(...),



8 callVariants

post.filters = FilterRules(),
...)

VariantCallingFilters(read.count = 2L, p.lower = 0.2, p.error = 1/1000)

Arguments

x Either a path to an indexed bam, a BamFile object, or a VRanges as returned by
tallyVariants.

tally.param Parameters controlling the variant tallying step, as typically constructed by TallyVariantsParam.

calling.filters

Filters used in the calling step, typically constructed with VariantCallingFilters,
see arguments listed below.

post.filters Filters that are applied after the initial calling step. These consider the set of
variant calls as a whole and remove those with suspicious patterns.

...Arguments for VariantCallingFilters, listed below.

read.count Require at least this many high quality reads with the alternate base. The default
value is designed to catch sequencing errors where coverage is too low to rely
on the LRT. Increasing this value has a significant negative impact on power.

p.lower The lower bound on the binomial probability for a true variant.

p.error The binomial probability for a sequencing error (default is reasonable for Illu-
mina data with the default quality cutoff).

... Arguments to pass to VariantCallingFilters.

Details

There are two steps for calling variants: the actual statistical test that decides whether a variant exists
in the data, and a post-filtering step. By default, the initial calling is based on a binomial likelihood
ratio test (P(D|p=p.lower) / P(D|p=p.error) > 1). The test amounts to excluding putative variants
with less than ~4% alt frequency. A variant is also required to be represented by at least 2 alt
reads. The post-filtering stage considers the set of variant calls as a whole and removes variants
with suspicious patterns. Currently, there is a single post-filter, disabled by default, that removes
variants that are clumped together on the chromosome (see the max.nbor.count parameter).

Value

For callVariants, a VRanges of the called variants (the tallies that pass the calling filters). See the
documentation of bam_tally for complete details.

For VariantCallingFilters, a FilterRules object with the filters for calling the variants.

Author(s)

Michael Lawrence, Jeremiah Degenhardt



callWildtype 9

Examples

bams <- LungCancerLines::LungCancerBamFiles()
if (requireNamespace("gmapR")) {

tally.param <- TallyVariantsParam(gmapR::TP53Genome(),
high_base_quality = 23L,
which = gmapR::TP53Which())

## simple usage
variants <- callVariants(bams$H1993, tally.param)

}
## customize
data(vignette)
calling.filters <- VariantCallingFilters(p.error = 1/1000)
callVariants(tallies_H1993, calling.filters)

callWildtype Calling Wildtype

Description

Decides whether a position is variant, wildtype, or uncallable, according to the estimated power of
the given calling filters.

Usage

callWildtype(reads, variants, calling.filters, pos = NULL, ...)
minCallableCoverage(calling.filters, power = 0.80, max.coverage = 1000L)

Arguments

reads The read alignments, i.e., a path to a BAM file, or the coverage, including a
BigWigFile object.

variants The called variants, a tally GRanges.

calling.filters

Filters used to call the variants.

pos A GRanges indicating positions to query; output is in the same order. If this is
NULL, the entire genome is considered. This is not called which, because we are
indicating positions, not selecting from regions.

power The chance of detecting a variant if one is there.

max.coverage The max coverage to be considered for the minimum (should not need to be
tweaked).

... Arguments to pass down to minCallableCoverage.



10 concordance

Details

For each position (in the genome, or as specified by pos), the coverage is compared against the
return value of minCallableCoverage. If the coverage is above the callable minimum, the position
is called, either as a variant (if it is in variants) or wildtype. Otherwise, it is considered a no-call.

The minCallableCoverage function expects and only considers the filters returned by VariantCallingFilters.

Value

A logical vector (or logical RleList if pos is NULL), that is TRUE for wildtype, FALSE for variant,
NA for no-call.

Author(s)

Michael Lawrence

Examples

bams <- LungCancerLines::LungCancerBamFiles()
bam <- bams$H1993

data(vignette)
called.variants <- callVariants(tallies_H1993)

pos <- c(called.variants, shift(called.variants, 3))
wildtype <- callWildtype(bam, called.variants, VariantCallingFilters(),

pos = pos, power = 0.85)

concordance Variant Concordance

Description

Functions for calculating concordance between variant sets and deciding whether two samples have
identical genomes.

