Introduction to the Bioconductor marray package :
Classes structure component

Sandrine Dudoit! and Yee Hwa Yang?

June 4, 2025

1. Division of Biostatistics, University of California, Berkeley,
http://www.stat.berkeley.edu/ sandrine|2. Department of Medicine, University of California,
San Francisco, jean@biostat.berkeley.edu

Contents

I_Overviewl 1

2 Object—oriented programming] 2

[3 Microarray classes| 2
[3.1 marrayLayout class|. 3
[3.2 marrayInfoclass 4
[3.3 marrayRaw class|. 4
[3.4 marrayNormclass| L 5
[3.5 Creating and accessing slots of microarray objects|. 6
[3.6 Testing the validity of an object|. 7

[4 Basic microarray methods| 8
[4.1 Printing methods tor microarray objects| L. 8
[4.2 Subsetting methods for microarray objects|o 0oL 9
[4.3 Methods for accessing slots of microarray objects| 13
[4.4 Methods for assigning slots of microarray objects| 13
[4.5 Methods for coercing microarray objects| 15
[4.6 Functions for computing layout parameters| 15

1 Overview

This document provides a tutorial on the class structures used in the marray package. The marray
packages contains basic class definitions and associated methods for pre— and post-normalization in-
tensity data for batches of arrays. To load the marray package in your R session, type library (marray).
As with any R package, detailed information on functions, classes and methods can be obtained
in the help files. For instance, to view the help file for the class marrayRaw in a browser, use

http://www.stat.berkeley.edu/~sandrine

help.start() followed by ? marrayRaw or alternately the dyadic class ? marrayRaw. Further-
more, se demonstrate the functionality of this collection of R packages using gene expression data
from the Swirl zebrafish experiment. To load the Swirl dataset, use data(swirl), and to view a
description of the experiments and data, type 7 swirl.

Getting started:

2 Object—oriented programming

Microarray experiments generate large and complex multivariate datasets, which contain textual
information on probe sequences (e.g. gene names, annotation, layout parameters) and mRNA target
samples (e.g. description of samples, protocols, hybridization and scanning conditions), in addition
to the primary fluorescence intensity data. Efficient and coordinated access to these various types
of data is an important aspect of computing with microarray data. To facilitate the management
of microarray data at different stages of the analysis process, a collection of microarray specific
data structures or classes were defined (see also the Bioconductor package Biobase for microarray
classes and methods for normalized data). The packages rely on the class/method mechanism
provided by John Chambers’ R methods package, which allows object—oriented programming in
R. Broadly speaking, classes reflect how we think of certain objects and what information these
objects should contain. Classes are defined in terms of slots which contain the relevant data for
the application at hand. Methods define how a particular function should behave depending on the
class of its arguments and allow computations to be adapted to particular classes, that is, data
types. For example, a microarray object should contain intensity data as well as information on
the probe sequences spotted on the array and the target samples hybridized to it. Useful methods
for microarray classes include specializations of printing, subsetting, and plotting functions for the
types of data represented by these classes.

The use of classes and methods greatly reduces the complexity of handling microarray data, by
automatically coordinating various sources of information associated with microarray experiments.

3 Microarray classes

The raw data from a microarray experiment are the image files produced by the scanner; these are
typically pairs of 16-bit tagged image file format (TIFF) files, one for each fluorescent dye (images
usually range in size from a few megabytes (MB) to 10 or 20 MB for high resolution scans). Image
analysis is required to extract foreground and background fluorescence intensity measurements for
each spotted DNA sequence.

Here, we begin our analysis of microarray data with the output files of image processing packages
such as GenePix or Spot. In what follows, red and green background intensities are denoted by
Ry and Gy, respectively, and red and green foreground intensities by Ry and G, respectively.
Background—corrected red and green fluorescence intensities are denoted by R and G, and M denotes
the corresponding base-2 log-ratio, M = logy R/G.

3.1 marraylayout class

The term array layout refers to the layout of DNA probe sequences on the array, as determined by
the printing process. In general, probe sequences are spotted on a glass microscope slide using an
arrayer which has an ngr x ngc print-head, that is, a regular array of ngr rows and ngc columns of
print—tips or pins. The resulting microarrays are thus partitioned into an ngr X ngc grid matriz. The
terms grid, sector, and print—tip—group are used interchangeably in the microarray literature. Each
grid consists of an nsr x nsc spot matriz that was printed with a single print—tip. DNA probes are
usually printed sequentially from a collection of 384-well plates (or 96-well plates), thus, in some
sense, plates are proxies for time of printing. In addition, a number of control probe sequences may
be spotted on the array for normalization or other calibration purposes. The term array batch is
used to refer to a collection of arrays with the same layout. Keeping track of spot layout information
is essential for quality assessment of fluorescent intensity data and for normalization purposes.

