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1 Introduction

In biomarker discovery, label-free differential proteomics is based on comparing the ex-
pression of proteins between different biological conditions [1| [2]. The experimental de-
sign involved for these experiments requires of randomization and blocking [12]. Working
with balanced blocks in which all biological conditions are measured by a number of tech-
nical and/or biological replicates, and within the shortest time window possible, helps to
reduce experimental bias. Unfortunately, there are many factors that may bias the results
in a systematic manner: different operators, different chromatographic columns, different
protein digestions, an eventual repair of the LC-MS system, and different laboratory en-
vironment conditions. Blocking and randomization help to control to some extent these
factors. However, even using the best experimental design some uncontrolled variables
may still interfere with differential proteomics experiments. These uncontrolled variables
may be responsible for the manifestation of batch effects. Effects which are usually evi-
denced when samples do not cluster by their biological condition using multidimensional
unsupervised techniques such as Principal Components Analysis (PCA) or Hierarchical
Clustering (HC) [3]. The most benign consequence of batch effects is an increase in the
observed variability with a decreased sensitivity to detect biological differences. In the
worst scenario, batch effects can mask completely the underlying biology in the experi-
ment.

Exploratory Data Analysis (EDA) helps in evidencing confounding factors and even-
tual outliers. In front of any -omics’ experiment it is always wise to perfom an EDA before
any differential expression statistical analysis [4] [5]. The results of this exploratory anal-
ysis, visualized by PCA maps, HC trees, and heatmaps, will inform about the extent of
batch effects and the presence of putative outliers. As a result the analyst may decide
on the inclusion of a blocking factor to take into account the batch effects, or about the
exclusion of a bad conditioned sample.



2  An example LC-MS/MS dataset

The dataset of this example [5] is the result of an spiking experiment, showing LC-
MS/MS data obtained in ideal conditions, and optimal to detect batch effects. Samples
of 500 micrograms of a standard yeast lysate are spiked either with 200fm or 600fm of a
complex mix of 48 human proteins (UPS1, Sigma-Aldrich@®)). The measures were done
in two different runs, separated by a year time. The first run consisted of four replicates
of each condition, and the second run consisted of three replicates of each condition.
The dataset consists in an instance of the MSnSet class, defined in the MSnbase package
[6], a S4 class [7] |8]. This MSnSet object contains a spectral counts (SpC) matrix in the
assayData slot, and factors treatment and batch in the phenoData slot. (See also the
expressionSet vignette [9])

>  library(msmsEDA)
> data(msms.dataset)
> msms.dataset

MSnSet (storageMode: lockedEnvironment)
assayData: 697 features, 14 samples
element names: exprs
protocolData: none
phenoData
sampleNames: U2.2502.1 U2.2502.2 ... U6.0302.3 (14 total)
varLabels: treat batch
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
pubMedIds: http://www.ncbi.nlm.nih.gov/pubmed/22588121
Annotation:
- - - Processing information - - -
MSnbase version: 1.8.0

> dim(msms.dataset)
[1] 697 14
>  head(pData(msms.dataset))

treat batch

U2.2502.1 U200 2502
U2.2502.2 U200 2502
U2.2502.3 U200 2502
U2.2502.4 U200 2502
U6.2502.1 U600 2502
U6.2502.2 U600 2502

>  table(pData(msms.dataset)$treat)



U200 U600
7 7

>  table(pData(msms.dataset)$batch)

0302 2502
6 8

>  table(pData(msms.dataset)$treat, pData(msms.dataset)$batch)

0302 2502
U200 3 4
U600 3 4

The aim of the exploratory data analysis, in this case, is to evidence the existence of
batch effects between the two runs. And eventually to check the opportunity of a simple
batch effects correction.