Usage

calculateVariantConcordance(gr1, gr2, which = NULL)
calculateConcordanceMatrix(variantFiles, ...)
callVariantConcordance(concordanceMatrix, threshold)

Arguments

gr1, gr2 The two tally GRanges to compare

which A GRanges of positions to which the comparison is limited.

variantFiles Character vector of paths to files representing tally GRanges. Currently supports
serialized (rda) and VCF files. If the file extension is not “vcf”, we assume rda.
Will be improved in the future.



extractCoverageForPositions 11

concordanceMatrix

A matrix of concordance fractions between sample pairs, as returend by calculateConcordanceMatrix.
threshold The concordance fraction above which edges are generated between samples

when forming the graph.
... Arguments to pass to the loading function, e.g., readVcf.

Details

The calculateVariantConcordance calculates the fraction of concordant variants between two
samples. Concordance is defined as having the same position and alt allele.

The calculateConcordanceMatrix function generates a numeric matrix with the concordance for
each pair of samples. It accepts paths to serialized objects so that all variant calls are not loaded in
memory at once. This probably should support VCF files, eventually.

The callVariantConcordance function generates a concordant/non-concordant/undecidable sta-
tus for each sample (that are assumed to originate from the same individual), given the output of
calculateConcordanceMatrix. The status is decided as follows. A graph is formed from the
concordance matrix using threshold to generate the edges. If there are multiple cliques in the
graph that each have more than one sample, every sample is declared undecidable. Otherwise, the
samples in the clique with more than one sample, if any, are marked as concordant, and the others
(in singleton cliques) are marked as discordant.

Value

Fraction of concordant variants for calculateVariantConcordance, a numeric matrix of concor-
dances for calculateConcordanceMatrix, or a character vector of status codes, named by sample,
for callVariantConcordance.

Author(s)

Cory Barr (code), Michael Lawrence (inferred documentation)

extractCoverageForPositions

Get Coverage at Positions

Description

Gets values from an RleList corresponding to positions (width 1 ranges) in a GRanges (or VRanges).
The result is a simple atomic vector.

Usage

extractCoverageForPositions(cov, pos)

Arguments

cov An RleList like that returned by coverage.
pos A GRanges consisting only of width-1 ranges.



12 FilterConstructors

Value

Atomic vector with one value from cov per position in pos.

Author(s)

Michael Lawrence

FilterConstructors Variant Filter Constructors

Description

These functions construct filters (implemented as functions) suitable for collection into FilterRules
objects, which are then used to filter variant calls. See examples.

Usage

SetdiffVariantsFilter(other)
MinTotalDepthFilter(min.depth = 10L)
MaxControlFreqFilter(control, control.cov, max.control.freq = 0.03)
DepthFETFilter(control, control.cov, p.value.cutoff = 0.05)

Arguments

other The set of variants (as a VRanges) to subtract from the set being filtered.

min.depth The minimum depth for a variant to pass.

control The control set of variants (as a VRanges) to use when filtering for case-specific
variants.

control.cov The coverage (as an RleList) for the sample corresponding to the calls in
control.

max.control.freq

The maximum alt frequency allowed in the control for a variant to be considered
case-specific.

p.value.cutoff Passing variants must have a p-value below this value.

Value

In all cases, a closure that returns a logical vector indicating which elements of its argument should
be retained.

Author(s)

Michael Lawrence



matchVariants 13

See Also

There are some convenience functions that construct FilterRules objects that contain one or more
of these filters. Examples are VariantQAFilters and VariantCallingFilters.

Examples

## Find case-specific variants in a case/control study
bams <- LungCancerLines::LungCancerBamFiles()

data(vignette)
case <- callVariants(tallies_H1993)
control <- callVariants(tallies_H2073)

control.cov <- coverage(bams$H2073)

filters <-
FilterRules(list(caseOnly = SetdiffVariantsFilter(control),

minTotalDepth = MinTotalDepthFilter(min.depth=10L),
maxControlFreq = MaxControlFreqFilter(control,

control.cov, max.control.freq=0.03),
depthFET = DepthFETFilter(control, control.cov,

p.value.cutoff=0.05)
))

specific <- subsetByFilter(case, filters)

matchVariants Match variants by position and allele

Description

These are deprecated functions for operating on the old variant GRanges. New code should use
match and %in%. This function behaves like match, where two elements match when they share the
same position and “alt” allele.