Important layout parameters are the dimensions of the spot and grid matrices, and, for each probe
on the array, its grid matrix and spot matrix coordinates. In addition, it is useful to keep track
of gene names, plate origin of the probes, and information on the spotted control sequences (e.g.
probe sequences which should have equal abundance in the two target samples, such as housekeeping
genes). The class marrayLayout was designed to keep track of these various layout parameters and
contains the following slots (the classes of the slots are listed below the slot names)

> getClassDef ("marrayLayout")

Class "marraylayout" [package "marray"]

Slots:

Name: maNgr maNgc maNsr maNsc malNspots maSub
Class: numeric numeric numeric numeric numeric logical
Name: maPlate maControls maNotes

Class: factor factor character

Extends: "ShowLargeObject"

maNgr: Object of class "numeric", number of rows for the grid matrix.
maNgc: Object of class "numeric", number of columns for the grid matrix.
maNsr: Object of class "numeric", number of rows for the spot matrices.
maNsc: Object of class "numeric", number of columns for the spot matrices.

maNspots: Object of class "numeric", total number of spots on the array, equal to malNgr x
maNgc X maNsr X maN sc.

maSub: Object of class "logical", indicating which spots are currently being considered.

maPlate: Object of class "factor", recording the plate origin of the spotted probe sequences.

maControls: Object of class "factor", recording the control status of the spotted probe sequences.

maNotes: Object of class "character", any notes concerning the microarray layout, e.g., printing
conditions.

In addition, a number of methods were defined to compute other important layout parameters,
such as print—tip, grid matrix, and spot matrix coordinates: maPrintTip, maGridRow, maGridCol,
maSpotRow, and maSpotCol (see Section . No slots were defined for these quantities for memory
management reasons.

3.2 marrayInfo class

Information on the target mRNA samples co—hybridized to the arrays is stored in objects of class
marrayInfo. Such objects may include the names of the arrays, the names of the Cy3 and Cy5
labeled samples, notes on the hybridization and scanning conditions, and other textual information.
Descriptions of the spotted probe sequences (e.g. matrix of gene names, annotation, notes on
printing conditions) are also stored in object of class marrayInfo. The marrayInfo class is not
specific to the microarray context and has the following definition

> getClassDef ("marrayInfo'")
Class "marrayInfo" [package "marray"]
Slots:

Name: malabels malnfo maNotes
Class: character data.frame character

Extends: "ShowLargeObject"

3.3 marrayRaw class

Pre-normalization intensity data for a batch of arrays are stored in objects of class marrayRaw,
which contain slots for the matrices of Cy3 and Cy5 background and foreground intensities (maGb,
maRb, maGf, maRf), spot quality weights (maW), layout parameters of the arrays (marrayLayout),
description of the probes spotted onto the arrays (maGnames) and mRNA target samples hybridized
to the arrays (maTargets).

> getClassDef ("marrayRaw")

Class "marrayRaw" [package "marray"]

Slots:
Name: maRf maGf maRb maGb maW
Class: matrix matrix matrix matrix matrix

Name: maLayout maGnames maTargets maNotes
Class: marraylLayout marrayInfo marraylInfo character

Extends: "ShowLargeObject"

maRf: Object of class "matrix", red foreground intensities, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maGf: Object of class "matrix", green foreground intensities, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maRb: Object of class "matrix", red background intensities, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maGb: Object of class "matrix", green background intensities, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maW: Object of class "matrix", spot quality weights, rows correspond to spotted probe sequences,
columns to arrays in the batch.

malayout: Object of class "marrayLayout", layout parameters for cDNA microarrays.
maGnames: Object of class "marraylnfo", description of spotted probe sequences.
maTargets: Object of class "marrayInfo", description of target samples hybridized to the arrays.
maNotes: Object of class "character", any notes concerning the microarray experiments, e.g. hy-
bridization or scanning conditions.
3.4 marrayNorm class

Post—normalization intensity data are stored in similar objects of class marrayNorm. These objects
store the normalized intensity log-ratios maM, the location and scale normalization values (maMloc
and maMscale), and the average log-intensities (maA). In addition, the marrayNorm class has a slot
for the function call used to normalize the data, maNormCall. For more details on the creation of
normalized microarray objects, the reader is referred to the vignette for the marrayNorm package.

