Package ‘M3C’

October 6, 2019

Title Monte Carlo Reference-based Consensus Clustering
Version 1.7.1002
Author Christopher John, David Watson
Maintainer Christopher John <chris.r.john86@gmail.com>
Description M3C is a consensus clustering algorithm that uses a Monte Carlo simulation to eliminate overestimation of K and can reject the null hypothesis K=1.
Depends R (>= 3.5.0)
License AGPL-3
Encoding UTF-8
LazyData true
Imports ggplot2, Matrix, doSNOW, NMF, RColorBrewer, cluster, parallel, foreach, doParallel, matrixcalc, dendextend, sigclust, Rtsne, survival, corpcor, umap
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 6.1.1
biocViews Clustering, GeneExpression, Transcription, RNASeq, Sequencing, ImmunoOncology
git_url https://git.bioconductor.org/packages/M3C
git_branch master
git_last_commit d0ad5af
git_last_commit_date 2019-09-30
Date/Publication 2019-10-05

R topics documented:

clustersim ... 2
desx .. 2
featurefilter ... 3
M3C .. 4
mydata .. 5
pca .. 6
tsne .. 7
umap .. 8

Index 10
clustersim

clustersim: A cluster simulator for testing clustering algorithms

Description

clustersim: A cluster simulator for testing clustering algorithms

Usage

```r
clustersim(n, n2, r, K, alpha, wobble, redp = NULL, print = FALSE, seed = NULL)
```

Arguments

- `n`: Numerical value: The number of samples, it must be square rootable
- `n2`: Numerical value: The number of features
- `r`: Numerical value: The radius to define the initial circle (use approx n/100)
- `K`: Numerical value: How many clusters to simulate
- `alpha`: Numerical value: How far to pull apart the clusters
- `wobble`: Numerical value: The degree of noise to add to the sample coordinates
- `redp`: Numerical value: The fraction of samples to remove from one cluster
- `print`: Logical flag: whether to print the PCA into current directory
- `seed`: Numerical value: fixes the seed if you want to repeat results

Value

A list: containing 1) matrix with simulated data in it

Examples

```r
res <- clustersim(225, 900, 8, 4, 0.75, 0.025, redp = NULL, print = TRUE, seed=123)
```

desx

GBM clinical annotation data

Description

This is the clinical annotation data from the GBM dataset, it contains the class of the tumour which is one of: classical, mesenchymal, neural, proneural. It is a data frame with 2 columns and 50 rows.

Author(s)

Chris John <chris.r.john86@gmail.com>

References

featurefilter

featurefilter: A function for filtering features

Description

This function is to filter features based on variance. Depending on the data different metrics will be more appropriate, simple variance is included if variance does not tend to increase with the mean. There is also the median absolute deviation which is a more robust metric than variance. The coefficient of variation (A) or its second order derivative (A^2) (Kvalseth, 2017) are also included which standardise the standard deviation with respect to the mean. It is best to examine the mean-variance relationship of the data and the distribution of variance of all features when selecting a metric, for example, using the results from this function together with the qplot function from ggplot2.

Usage

```r
featurefilter(mydata, percentile = 10, method = "MAD", topN = 20)
```

Arguments

- `mydata` Data frame: should have samples as columns and rows as features
- `percentile` Numerical value: the top X percent most variable features should be kept
- `method` Character vector: variance (var), coefficient of variation (A), second order A (A^2), median absolute deviation (MAD)
- `topN` Numerical value: the number of most variable features to display

Value

A list, containing: 1) filtered data 2) statistics for each feature order according to the defined filtering metric

References

Examples

```r
filtered <- featurefilter(mydata, percentile=10)
```
Description

This is the M3C core function, which is a reference-based consensus clustering algorithm. The basic idea is to use a multi-core enabled Monte Carlo simulation to drive the creation of a null distribution of stability scores. The Monte Carlo simulations maintains the feature correlation structure of the input data. Then the null distribution is used to compare the reference scores with the real scores and an empirical p value is calculated for every value of K to test the null hypothesis K=1. We derive the Relative Cluster Stability Index (RCSI) as a metric for selecting K, which is based on a comparison against the reference mean. A faster alternative is included that includes a penalty term to prevent overfitting, called the Penalised Cluster Stability Index (PCSI).