Usage

matchVariants(x, table)
x %variant_in% table

Arguments

x The variants (GRanges) to match into table; the alt allele must be in the “alt”
metacolumn.

table The variants (GRanges) to be matched into; the alt allele must be in the “alt”
metacolumn.



14 pileupVariants

Value

For matchVariants, an integer vector with the matching index in table for each variant in x, or
NA if there is no match. For %variant_in%, a logical vector indicating whether there was such a
match.

Author(s)

Michael Lawrence

pileupVariants Nucleotide pileup from alignments

Description

This is an alternative to tallyVariants for generating a VRanges from a set of alignments (BAM
file) by counting the nucleotides at each position. This function uses the samtools-based applyPileups
function, instead of bam_tally. Fewer dependencies, with fewer statistics (none beyond the fixed
columns) available in the output.

Usage

pileupVariants(bams, genome, param = ApplyPileupsParam(), minAltDepth = 1L,
baseOnly = TRUE, BPPARAM = defaultBPPARAM())

Arguments

bams A vector/list of BAM files as interpreted by PileupFiles.

genome An object that provides sequence information via getSeq.

param A ApplyPileupsParam object that specifies the mode of iteration and various
filters.

minAltDepth Minimal alt depth to be included in the output. The default avoids outputting
results for positions/alleles that show no differences.

baseOnly Whether to drop records with “N” in either the ref or alt.

BPPARAM Not yet supported.

Value

A VRanges object with read depth information for each position, allele, and sample.

Author(s)

Michael Lawrence

See Also

tallyVariants for more statistics.



postFilterVariants 15

Examples

bams <- LungCancerLines::LungCancerBamFiles()
if (requireNamespace("gmapR")) {

param <- Rsamtools::ApplyPileupsParam(which=gmapR::TP53Which())
pileup <- pileupVariants(bams, gmapR::TP53Genome(), param)

}

postFilterVariants Post-filtering of Variants

Description

Applies filters to a set of called variants. The only current filter is a cutoff on the weighted neigh-
bor count of each variant. This filtering is performed automatically by callVariants, so these
functions are for when more control is desired.

Usage

postFilterVariants(x, post.filters = VariantPostFilters(...), ...)
VariantPostFilters(max.nbor.count = 0.1, whitelist = NULL)

Arguments

x A tally GRanges containing called variants, as output by callVariants.

post.filters The filters applied to the called variants.

... Arguments passed to VariantPostFilters, listed below.

max.nbor.count Maximum allowed number of neighbors (weighted by distance)

whitelist Positions to ignore; these will always pass the filter, and are excluded from the
neighbor counting.

Details

The neighbor count is calculated within a 100bp window centered on the variant. Each neighbor is
weighted by the inverse square root of the distance to the neighbor. This was motivated by fitting
logistic regression models including a term the count (usually 0, 1, 2) at each distance. The inverse
square root function best matched the trend in the coefficients.

Value

For postFilterVariants, a tally GRanges of the variants that pass the filters.

For VariantPostFilters, a FilterRules object with the filters.

Author(s)

Michael Lawrence and Jeremiah Degenhardt



16 qaVariants

Examples

bams <- LungCancerLines::LungCancerBamFiles()
## post-filters are not enabled by default during calling
data(vignette)
called.variants <- callVariants(tallies_H1993)
## but can be applied at a later time...
postFilterVariants(called.variants, max.nbor.count = 0.15)

# or enable during calling
called.variants <- callVariants(tallies_H1993,

post.filters = VariantPostFilters())

qaVariants QA Filtering of Variants

Description

Filters a tally GRanges through a series of simple checks for strand and read position (read position)
biases.

Usage

qaVariants(x, qa.filters = VariantQAFilters(...), ...)
VariantQAFilters(fisher.strand.p.value = 1e-4, min.mdfne = 10L)

Arguments

x A tally GRanges as output by tallyVariants.

qa.filters The filters used for the QA process, typically constructed with VariantQAFilters,
see arguments below.

... Arguments passed to VariantQAFilters, listed below.
fisher.strand.p.value

p-value cutoff for the Fisher’s Exact Test for strand bias (+/- counts, alt vs. ref).
Any variants with p-values below this cutoff are discarded.

min.mdfne Minimum allowed median distance of alt calls from their nearest end of the read.