> getClassDef ("marrayNorm")

Class "marrayNorm" [package "marray"]

Slots:

Name: mah maM maMloc maMscale maW
Class: matrix matrix matrix matrix matrix
Name : maLayout maGnames maTargets maNotes maNormCall
Class: marrayLayout marrayInfo marraylInfo character call

Extends: "ShowLargeObject"

mad: Object of class "matrix", average log—intensities (base 2) A, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maM: Object of class "matrix", intensity log-ratios (base 2) M, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maMloc: Object of class "matrix", location normalization values, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maMscale: Object of clags "matrix", scale normalization values, rows correspond to spotted probe
sequences, columns to arrays in the batch.

maW: Object of class "matrix", spot quality weights, rows correspond to spotted probe sequences,
columns to arrays in the batch.

malayout: Object of class "marrayLayout", layout parameters for cDNA microarrays.
maGnames: Object of class "marraylnfo", description of spotted probe sequences.
maTargets: Object of class "marraylnfo", description of target samples hybridized to the arrays.

maNotes: Object of class "character", any notes concerning the microarray experiments, e.g. hy-
bridization or scanning conditions.

maNormCall: Object of class "call", function call for normalizing the batch of arrays.

Most microarray objects contain an malNotes slots which may be used to store any string of char-
acters describing the experiments, for examples, notes on the printing, hybridization, or scanning
conditions.

3.5 Creating and accessing slots of microarray objects

Creating new objects. The function new from the methods package may be used to create new
objects from a given class. For example, to create an object of class marrayInfo describing the
target samples in the Swirl experiment, one could use the following code

> zebra.RG<-as.data.frame(cbind(c("swirl", "WT", "swirl", "WT"),

+ c("WT", "swirl", "WT", "swirl")))

> dimnames(zebra.RG) [[2]]<-c("Cy3","Cy5")

> zebra.samples<-new("marrayInfo",

+ maLabels=paste("Swirl array ",1:4,sep=""),

+ maInfo=zebra.RG,

+ malNotes="Description of targets for Swirl experiment")
> zebra.samples

An object of class "marrayInfo"
@maLabels
[1] "Swirl array 1" "Swirl array 2" "Swirl array 3" "Swirl array 4"

Gmalnfo

Cy3 Cyb
1 swirl WT
2 WT swirl
3 swirl WT
4 WT swirl

@malNotes
[1] "Description of targets for Swirl experiment"

Slots which are not specified in new are initialized to the prototype for the corresponding class.
These are usually "empty", e.g., matrix(0,0,0). In most cases, microarray objects can be created
automatically using the input functions and their corresponding widgets in the marrayInput pack-
age. These were used to create the object swirl of class marrayRaw.

Accessing slots. Different components or slots of the microarray objects may be accessed using
the operator @, or alternately, the function slot, which evaluates the slot name. For example, to
access the maLayout slot in the object swirl and the maNgr slot in the layout object L

> L<-slot(swirl, "maLayout")
> L@maNgr

(1] 4

The function slotNames can be used to get information on the slots of a formally defined class or
an instance of the class. For example, to get information on the slots for the marrayLayout class
or on the slots for the object swirl use

> slotNames ("marrayLayout")

[1] "maNgr" "maNgc" "maNsr" "maNsc" "maNspots"
[6] "maSub" "maPlate" "maControls" '"maNotes"

> slotNames (swirl)

[1] "maRf" "maGf" "maRb" "maGb" "maWw" "malayout"
[7] "maGnames" '"maTargets" '"maNotes"
3.6 Testing the validity of an object

The function validObject from the R package methods may be used to test the validity of an
object with respect to its class definition. This function has two arguments: object, the object
to be tested; and test. If test is TRUE, the function returns a vector of strings describing the
problems, if any.

> validObject (malayout (swirl), test=TRUE)

[1] TRUE

4 Basic microarray methods

The following basic methods were defined to facilitate manipulation of microarray data objects. To
see all methods available for a particular class, e.g., marrayLayout, or just the print methods

> showMethods (classes="marrayLayout")
> showMethods ("show", classes="marrayLayout")

4.1 Printing methods for microarray objects

Since there is usually no need to print out fluorescence intensities for thousands of genes, the print
method was overloaded for microarray classes by simple report generators. For an overview of the
available microarray printing methods, type methods ? summary, or to see all summary methods
for the session

> showMethods ("summary")

Function: summary (package base)
object="ANY"

object="marrayInfo"
object="marrayLayout"
object="marrayNorm"
object="marrayRaw"

For example, summary statistics for an object of class marrayRaw, such as swirl, can be obtained
by print (swirl) or simply swirl.