Usage

M3C(mydata, cores = 1, iters = 100, maxK = 10, des = NULL, ref_method = c("reverse-pca", "chol"), repsref = 100, repsreal = 100, clusteralg = c("pam", "km", "spectral", "hc"), distance = "euclidean", pacx1 = 0.1, pacx2 = 0.9, printres = FALSE, printheatmaps = FALSE, showheatmaps = FALSE, seed = NULL, removeplots = FALSE, dend = FALSE, silent = FALSE, doanalysis = FALSE, analysistype = c("survival", "kw", "chi"), variable = NULL, fsize = 18, method = 1, lambda = 0.1)

Arguments

- **mydata** Data frame or matrix: Contains the data, with samples as columns and rows as features
- **cores** Numerical value: how many cores to split the monte carlo simulation over
- **iters** Numerical value: how many Monte Carlo iterations to perform (default: 100, recommended: 5-200)
- **maxK** Numerical value: the maximum number of clusters to test for, K (default: 10)
- **des** Data frame: contains annotation data for the input data for automatic reordering
- **ref_method** Character string: refers to which reference method to use (recommended: leaving as default)
- **repsref** Numerical value: how many resampling reps to use for reference (default: 100, recommended: 100-250)
- **repsreal** Numerical value: how many resampling reps to use for real data (default: 100, recommended: 100-250)
- **clusteralg** String: dictates which inner clustering algorithm to use for M3C
- **distance** String: dictates which distance metric to use for M3C (recommended: leaving as default)
- **pacx1** Numerical value: The 1st x co-ordinate for calculating the pac score from the CDF (default: 0.1)
- **pacx2** Numerical value: The 2nd x co-ordinate for calculating the pac score from the CDF (default: 0.9)
mydata

printres Logical flag: whether to print all results into current directory
printheatmaps Logical flag: whether to print all the heatmaps into current directory
showheatmaps Logical flag: whether to show the heatmaps on screen
seed Numerical value: fixes the seed if you want to repeat results, set the seed to 123 for example here
removeplots Logical flag: whether to remove all plots
dend Logical flag: whether to compute the dendrogram and p values for the optimal K or not
silent Logical flag: whether to remove messages or not
doanalysis Logical flag: whether to analyse the clinical variable supplied (univariate only)
analysistype Character string: refers to which kind of statistical analysis to do on the data, survival, Kruskal-Wallis (kw), or chi-squared (chi)
variable Character string: if not doing survival what is the dependant variable (column name) called in the data frame
fsize Numerical value: determines the font size of the ggplot2 plots
method Numerical value: 1 refers to the Monte Carlo reference procedure, 2 to using a penalty term (faster)
lambda Numerical value: controls the strength of the penalty on the PAC score (default = 0.1)

Value

A list, containing: 1) the stability results and 2) all the output data (another list) 3) reference stability scores (see vignette for more details on how to easily access)

Examples

res <- M3C(mydata)

mydata

<table>
<thead>
<tr>
<th>GBM expression data</th>
</tr>
</thead>
</table>

Description

This is the expression data from the GBM dataset. It is a data frame with 50 columns and 1740 rows.

Author(s)

Chris John <chris.r.john86@gmail.com>

References

pca: A principal component analysis function

Description

This is a flexible PCA function that can be run on a standard data frame (or the M3C results object). It is a wrapper for prcomp/ggplot2 code and can be customised with different colours and font sizes and more.

Usage

```r
pca(mydata, K = FALSE, printres = FALSE, labels = FALSE, text = FALSE, axistextsize = 18, legendtextsize = 18, dotsize = 5, textlabelsizer = 4, legendtitle = "Group", controlscale = FALSE, scale = 1, low = "grey", high = "red", colvec = c("sky blue", "gold", "violet", "darkorchid", "slateblue", "forestgreen", "violetred", "orange", "midnightblue", "grey31", "black"), printheight = 20, printwidth = 22, pcx = 1, pcy = 2, scaler = FALSE)
```

Arguments

- **mydata**: Data frame or matrix or M3C results object: if dataframe/matrix should have samples as columns and rows as features
- **K**: Numerical value: if running on the M3C results object, which value was the optimal K?
- **printres**: Logical flag: whether to print the PCA into current directory
- **labels**: Character vector: if we want to just label with gender for example
- **text**: Character vector: if we wanted to label the samples with text IDs to look for outliers
- **axistextsize**: Numerical value: axis text size
- **legendtextsize**: Numerical value: legend text size
- **dotsize**: Numerical value: dot size
- **textlabelsize**: Numerical value: text inside plot label size
- **legendtitle**: Character vector: text legend title
- **controlscale**: Logical flag: whether to control the colour scale
- **scale**: Numerical value: 1=spectral palette, 2=manual low and high palette, 3=categorical labels
- **low**: Character vector: continuous scale low colour
- **high**: Character vector: continuous scale high colour
- **colvec**: Character vector: a series of colours in vector for categorical labels, e.g. c("sky blue", "gold")
- **printheight**: Numerical value: png height (default=20)
- **printwidth**: Numerical value: png width (default=22)
- **pcx**: Numerical value: which PC to plot on X axis (default=1)
- **pcy**: Numerical value: which PC to plot on Y axis (default=2)
- **scaler**: Logical flag: whether to scale the features of the input data (rows) (default=FALSE)
Value
A PCA plot object

