Package ‘MoonlightR’

April 6, 2024

Type Package

Title Identify oncogenes and tumor suppressor genes from omics data

Version 1.29.0

Date 07-08-2020

Depends R (>= 3.5), doParallel, foreach

Imports parmigene, randomForest, SummarizedExperiment, gplots, circlize, RColorBrewer, HiveR, clusterProfiler, DOSE, Biobase, limma, grDevices, graphics, TCGAbiolinks, GEOquery, stats, RISmed, grid, utils

Description Motivation: The understanding of cancer mechanism requires the identification of genes playing a role in the development of the pathology and the characterization of their role (notably oncogenes and tumor suppressors). Results: We present an R/bioconductor package called MoonlightR which returns a list of candidate driver genes for specific cancer types on the basis of TCGA expression data. The method first infers gene regulatory networks and then carries out a functional enrichment analysis (FEA) (implementing an upstream regulator analysis, URA) to score the importance of well-known biological processes with respect to the studied cancer type. Eventually, by means of random forests, MoonlightR predicts two specific roles for the candidate driver genes: i) tumor suppressor genes (TSGs) and ii) oncogenes (OCGs). As a consequence, this methodology does not only identify genes playing a dual role (e.g. TSG in one cancer type and OCG in another) but also helps in elucidating the biological processes underlying their specific roles. In particular, MoonlightR can be used to discover OCGs and TSGs in the same cancer type. This may help in answering the question whether some genes change role between early stages (I, II) and late stages (III, IV) in breast cancer. In the future, this analysis could be useful to determine the causes of different resistances to chemotherapeutic treatments.

License GPL (>= 3)
dataFilt

- dataGRN ... 4
- dataURA ... 4
- DEGsmatrix ... 5
- DiseaseList ... 5
- DPA ... 6
- EAGenes .. 7
- FEA ... 7
- GDCprojects ... 8
- geneInfo ... 8
- GEO_TCGAtab .. 9
- getDataGEO .. 9
- getDataTCGA ... 10
- GRN ... 11
- GSEA ... 12
- knownDriverGenes 12
- listMoonlight ... 13
- LPA ... 13
- moonlight ... 14
- MoonlightR .. 15
- plotCircos .. 16
- plotFEA ... 17
- plotNetworkHive 18
- plotURA ... 19
- PRA ... 19
- tabGrowBlock ... 20
- URA ... 21

Index 22

Description

A data set containing the following data:

Usage

data(dataFilt)

Format

A 13742x20 matrix

Details

- dataFilt matrix with 13742 rows (genes) and 20 columns samples with TCGA's barcodes (10TP, 10NT)
Value

a 13742x20 matrix

dataGRN

GRN gene regulatory network output

Description

output from GRN function

Usage

data(dataGRN)

Format

A large list of 2 elements

Details

- dataGRN list of 2 elements miTFGenes, maxmi from GRN function

Value

a large list of 2 elements

dataURA

Output example from function Upstram Regulator Analysis

Description

A data set containing the following data:

Usage

data(dataURA)

Format

A data frame with 100 rows and 2 variables

Details

- dataURA matrix with 100 rows (genes) and 2 columns "apoptosis" "proliferation of cells"

Value

a 100x2 matrix
DEGsmatrix

DEG Differentially expressed genes

Description
A data set containing the following data:

Usage
data(DEGsmatrix)

Format
A 3502x5 matrix

Details
- DEGsmatrix matrix with 3502 rows (genes) and five columns "logFC" "logCPM" "LR" "PValue" "FDR"

Value
the 3502x5 matrix

DiseaseList

Information on 101 biological processes

Description
A data set containing the following data:

Usage
data(DiseaseList)

Format
A list of 101 matrices

Details
- DiseaseList list for 101 biological processes, each containing a matrix with five columns: ID, Genes.in.dataset, Prediction based on expression direction, Log ratio, Findings

Value
list of 101 matrices
Description
This function carries out the differential phenotypes analysis.