Details

There are currently two QA filters:

• Median distance of alt calls from nearest end of the read is required to be >= min.mdfne,
which defaults to 10.

• Fisher’s Exact Test for strand bias, using the +/- counts, alt vs. ref. If the null is rejected, the
variant is discarded.



tallyVariants 17

Value

For qaVariants, a tally GRanges of the variants that pass the QA checks.

For VariantQAFilters, a FilterRules object with the QA and sanity filters.

Author(s)

Michael Lawrence and Jeremiah Degenhardt

Examples

data(vignette)
qaVariants(tallies_H1993, fisher.strand.p.value = 1e-4)

tallyVariants Tally the positions in a BAM file

Description

Tallies the bases, qualities and read positions for every genomic position in a BAM file. By default,
this only returns the positions for which an alternate base has been detected. The typical usage is
to pass a BAM file, the genome, the (fixed) readlen and (if the variant calling should consider
quality) an appropriate high_base_quality cutoff.

Passing a which argument allows computing on only a subregion of the genome. which is a
‘RangesList’ or something coercible to one that limits the tally to that range or set of ranges. By
default, the entire genome is processed.

For parallel evaluation (see BPPARAM): Specifically, which can be a ‘GenomicRanges’ or a ‘GRanges-
List’. If which is a ‘GenomicRanges’ and has length 1 it is tiled to create chunks for parallel eval-
uation. If it is longer than 1, each range becomes a chunk for parallel evaluation. If which is a
‘GRangesList’, each element (i.e. each ‘GenomicRanges’) becomes a chunk. The latter can be
useful to ensure balanced worker load, e.g. in the case of regions covering multiple sequences(see
equisplit).

Usage

## S4 method for signature 'BamFile'
tallyVariants(x, param = TallyVariantsParam(...), ...,

BPPARAM = defaultBPPARAM())
## S4 method for signature 'BamFileList'
tallyVariants(x, ...)
## S4 method for signature 'character'
tallyVariants(x, ...)
TallyVariantsParam(genome,

read_pos_breaks = NULL,
high_base_quality = 0L,
minimum_mapq = 13L,
variant_strand = 1L, ignore_query_Ns = TRUE,



18 tallyVariants

ignore_duplicates = TRUE,
mask = GRanges(), keep_extra_stats = TRUE,
read_length = NA_integer_,
read_pos = !is.null(read_pos_breaks),
high_nm_score = NA_integer_,
...)

Arguments

x An indexed BAM file, either a path, BamFile or BamFileList object. If the
latter, the tallies are computed separately for each file, and the results are stacked
with stackSamples into a single VRanges.

param The parameters for the tallying process, as a BamTallyParam, typically con-
structed with TallyVariantsParam, see arguments below.

... For tallyVariants, arguments to pass to TallyVariantsParam, listed below.
For TallyVariantsParam, arguments to pass to BamTallyParam.

genome The genome, either a GmapGenome or something coercible to one.
read_pos_breaks

The breaks used for tabulating the read positions (read positions) at each posi-
tion. If this information is included (not NULL), qaVariants will use it during
filtering.

high_base_quality

The minimum cutoff for whether a base is counted as high quality. By default,
callVariants will use the high quality counts in the likelihood ratio test. Note
that bam_tally will shift your quality scores by 33 no matter what type they are.
If Illumina (pre 1.8) this will result in a range of 31-71. If Sanger/Illumina1.8
this will result in a range of 0-40/41. The default counts all bases as high quality.
We typically use 56 for old Illumina, 23 for Sanger/Illumina1.8.

minimum_mapq Minimum MAPQ of a read for it to be included in the tallies. This depend on
the aligner; the default is reasonable for gsnap.

variant_strand On how many strands must an alternate base be detected for a position to be
returned. Highly recommended to set this to at least 1 (otherwise, the result is
huge and includes many uninteresting reference rows).

ignore_query_Ns

Whether to ignore N calls in the reads. Usually, there is no reason to set this to
FALSE. If it is FALSE, beware of low quality datasets returning enormous results.