Examples
PCA <- pca(mydata)

tsne

Description
This is a flexible t-SNE function that can be run on a standard data frame (or the M3C results object). It is a wrapper for Rtsne/ggplot2 code and can be customised with different colours and font sizes and more.

Usage
tsne(mydata, K = FALSE, labels = FALSE, perplex = 15,
printres = FALSE, seed = FALSE, axistextsize = 18,
legendtextsize = 18, dotsize = 5, textlabels = 4,
legendtitle = "Group", controlscale = FALSE, scale = 1,
low = "grey", high = "red", colvec = c("sky blue", "gold",
"violet", "darkorchid", "slateblue", "forestgreen", "violetred",
"orange", "midnightblue", "grey31", "black"), printheight = 20,
printwidth = 22, text = FALSE)

Arguments
mydata Data frame or matrix or M3C results object: if dataframe/matrix should have samples as columns and rows as features
K Numerical value: if running on the M3C results object, which value was the optimal K?
labels Character vector: if we want to just label with gender for example
perplex Numerical value: perplexity value that Rtsne uses internally
printres Logical flag: whether to print the t-SNE into current directory
seed Numerical value: optionally set the seed
axistextsize Numerical value: axis text size
legendtextsize Numerical value: legend text size
dotsize Numerical value: dot size
textlabels Numerical value: text inside plot label size
legendtitle Character vector: text legend title
controlscale Logical flag: whether to control the colour scale
scale Numerical value: 1=spectral palette, 2=manual low and high palette, 3=categorical labels
low Character vector: continuous scale low colour
high Character vector: continuous scale high colour
colvec Character vector: a series of colours in vector for categorical labels, e.g. c("sky blue", "gold")
printheight Numerical value: png height
printwidth Numerical value: png width
text Character vector: if we wanted to label the samples with text IDs to look for outliers

Value
A t-SNE plot object

Examples
TSNE <- tsne(mydata, perplex=15)

umap

umap: A umap function

Description
This is a flexible umap function that can be run on a standard data frame (or the M3C results object). It is a wrapper for umap/ggplot2 code and can be customised with different colours and font sizes and more.

Usage
umap(mydata, K = FALSE, labels = FALSE, printres = FALSE,
seed = FALSE, axistextsize = 18, legendtextsize = 18,
dotsize = 5, textlabelsize = 4, legendtitle = "Group",
controlscale = FALSE, scale = 1, low = "grey", high = "red",
colvec = c("sky blue", "gold", "violet", "darkorchid", "slateblue",
"forestgreen", "violetred", "orange", "midnightblue", "grey31", "black"),
printheight = 20, printwidth = 22, text = FALSE)

Arguments
mydata Data frame or matrix or M3C results object: if dataframe/matrix should have samples as columns and rows as features
K Numerical value: if running on the M3C results object, which value was the optimal K?
labels Character vector: if we want to just label with gender for example
printres Logical flag: whether to print the UMAP into current directory
seed Numerical value: optionally set the seed
axistextsize Numerical value: axis text size
legendtextsize Numerical value: legend text size
dotsize Numerical value: dot size
textlabelsize Numerical value: text inside plot label size
legendtitle Character vector: text legend title
controlscale Logical flag: whether to control the colour scale
scale Numerical value: 1=spectral palette, 2=manual low and high palette, 3=categorical labels
low Character vector: continuous scale low colour
high Character vector: continuous scale high colour
colvec Character vector: a series of colours in vector for categorical labels, e.g. c("sky blue", "gold")
printheight Numerical value: png height
printwidth Numerical value: png width
text Character vector: if we wanted to label the samples with text IDs to look for outliers

Value

A umap plot object

Examples

UMAP <- umap(mydata)
Index

*Topic data
 desx, 2
 mydata, 5

clustersim, 2

desx, 2

featurefilter, 3

M3C, 4
mydata, 5

pca, 6

tsne, 7

umap, 8