Usage

```r
DPA(
  dataType,  dataFilt,  dataConsortium = "TCGA",
  fdr.cut = 0.01,  logFC.cut = 1,
  diffmean.cut = 0.25,
  samplesType,
  colDescription,
  gset,
  gsetFile = "gsetFile.RData"
)
```

Arguments

- `dataType` selected
- `dataFilt` obtained from `getDataTCGA`
- `dataConsortium` is TCGA or GEO, default TCGA
- `fdr.cut` is a threshold to filter DEGs according their p-value corrected
- `logFC.cut` is a threshold to filter DEGs according their logFC
- `diffmean.cut` diffmean.cut for DMR
- `samplesType` samplesType
- `colDescription` colDescription
- `gset` gset
- `gsetFile` gsetFile

Value
result matrix from differential phenotype analysis

Examples

```r
dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
```
EAGenes

Information about genes

Description

A data set containing the following data:

Usage

```r
data(EAGenes)
```

Format

A 20038x5 matrix

Details

- EAGenes matrix with 20038 rows (genes) and five columns "ID" "Gene" "Description" "Location" "Family"

Value

a 20038x5 matrix

FEA

FEA

Description

This function carries out the functional enrichment analysis (FEA)

Usage

```r
FEA(BPname = NULL, DEGsmatrix)
```

Arguments

- **BPname**: BPname biological process such as "proliferation of cells", "ALL" (default) if FEA should be carried out for all 101 biological processes
- **DEGsmatrix**: DEGsmatrix output from DEA such as dataDEGs

Value

matrix from FEA
Examples

dataDEGs <- DPA(dataFilt = dataFilt,
dataType = "Gene expression")
dataFEA <- FEA(DEGsmatrix = dataDEGs)

GDCprojects Information on GDC projects

Description

A character vector of GDC projects:

Usage

data(GDCprojects)

Format

A character vector of 39 elements

Details

• character vector for GDC projects.

Value

character vector of 39 elements

geneInfo Information about genes for normalization

Description

A data set containing the following data:

Usage

data(geneInfo)

Format

A data frame with 20531 rows and 3 variables

Details

• geneInfo matrix with 20531 rows (genes) and 3 columns "geneLength" "gcContent" "chr"
Description

- **GEO_TCGAtab** a 18x12 matrix that provides the GEO data set we matched to one of the 18 given TCGA cancer types

Usage

```r
data(GEO_TCGAtab)
```

Format

A 101x3 matrix

Value

a 101x3 matrix

Description

This function retrieves and prepares GEO data

Usage

```r
getDataGEO(GEOobject = "GSE39004", platform = "GPL6244", TCGAtumor = NULL)
```

Arguments

- **GEOobject** GEOobject
- **platform** platform
- **TCGAtumor** tumor name

Value

return GEO gset
getDataTCGA

Description

This function retrieves and prepares TCGA data

Usage

getDataTCGA(
 cancerType, # select cancer type for which analysis should be run. panCancer for all available
cancer types in TCGA. Defaults to panCancer
dataType, # is dataType such as gene expression, cnv, methylation etc.
directory, # Directory/Folder where the data was downloaded. Default: GDCdata
cor.cut = 0.6, #
qnt.cut = 0.25, #
nSample, #
stage = "ALL", #
subtype = 0, #
samples = NULL #
)

Arguments

cancerType # select cancer type for which analysis should be run. panCancer for all available
data types in TCGA. Defaults to panCancer
dataType # is dataType such as gene expression, cnv, methylation etc.
directory # Directory/Folder where the data was downloaded. Default: GDCdata
cor.cut #
qnt.cut #
nSample #
stage #
subtype #
samples #

Value

returns filtered TCGA data
Examples

```r
## Not run:
dataFilt <- getDataTCGA(cancerType = "LUAD",
    dataType = "Gene expression", directory = "data", nSample = 4)
## End(Not run)
```

Description

This function carries out the gene regulatory network inference using parmigene

Usage

```r
GRN(
    TFs,
    DEGsmatrix,
    DiffGenes = FALSE,
    normCounts,
    kNearest = 3,
    nGenesPerm = 10,
    nBoot = 10
)
```

Arguments

- **TFs**
 - a vector of genes.
- **DEGsmatrix**
 - DEGsmatrix output from DEA such as dataDEGs
- **DiffGenes**
 - if TRUE consider only diff.expr genes in GRN
- **normCounts**
 - is a matrix of gene expression with genes in rows and samples in columns.
- **kNearest**
 - the number of nearest neighbors to consider to estimate the mutual information. Must be less than the number of columns of normCounts.
- **nGenesPerm**
 - nGenesPerm
- **nBoot**
 - nBoot

Value

an adjacent matrix

Examples

```r
dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
    DEGsmatrix = dataDEGs,
    DiffGenes = TRUE,
    normCounts = dataFilt)
```
GSEA

Description

This function carries out the GSEA enrichment analysis.