ignore_duplicates

whether to ignore reads flagged as PCR/optical duplicates

mask A GRanges specifyin a mask; all variants falling within the mask are discarded.

read_length The expected read length, used for calculating the “median distance from near-
est” end statistic. If not specified, an attempt is made to guess the read length
from a random sample of the BAM file. If read length is found to be variable,
statistics depending on the read length are not calculated.

read_pos Whether to tally read positions, which can be computationally intensive.

high_nm_score If not NA, counts of reads with NM (mismatch count) score equal to or greater
are returned in the count.high.nm and count.high.nm.ref columns.



variantGR2Vcf 19

keep_extra_stats

Whether to keep various summary statistics generated from the tallies; setting
this to FALSE will save memory. The extra statistics are most useful for algo-
rithm diagnostics and development.

BPPARAM A BiocParallelParam object specifying the resources and strategy for paral-
lelizing the tally operation over the chromosomes.

Value

For tallyVariants, the tally GRanges.
For TallyVariantsParam, an object with parameters suitable for variant calling.

Note

The VariantTallyParam constructor is DEPRECATED.

Author(s)

Michael Lawrence, Jeremiah Degenhardt

Examples

if (requireNamespace("gmapR")) {
tally.param <- TallyVariantsParam(gmapR::TP53Genome(),

high_base_quality = 23L,
which = gmapR::TP53Which())

bams <- LungCancerLines::LungCancerBamFiles()
raw.variants <- tallyVariants(bams$H1993, tally.param)

}

variantGR2Vcf Create a VCF for some variants

Description

The deprecated way to create a VCF object from a variant/tally GRanges. This can then be output to
a file using writeVcf. The flavor of VCF is specific for calling variants, not genotypes; see below.

Usage

variantGR2Vcf(x, sample.id, project = NULL,
genome = unique(GenomicRanges::genome(x)))

Arguments

x The variant/tally GRanges.
sample.id Unique ID for the sample in the VCF.
project Description of the project/experiment; will be included in the VCF header.
genome GmapGenome object, or the name of one (in the default genome directory). This

is used for obtaining the anchor base when outputting indels.



20 variantGR2Vcf

Details

A variant GRanges has an element for every unique combination of position and alternate base.
A VCF object, like the file format, has a row for every position, with multiple alternate alleles
collapsed within the row. This is the fundamental difference between the two data structures. We
feel that the GRanges is easier to manipulate for filtering tasks, while VCF is obviously necessary for
communication with external databases and tools.

Normally, despite its name, VCF is used for communicating genotype calls. We are calling variants,
not genotypes, so we have extended the format accordingly.

Here is the mapping in detail:

• The rowRanges is formed by dropping the metadata columns from the GRanges.

• The colData consists of a single column, “Samples”, with a single row, set to 1 and named
sample.id.

• The exptData has an element “header” with element “reference” set to the seqlevels(x)
and element “samples” set to sample.id. This will also include the necessary metadata for
describing our extensions to the format.

• The fixed table has the “REF” and “ALT” alleles, with “QUAL” and “FILTER” set to NA.

• The geno list has six matrix elements, all with a single column. The first is the mandatory
“GT” element, the genotype, which we set to NA. Then there is “AD” (list matrix with the read
count for each REF and ALT), “DP” (integer matrix with the total read count), and “AP” (list
matrix of 0/1 flags for whether whether REF and/or ALT was present in the data).

Value

A VCF object.

Note

This function is DEPRECATED. The callVariants function now returns a VRanges object that
can be coerced to a VCF object via as(x, "VCF").

Author(s)

Michael Lawrence, Jeremiah Degenhardt

Examples

## Not run:
vcf <- variantGR2Vcf(variants, "H1993", "example")
writeVcf(vcf, "H1993.vcf", index = TRUE)

## End(Not run)



vignette 21

vignette Vignette Data

Description

Precomputed data for use in the vignette, mostly for the sake of Windows, where gmapR and its
tallying functionality are unsupported.