Before proceeding to the EDA, a data pre-processing is required to solve NAs and to
remove improper rows in the spectral counts matrix. The NAs, common when joining
datasets in which not exactly the same proteins are identified, should be substituted by
0. By improper rows to be removed, we mean: i) the rows with all zeroes, which could
come from the subsetting from a bigger SpC matrix. ii) The rows belonging to artefactual
identifications of -R’ proteins.

> e <- pp.msms.data(msms.dataset)
> processingData(e)

- - - Processing information - - -

Subset [697,14]([675,14] Wed Jun 4 20:34:10 2025

Applied pp.msms.data preprocessing [Wed Jun 4 20:34:10 2025]
MSnbase version: 1.8.0

> dim(e)
[1] 675 14

> setdiff (featureNames (msms.dataset), featureNames(e))

[1] "YER160C-R" "YJRO66W-R" "YELO61C-R" "YJL190C (+1)" "YLLO57C"
[6] "YBR189W" "YDR227W" "YER103W" "YGRO29W" "YNRO32C-A"
[11] "YMR172W" "YJL200C" "YDL126C" "YGL173C" "YMLO37C"
[16] "YHR102W" "YMR165C" "YJL138C (+1)" "YBLO46W" "YJL123C"
[21] "YOR123C" "YGR276C"



3

SpC distribution

A first glance to the contents of the spectral counts matrix is given by the distribution of
SpC by sample, including the number of proteins identified and the total spectral counts
by sample.

> tfvom <- count.stats(e)
> { cat("\nSample statistics after removing NAs and -R:\n\n")

}

cat ("SpC matrix dimension:",dim(e),"\n\n")
print (tfvam)

Sample statistics after removing NAs and -R:

SpC matrix dimension: 675 14

U2.
U2.
U2.
U2.
U6.
Ué6.
Ué6.
U6.
U2.
U2.
U2.
Ué6.
U6
U6.

i)

ii)

iii)

proteins counts min lwh med hgh max
2502.1 590 5398 0 2 3 8.0 183
2502.2 592 6501 0 2 3 7.0 205
2502.3 586 5477 0 1 3 8.0 202
2502.4 586 5251 O 1 3 7.0 203
2502.1 582 5692 0 1 3 8.5 194
2502.2 577 5686 0 1 3 8.0 208
2502.3 578 6652 0 1 3 8.0 215
2502.4 560 5601 0 1 3 8.0 217
0302.1 512 6629 0 1 2 7.0 409
0302.2 499 5840 0 O 27.0 384
0302.3 513 6726 0 1 2 7.0 364
0302.1 491 5975 0 O 2 7.5 395
.0302.2 474 5739 0 O 2 7.5 358
0302.3 474 5891 0 O 2 8.0 355

Three graphical means will contribute to visualize this distribution:

A barplot of total SpC by sample scaled to the median. Ideally when the same
amount of total protein is measured in each sample, the same total number of spectral
counts will be observed. A good quality experiment will show all the bars near 1.

A set of SpC boxplots by sample. As most proteins in a sample may show very low
signal, 0 or 1 SpC, resulting in sparce SpC vectors, more informative boxplots are
obtained when removing the values below a given threshold. Here the proteins with
SpC below minSpC are excluded of a sample. The boxplots show the distribution of
the remaining logy transformed SpC values by sample.

Superposed SpC density plots by sample. As before the proteins with SpC below
minSpC are excluded of each sample and the SpC are log, transformed.
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1),widths

> spc.barplots(exprs(e),fact=pData(e)$treat)

> spc.boxplots(exprs(e),fact=pData(e)$treat,minSpC
main="UPS1 200fm vs 600fm")

> layout (mat=matrix(1:2,ncol

' [qV]
; =X=)
I €'20€0°9N n\w 3 - £20€09N
Q 55
T zeosoen ‘num - z'zogo9n
£
I 1'20€0°9N L 1zogo'on
n
i ) ) > - $'2052°9N
T RECTU
_ - €2052'9N
_ - z'zosz'9n
. . 1
a - 1°205z°9N
\ - vz05z°ZN
! - €z05z°ZN
. — Z'zoszzn
I zzoszen | oszan
! T T T T T
T 1T T 1 1 0T 8 9 % z
© ® © ¥ N 9

Figure 1: A) Total SpC by sample scaled to the median. B) Samples SpC boxplots.