> summary (swirl)

Pre-normalization intensity data: Object of class marrayRaw.
Number of arrays: 4 arrays.

A) Layout of spots on the array:

Array layout: Object of class marrayLayout.

Total number of spots: 8448

Dimensions of grid matrix: 4 rows by 4 cols
Dimensions of spot matrices: 22 rows by 24 cols

Currently working with a subset of 8448spots.

Control spots:
There are 2 types of controls

0 1
7680 768

Notes on layout:
No Input File

B) Samples hybridized to the array:
Object of class marrayInfo.

malLabels Names slide number experiment Cy3 experiment Cyb
1 swirl.l.spot swirl.l.spot 81 swirl wild type
2 swirl.2.spot swirl.2.spot 82 wild type swirl
3 swirl.3.spot swirl.3.spot 93 swirl wild type
4 swirl.4.spot swirl.4.spot 94 wild type swirl
date comments
1 2001/9/20 NA
2 2001/9/20 NA
3 2001/11/8 NA
4 2001/11/8 NA

Number of labels: 4
Dimensions of malnfo matrix: 4 rows by 6 columns

Notes:
C:/GNU/R/R-2.4.1/library/marray/swirldata/SwirlSample.txt

C) Summary statistics for log-ratio distribution:
Min. 1st Qu. Median

C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.l.spot -2.74 -0.79 -0.58
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot -2.72 -0.15 0.03
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot -2.29 -0.75 -0.46
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.4.spot -3.21 -0.46 -0.26
Mean 3rd Qu. Max.
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.1l.spot -0.48 -0.29 4.42
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot 0.03 0.21 2.35
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot -0.42 -0.12 2.65
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.4.spot -0.27 -0.06 2.90

D) Notes on intensity data:
Spot Data

4.2 Subsetting methods for microarray objects

In many instances, one is interested in accessing only a subset of arrays in a batch and/or spots in
an array. Subsetting methods " [" were defined for this purpose. For an overview of the available
microarray subsetting methods, type methods 7 "[" or to see all subsetting methods for the session
showMethods (" ["). When using the "[" operator, the first index refers to spots and the second to

arrays in a batch. Thus, to access the first 100 probe sequences in the second and third arrays in
the batch swirl use

> swirl[1:100,2:3]

An object of class "marrayRaw"

@maRf
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot
[1,] 16138.720
[2,] 17247.670
[3,] 17317.150
[4,] 6794.381
[5,] 6043.542
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot
[1,] 2895.1600
[2,] 2976.6230
[3,] 2735.6190
[4,] 318.9524
[5,] 780.6667

95 more rows ...

OmaGf
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot
[1,] 19278.770
[2,] 21438.960
[3,] 20386.470
[4,] 6677.619
(5,] 6576.292
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot
[1,] 2727.5600
[2,] 2787.0330
[3,] 2419.8810
[4,] 383.2381
[5,] 901.0000

95 more rows ...

@maRb
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot
[1,] 136
[2,] 133
[3,] 133
[4,] 105
[5,] 105
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot
[1,] 82
[2,] 82

10

[3,] 76
[4,] 61
(5,] 61
95 more rows ...
@maGb
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.2.spot
[1,] 175
[2,] 183
[3,] 183
[4,] 142
(5,] 142
C:/GNU/R/R-2.4.1/library/marray/swirldata/swirl.3.spot
[1,] 86
[2,] 86
[3,] 86
[4,] 71
[5,] 71

95 more rows ...

OmaW
<0 x O matrix>

OmaLayout

An object of class "marrayLayout"
@maNgr

(1] 4

O@maNgc
11 4

OmaNsr
[1] 22

@maNsc
[1] 24

OmaNspots
[1] 8448

@maSub
[1] TRUE TRUE TRUE TRUE TRUE

8443 more elements ...

OmaPlate

11

1] 11111
Levels: 1 23456789 10 11 12 13 14 15 16 17 18 19 20 21 22
95 more elements ...

@maControls
(1111111
Levels: 0 1

95 more elements ...

OGmaNotes
[1] "No Input File"

OmaGnames

An object of class "marrayInfo"

OGmalabels

[1] "genol" '"geno2" "geno3" "3XSSC" "3XSSC"
95 more elements ...