Usage

\[
\text{GSEA(DEGsmatrix, top, plot = FALSE)}
\]

Arguments

- **DEGsmatrix**: DEGsmatrix output from DEA such as dataDEGs
- **top**: is the number of top BP to plot
- **plot**: if TRUE return a GSEA's plot

Value

return GSEA result

Examples

```r
dataDEGs <- DEGsmatrix
# dataFEA <- GSEA(DEGsmatrix = dataDEGs)
```

knownDriverGenes

Information on known cancer driver gene from COSMIC

Description

A data set containing the following data:

Usage

```r
data(knownDriverGenes)
```

Format

A 101x3 matrix

Details

- TSG known tumor suppressor genes
- OCG known oncogenes
listMoonlight
Output list from Moonlight

Value

a 101x3 matrix

Description

A list containing the following data:

Usage

\[
data(\text{listMoonlight})
\]

Format

A Large list with 5 elements

Details

- listMoonlight output from moonlight’s pipeline containing dataDEGs, dataURA, listCandidates

Value

output from moonlight pipeline

LPA
LPA

Description

This function carries out the literature phenotype analysis (LPA)

Usage

LPA(dataDEGs, BP, BPlist)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataDEGs</td>
<td>is output from DEA</td>
</tr>
<tr>
<td>BP</td>
<td>is biological process</td>
</tr>
<tr>
<td>BPlist</td>
<td>is list of genes annotated in BP</td>
</tr>
</tbody>
</table>
Value

table with number of pubmed that affects, increase or decrease genes annotated in BP

Examples

data(DEGsmatrix)
BPselected <- c("apoptosis")
BPannotations <- DiseaseList[[match(BPselected, names(DiseaseList))]]$ID

Description

moonlight is a tool for identification of cancer driver genes. This function wraps the different steps of the complete analysis workflow. Providing different solutions:

1. MoonlightR::FEA
2. MoonlightR::URA
3. MoonlightR::PIA

Usage

moonlight(
cancerType = "panCancer",
dataType = "Gene expression",
directory = "GDCdata",
BPname = NULL,
cor.cut = 0.6,
qnt.cut = 0.25,
Genelist = NULL,
fdr.cut = 0.01,
logFC.cut = 1,
corThreshold = 0.6,
kNearest = 3,
nGenesPerm = 10,
DiffGenes = FALSE,
nBoot = 100,
nTF = NULL,
nSample = NULL,
thres.role = 0,
stage = NULL,
subtype = 0,
samples = NULL
)
Arguments

cancerType
select cancer type for which analysis should be run. panCancer for all available cancer types in TCGA. Defaults to panCancer

dataType
dataType
directory
directory
BPname
biological processes to use, if NULL: all processes will be used in analysis, RF for candidate; if not NULL the candidates for these processes will be determined (no learning)
cor.cut
cor.cut Threshold
qnt.cut
qnt.cut Threshold
Genelist
Genelist
fdr.cut
fdr.cut Threshold
logFC.cut
logFC.cut Threshold
corThreshold
corThreshold
kNearest
kNearest
genesPerm
genesPerm
diffGenes
diffGenes
nBoot
nBoot
nTF
nTF
nSample
nSample
thres.role
thres.role
stage
stage
subtype
subtype
samples
samples

Value

table with cancer driver genes TSG and OCG.

Examples

dataDEGs <- DPA(dataFilt = dataFilt, dataType = "Gene expression")
to change with moonlight

Description

MoonlightR is a package designed for the identification of cancer driver genes. Please see the documentation on our Bioconductor page for more details: https://www.bioconductor.org/packages/release/bioc/html/MoonlightR.html
If you experience issues with the package, please open an Issue on our GitHub repository: https://github.com/ELELAB/MoonlightR
If you use this package in your research, please cite this paper: https://doi.org/10.1038/s41467-019-13803-0
Description

This function visualizes the plotCircos.

Usage

```r
plotCircos(
  listMoonlight,
  listMutation = NULL,
  additionalFilename = NULL,
  intensityColOCG = 0.5,
  intensityColTSG = 0.5,
  intensityColDual = 0.5,
  fontSize = 1
)
```

Arguments

- `listMoonlight`: output Moonlight function
- `listMutation`: listMutation
- `additionalFilename`: additionalFilename
- `intensityColOCG`: intensityColOCG
- `intensityColTSG`: intensityColTSG
- `intensityColDual`: intensityColDual
- `fontSize`: fontSize

Value

No return value, plot is saved

Examples

```r
plotCircos(listMoonlight = listMoonlight, additionalFilename = "_ncancer5")
```
Description

This function visualize the functional enrichment analysis (FEA)’s barplot

Usage

```r
plotFEA(
  dataFEA,
  topBP = 10,
  additionalFilename = NULL,
  height,
  width,
  offsetValue = 5,
  angle = 90,
  xleg = 35,
  yleg = 5,
  titleMain,
  minY = -5,
  maxY = 10,
  mycols = c("#8DD3C7", "#FFFFB3", "#BEBADA")
)
```