> spc.densityplots(exprs(e),fact=pData(e)$treat,minSpC=2,
main="UPS1 200fm vs 600fm")
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Figure 2: Samples SpC density plots.



4 Principal Components Analysis

A plot on the two principal components of the SpC matrix visualizes the clustering of sam-
ples. Ideally the samples belonging to the same condition should cluster together. Any
mixing of samples of different conditions may indicate the influence of some confounding

factors.
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Figure 3: PCA plot on PC1/PC2, showing confounding.
treatment level on top, and by batch number bellow. Labels themselves are selfexplicative

of treatment condition and batch.

> facs <- pData(e)

> snms <- substr(as.character(facs$treat),1,2)
> snms <- paste(snms,as.integer (facs$batch),sep=".")
> pcares <- counts.pca(e)

The labels are colored by



> smpl.pca <- pcares$pca

> { cat("Principal components analisis on the raw SpC matrix\n")
cat("Variance of the first four principal components:\n\n")
print (summary (smpl.pca)$importancel[,1:4])

}

Principal components analisis on the raw SpC matrix
Variance of the first four principal components:

PC1 PC2 PC3 PC4
Standard deviation 163.82011 46.11827 32.26952 22.75380
Proportion of Variance 0.84136 0.06668 0.03265 0.01623
Cumulative Proportion 0.84136 0.90804 0.94068 0.95691

Note how in these plots the samples tend to cluster by batch instead of by treatment,
this is evidence of a confounding factor. Something uncontrolled contributes globally to
the results in a higer extend than the treatment itself.

5 Hierarchical clustering
The hierarchical clustering of samples offers another view of the same phenomenon:

> counts.hc(e,facs=pData(e) [, "treat", drop = FALSE])

HC - treat
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U6.0302.3
{ U6.0302.2
U6.0302.1
U2.2502.4
_|: U2.2502.3
U2.2502.2
_|: U2.2502.1
U6.2502.4
U6.2502.2
_|: U6.2502.1
I I I I |
400 300 200 100 0

Figure 4: Hirearchical clustering of samples, showing confounding. The labels are colored
by treatment level.



> counts.hc(e,facs=pData(e) [, "batch", drop = FALSE])

HC - batch
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Figure 5: Hirearchical clustering of samples, showing confounding. The labels are colored
by batch number.

6 Heatmap

A heatmap may be more informative than the dendrogram of samples, in the sense that
it allows to identify the proteins most sensitive to this confounding. In this case we
need a heatmap heigh enough to allow room for all the protein names. The function
counts.heatmap provides two heatmaps, the first one is fitted on an A4 page and offers
a general view, the second one is provided in a separate pdf file and is drawn with 3mm
high rows to allow a confortable identification of each protein and its expression profile
in the experiment.



> counts.heatmap (e,etit="UPS1",fac=pData(e) [, "treat"])
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Figure 6: Global view heatmap. The column color bar is colored as per treatment levels.

7 Batch effects correction

When counfounding is detected due to batch effects, as in this case, and the runs are
balanced in the two conditions to be compared, blocking may help in the reduction of
the residual variance, improving the sensitivity of the statistical tests. When dealing
with spectral counts the usual model for the differential expression tests is a Generalized
Linear Model (GLM) [10] based on the Poisson distribution, the negative binomial, or
the quasi-likelihood, and these models admit blocking as the usual ANOVA [11] when
dealing with normally distributed continous data.

The visualization of the influence of a batch effects correction, in the exploratory data
analysis step, is easily carried out by the so called mean centering approach [4], by which
the centers of each batch are made to coincide concealing the observed bias between the
different batches. The PCA on the batch mean centered expression matrix will then show
the level of improvement.