OmaInfo

"ID" "Name"
control genol
control geno2
control geno3
control 3X38SC
control 3XSSC
95 more rows ...

gD oW N

OmaNotes
[1] "C:/GNU/R/R-2.4.1/library/marray/swirldata/fish.gal"

OmaTargets

An object of class "marrayInfo"
OmalLabels

[1] "swirl.2.spot" "swirl.3.spot"

Omalnfo

Names slide number experiment Cy3 experiment Cyb date comments
2 swirl.2.spot 82 wild type swirl 2001/9/20 NA
3 swirl.3.spot 93 swirl wild type 2001/11/8 NA
@maNotes

[1] "C:/GNU/R/R-2.4.1/library/marray/swirldata/SwirlSample.txt"

12

OmaNotes
[1] "Spot Data"
4.3 Methods for accessing slots of microarray objects

A number of simple methods were defined to access slots of the microarray classes. Using such
methods is more general than using the slot function or @ operator. In particular, if the class
definitions are changed, any function which uses the @ operator will need to be modified. When
using a method to access the data in the slot, only that particular method needs to be modified.
Thus, to access the layout information for the array batch swirl one may also use maLayout (swirl).

In addition, various methods were defined to compute basic statistics from microarray object slots.
For instance, for memory management reasons, objects of class marrayLayout do not store the spot
coordinates of each probe. Rather, these can be obtained from the dimensions of the grid and spot
matrices by applying methods: maGridRow, maGridCol, maSpotRow, and maSpotCol to objects of
clags marrayLayout. Print—tip—group coordinates are given by maPrintTip. Similar methods were
also defined to operate directly on objects of class marrayRaw and marrayNorm. The commands
below may be used to display the number of spots on the array, the dimensions of the grid matrix,
and the print—tip—group coordinates.

> swirl.layout<-malayout (swirl)
> maNspots(swirl)

[1] 8448

> maNspots(swirl.layout)
[1] 8448

> maNgr (swirl)

(1] 4

> malNgc (swirl.layout)

[1] 4

> maPrintTip(swirl[1:10,3])
(111111111111

4.4 Methods for assigning slots of microarray objects

A number of methods were defined to replace slots of microarray objects, without explicitly using
the @ operator or slot function. These make use of the setReplaceMethod function from the R
methods package. As with the accessor methods just described, the assignment methods are named
after the slots. For example, to replace the maNotes slot of swirl.layout

13

> maNotes (swirl.layout)
[1] "No Input File"

> maNotes (swirl.layout)<- "New value"
> maNotes (swirl.layout)

[1] "New value"
To initialize slots of an empty marrayLayout object

> L<-new("marrayLayout")
> L

An object of class "marrayLayout"
@maNgr
numeric(0)

@maNgc
numeric(0)

OmaNsr
numeric(0)

O@maNsc
numeric(0)

OmaNspots
numeric(0)

@maSub
[1] TRUE

OmaPlate
factor()
Levels:

OmaControls
factor()

Levels:

OmaNotes
character (0)

> maNgr(L)<-4

Similar methods were defined to operate on objects of class marrayInfo, marrayRaw and marrayNorm.

14

4.5 Methods for coercing microarray objects

To facilitate navigation between different classes of microarray objects, we have defined methods
for coercing microarray objects from one class into another. A list of such methods can be obtained
by methods 7 coerce. For example, to coerce an object of class marrayRaw into an object of class
marrayNorm:

> swirl.norm<-as(swirl, "marrayNorm")

4.6 Functions for computing layout parameters

In some cases, plate information is not stored in marrayLayout objects when the data are first read
into R. We have defined a function maCompPlate which computes plate indices from the dimensions
of the grid matrix and number of wells in a plate. For example, the Swirl arrays were printed
from 384-well plates, but the plate IDs were not stored in the fish.gal file. To generate plate
IDs (arbitrarily labeled by integers starting with 1) and store these in the maPlate slot of the
marrayLayout object use

> maPlate(swirl)<-maCompPlate (swirl,n=384)

Similar functions were defined to generate and manipulate spot coordinates: maCompCoord, maCompInd,
maCoord2Ind, maInd2Coord. The function maGeneTable produces a table of spot coordinates and
gene names for objects of class marrayRaw and marrayNorm.

15

	Overview
	Object–oriented programming
	Microarray classes
	marrayLayout class
	marrayInfo class
	marrayRaw class
	marrayNorm class
	Creating and accessing slots of microarray objects
	Testing the validity of an object

	Basic microarray methods
	Printing methods for microarray objects
	Subsetting methods for microarray objects
	Methods for accessing slots of microarray objects
	Methods for assigning slots of microarray objects
	Methods for coercing microarray objects
	Functions for computing layout parameters