Usage

data(vignette)

Format

The following objects are included:

tallies_H1993, tallies_H2073 Tallies for the two samples.

coverage_H1993, coverage_H2073 Coverage for the two samples.

p53 A GRanges of the p53 exons

genome_p53 DNAStringSet with the genome sequence of the p53 region

Details

The following demonstrates how we created these objects:

bams <- LungCancerLines::LungCancerBamFiles()
tally.param <- TallyVariantsParam(gmapR::TP53Genome(),

high_base_quality = 23L,
which = range(p53) + 5e4,

indels = TRUE, read_length = 75L)
tallies_H1993 <- tallyVariants(bams$H1993, tally.param)
tallies_H2073 <- tallyVariants(bams$H2073, tally.param)
coverage_H1993 <- coverage(bams$H1993)
coverage_H2073 <- coverage(bams$H2073)
genome_p53 <- DNAStringSet(getSeq(gmapR::TP53Genome()))
p53 <- gmapR:::exonsOnTP53Genome("TP53")

Source

Computed from the data in the LungCancerLines package.

Examples

data(vignette)



Index

∗ datasets
vignette, 21

%variant_in% (matchVariants), 13
%variant_in%,GenomicRanges,GenomicRanges-method

(matchVariants), 13

annotateWithControlDepth, 2
applyPileups, 14
ApplyPileupsParam, 14

bam_tally, 8, 14
BamTallyParam, 18
BiocParallelParam, 19

calculateConcordanceMatrix
(concordance), 10

calculateVariantConcordance
(concordance), 10

callGenotypes, 3
callGenotypes,TabixFile-method

(callGenotypes), 3
callGenotypes,VRanges-method

(callGenotypes), 3
CallGenotypesParam, 3
CallGenotypesParam (callGenotypes), 3
callSampleSpecificVariants, 3, 5
callSampleSpecificVariants,BamFile,BamFile-method

(callSampleSpecificVariants), 5
callSampleSpecificVariants,character,character-method

(callSampleSpecificVariants), 5
callSampleSpecificVariants,GenomicRanges,GenomicRanges-method

(callSampleSpecificVariants), 5
callSampleSpecificVariants,VRanges,VRanges-method

(callSampleSpecificVariants), 5
callVariantConcordance (concordance), 10
callVariants, 3, 6, 7, 15, 18
callVariants,BamFile-method

(callVariants), 7
callVariants,character-method

(callVariants), 7

callVariants,GenomicRanges-method
(callVariants), 7

callVariants,VRanges-method
(callVariants), 7

callWildtype, 9
concordance, 10
coverage, 11
coverage_H1993 (vignette), 21
coverage_H2073 (vignette), 21

DepthFETFilter (FilterConstructors), 12

equisplit, 17
extractCoverageForPositions, 11

FilterConstructors, 12
FilterRules, 8, 15, 17

genome_p53 (vignette), 21
getSeq, 14
GmapGenome, 18
gsnap, 18

matchVariants, 13
MaxControlFreqFilter

(FilterConstructors), 12
minCallableCoverage (callWildtype), 9
MinTotalDepthFilter

(FilterConstructors), 12

p53 (vignette), 21
PileupFiles, 14
pileupVariants, 14
postFilterVariants, 15

qaVariants, 16, 18

SampleSpecificVariantFilters
(callSampleSpecificVariants), 5

SetdiffVariantsFilter
(FilterConstructors), 12

22



INDEX 23

stackSamples, 18

tallies_H1993 (vignette), 21
tallies_H2073 (vignette), 21
tallyVariants, 3, 6, 8, 14, 16, 17
tallyVariants,BamFile-method

(tallyVariants), 17
tallyVariants,BamFileList-method

(tallyVariants), 17
tallyVariants,character-method

(tallyVariants), 17
TallyVariantsParam, 6, 8
TallyVariantsParam (tallyVariants), 17

VariantCallingFilters, 6, 10, 13
VariantCallingFilters (callVariants), 7
variantGR2Vcf, 19
VariantPostFilters

(postFilterVariants), 15
VariantQAFilters, 6, 13
VariantQAFilters (qaVariants), 16
VariantTallyParam (tallyVariants), 17
VCF, 19
vignette, 21
VRanges, 20

writeVcf, 19


	annotateWithControlDepth
	callGenotypes
	callSampleSpecificVariants
	callVariants
	callWildtype
	concordance
	extractCoverageForPositions
	FilterConstructors
	matchVariants
	pileupVariants
	postFilterVariants
	qaVariants
	tallyVariants
	variantGR2Vcf
	vignette
	Index