Arguments

dataFEA: dataFEA
topBP: topBP
additionalFilename: additionalFilename
height: Figure height
width: Figure width
offsetValue: offsetValue
angle: angle
xleg: xleg
yleg: yleg
titleMain: title of the plot
minY: minY
maxY: maxY
mycols: colors to use for the plot
Value
 no return value, FEA result is plotted

Examples
 dataFEA <- FEA(DEGsmatrix = DEGsmatrix)
 plotFEA(dataFEA = dataFEA, additionalFilename = "_example", height = 20, width = 10)

plotNetworkHive
plotNetworkHive: Hive network plot

Description
 This function visualizes the GRN as a hive plot

Usage
 plotNetworkHive(dataGRN, namesGenes, thres, additionalFilename = NULL)

Arguments
 dataGRN output GRN function
 namesGenes list TSG and OCG to define axes
 thres threshold of edges to be included
 additionalFilename additionalFilename

Value
 no results Hive plot is executed

Examples
 data(knownDriverGenes)
 data(dataGRN)
 plotNetworkHive(dataGRN = dataGRN, namesGenes = knownDriverGenes, thres = 0.55)
plotURA

plotURA

plotURA: Upstream regulatory analysis heatmap plot

Description

This function visualizes the URA in a heatmap

Usage

```
plotURA(dataURA, additionalFilename = "URAplot")
```

Arguments

- `dataURA`: output URA function
- `additionalFilename`: figure name

Value

heatmap

Examples

```r
data(dataURA)
dataDual <- PRA(dataURA = dataURA, 
               BPname = c("apoptosis","proliferation of cells"), 
               thres.role = 0)
TSGs_genes <- names(dataDual$TSG)
OCGs_genes <- names(dataDual$OCG)
plotURA(dataURA = dataURA[c(TSGs_genes, OCGs_genes),], additionalFilename = 
        "_example")
```

PRA

Pattern Recognition Analysis (PRA)

Description

This function carries out the pattern recognition analysis

Usage

```
PRA(dataURA, BPname, thres.role = 0)
```

Arguments

- `dataURA`: output URA function
- `BPname`: BPname
- `thres.role`: thres.role
Value

returns list of TSGs and OCGs when biological processes are provided, otherwise a randomForest based classifier that can be used on new data

Examples

data(dataURA)
dataDual <- PRA(dataURA = dataURA,
BPname = c("apoptosis","proliferation of cells"),
thres.role = 0)

tabGrowBlock	Information growing/blocking characteristics for 101 selected biological processes

Description

A data set containing the following data:

Usage

data(tabGrowBlock)

Format

A 101x3 matrix

Details

- tabGrowBlock matrix that defines if a process is growing or blocking cancer development, for each 101 biological processing

Value

a 101x3 matrix
URA
URA Upstream Regulator Analysis

Description
This function carries out the upstream regulator analysis

Usage
URA(dataGRN, DEGsmatrix, BPname, nCores = 1)

Arguments
- dataGRN: output GNR function
- DEGsmatrix: output DPA function
- BPname: biological processes
- nCores: number of cores to use

Value
an adjacent matrix

Examples
```r
dataDEGs <- DEGsmatrix
dataGRN <- GRN(TFs = rownames(dataDEGs)[1:100],
               DEGsmatrix = dataDEGs,
               DiffGenes = TRUE,
               normCounts = dataFilt)
dataURA <- URA(dataGRN = dataGRN,
               DEGsmatrix = dataDEGs,
               BPname = c("apoptosis",
                           "proliferation of cells")))```
Index

* datasets
  dataFilt, 3
dataGRN, 4
dataURA, 4
DEGsmatrix, 5
DiseaseList, 5
EAGenes, 7
GDCProjects, 8
geneInfo, 8
GEO_TCGAtab, 9
knownDriverGenes, 12
listMoonlight, 13
tabGrowBlock, 20

plotCircos, 16
plotFEA, 17
plotNetworkHive, 18
plotURA, 19
PRA, 19
tabGrowBlock, 20
URA, 21

dataFilt, 3
dataGRN, 4
dataURA, 4
DEGsmatrix, 5
DiseaseList, 5
DPA, 6

EAGenes, 7

FEA, 7

GDCProjects, 8
geneInfo, 8
GEO_TCGAtab, 9
getDataGEO, 9
getDataTCGA, 10
GRN, 11
GSEA, 12

knownDriverGenes, 12

listMoonlight, 13
LPA, 13

moonlight, 14
MoonlightR, 15