> data(msms.dataset)



> msnset <- pp.msms.data(msms.dataset)
> gpcm <- exprs(msnset)
> fbatch <- pData(msnset)$batch
> spcm2 <- batch.neutralize(spcm, fbatch, half=TRUE, sqrt.trans=TRUE)
> ### Plot the PCA on the two first PC, and colour by treatment level
> ### to visualize the improvement.
> exprs(msnset) <- spcm2
> facs <- pData(e)
> snms <- substr(as.character(facs$treat),1,2)
> snms <- paste(snms,as.integer(facs$batch),sep=".")
> par(mar=c(4,4,0.5,2)+0.1)
> counts.pca(msnset, facs=facs$treat, do.plot=TRUE, snms=snms)
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Figure 7: PCA plot on the batch mean centered expression matrix, showing now a better
clustering by treatment level.

This plots shows a clear improvement in the clustering of samples by treatment con-
dition, and suggest that a model with batch as block factor will give better results than
a model just including the treatment factor. The incidence of the correction may be
evaluated as:

> ### Incidence of the correction
> summary(as.vector (spcm-spcm2))

Min. 1st Qu. Median Mean 3rd Qu. Max .
-1.156e+02 -4.757e-01 -6.944e-03 2.100e-01 8.806e-01 1.379e+02

> plot(density(as.vector (spcm-spcm2)))
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8 Dispersion

The simplest distribution used to explain the observed counts in sampling is the Poisson
distribution. With this distribution the variance is equal to the mean, so that the dis-
persion coefficient -the ratio variance to mean- is one. When there are other sources of
variation, apart of the sampling, such as the usual variability among biological replicates,
we talk of overdispersion. In this situation the coefficient of dispersion is greater than
one and the Poisson distribution is unable to explain this extra source of variance. Al-
ternative GLM models able to explain overdispersion are based on the negative binomial
distribution, or on the quasilikelihood [10].

An EDA of a dataset based on counts should include an exploration of the residual
coefficients of dispersion for each of the factors in the experimental design. This will help
in deciding the model to use in the inference step.

The disp.estimates function plots the distribution of residual dispersion coefficients,
and the scatterplot of residual variances vs mean SpC for each of the factors in the
parameter facs, if this parameter is NULL then the factors are taken as default from the
phenoData slot of the MSnSet object.

> dsp <- disp.estimates(e)
> signif(dsp,4)

0.25 0.5 0.75 0.9 0.95 0.99 1
treat 0.4471 0.7500 1.111 1.677 2.474 12.97 67.210
batch 0.2619 0.4264 0.689 1.279 2.071 b5.64 8.273

This function returns silently the quartiles and the quantiles at 0.9, 0.95 and 0.99
of the residual dispersion of each factor. With technical replicates it is not uncommon
to observe most of the dispersion coefficients lower that one. This is a situation of
underdispersion, most likely due to the competitive sampling at the MS system entrance.

12
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Figure 8: Residual dispersion density plot, and residual variance vs mean scatterplot in
log10 scale, of the batch factor.
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9 Informative features

In the border between EDA and inference we may explore the number and distribution
of informative features. We mean by informative features those proteins showing a high
enough signal in the most abundant condition and with an absolute log fold change
between treatment levels above a given threshold. The following plot shows in red the
features with signal not bellow 2 SpC in the most abundant condition, and with minLFC
of 1. To improve the plot two transformations are available, either 'log2’ or ’sqrt’,
although mone’ is also accepted.

> spc.scatterplot (spcm2,facs$treat, trans="sqrt",minSpC=2,minLFC=1,
main="UPS1 200fm vs 600fm")
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Figure 9: Scatterplot with informative features in red, showing the borders of fold change
2 and 0.5 as blue dash-dot lines.
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