
Gene Expression Variation Analysis (GEVA)

Itamar José Guimarães Nunes1, Murilo Zanini David2,
Bruno César Feltes1, and Marcio Dorn1

June 04, 2025

Contents

1 Introduction 2

2 Installation 3

3 Data input 3
3.1 Alternative 1 – Tab-delimited Text Files 4
3.2 Alternative 2 – Multiple table objects 5
3.3 Alternative 3 – Results from limma 6
3.4 Alternative 4 – Ideal input data (for tests only) 6

4 Input data post-processing (optional) 7
4.1 Numeric table correcting . 7
4.2 Filtering values below statistical significance 8
4.3 Renaming the row names . 9

1Structural Bioinformatics and Computational Lab (SBCB) – Federal University of Rio
Grande do Sul (UFRGS)

2Graduate Program in Ecology – Federal University of Rio Grande do Sul (UFRGS)

1

5 SV Analyses 10
5.1 Summarization . 10
5.2 Delimitation by quantiles . 11
5.3 Clustering . 13

6 Attaining and accessing the results 17
6.1 Final concatenation and factor analysis 17
6.2 Accessing and extracting the results 21
6.3 Shortcut function and reanalysis 23

1 Introduction

GEVA is a package for the analysis of differential gene expression in
multiple experimental comparisons. It takes into account the fold-changes
and p-values from previous differential expression (DE) results that use large-
scale data (e.g., microarray and RNA-seq) and evaluates which genes would
react in response to the distinct experiments. This evaluation involves an
unique pipeline of statistical methods, including weighted summarization,
quantile detection, cluster analysis, and ANOVA tests, in order to classify a
subset of relevant genes whose DE is similar or dependent to certain biological
factors.

This guide introduces the basic usage of geva package and focuses on
its main features to perform the entire analysis from the input to the final
classification. However, for more detailed specifications regarding classes,
functions, and arguments from geva, please check the “Reference Guide”
available in our GitHub repository. Alternatively, the local documentation
can be accessed by typing ?geva in the R console.

Before proceeding to the current methodology, it is assumed that the
user already knows how to manipulate datasets and perform DE analyses
using Bioconductor packages or any external tool that is capable to produce
results from DE comparisons. For users with less familiarity about this

2

subject, please read the tutorials described to the available R packages for
DE analyses, such as limma [1] for microarrays and DESeq2 [2] for RNA-seq.
In addition, some standalone applications employ the equivalent methods
from R to achieve the same results, including GEAP (for microarrays) [3] and
Chipster (for RNA-seq) [4], both of which provide a graphical user interface
and do not require programming knowledge.

2 Installation

This package is available on GitHub and can be installed through the
following command:

BiocManager::install("geva")

Note that this command requires the BiocManager package (installed
via install.packages('BiocManager')). After downloading and installing
the sources, use the following command to load geva from the local package
library:

library(geva)

3 Data input

The input data is essentialy two or more tables produced by DE analyses
that include logFC and (adjusted) p-value columns in association to the genes
(row names). For microarrays, particularly, the probes may be used as row
names along with a Gene Symbol column, which can be attached to the
final results at the end of the analysis. Moreover, although only two tables
are required for GEVA’s minimal usage, the inclusion of several columns is
strongly recommended to achieve a resonable statistical precision. Note that
experiments can be grouped and analyzed in multiple contexts at once in

3

GEVA, and likewise in this case, each group should include several experiments
to attain better results from the statistical tests.

GEVA gives some data input alternatives so that users can provide
objects from the local R environment or from external table files. These
alternatives are described in the sub-sections below, whereas only one of them
is required to accomplish the same desired output.

3.1 Alternative 1 – Tab-delimited Text Files

Programs that feature DE analysis usually output a table of DE re-
sults which is exported as a plain text file. By convention, the saved file
should be formatted as one row per line and one tab-delimited value per
column, but other formats may be used as well. For the conventional format,
the geva.read.tables function can be called using default parameters as
demonstrated below:

Replace the file names below with actual file paths

filenms <- c("cond_A_2h.txt", "cond_B_2h.txt", "cond_C_2h.txt",
"cond_A_4h.txt", "cond_B_4h.txt", "cond_C_4h.txt")

ginput <- geva.read.tables(filenms)

The code above will produce a GEVAInput object, which stores all the
relevant information regarding the input. It reads each file as a table by
calling read.table internally and extracting the columns containing logFC
and adj.P.Val columns, then merging all columns into two tables (one for
logFC values and one for weights).

In addition, the geva.read.tables function has some handful optional
parameters to be considered. For instance, if the dirname parameter is
used instead of filenames, all files inside the directory dirname that match
the pattern given by the files.pattern argument (default is "\\.txt$"
or TXT files) will be included. Other relevant arguments are col.values
(by default, "logFC") and col.pvals (by default, "adj.P.Val"), used to

4

indicate which columns names are used for logFC and (adjusted) p-values.
Vectors of multiple character elements can be passed to these arguments
if the column names differ among the table files so that the first matching
column is included. Furhermore, if one wants to append additional columns
in the analysis (e.g., gene names or gene symbols) to associate them to the
final results, the column names can be specified at the col.other argument.

3.2 Alternative 2 – Multiple table objects

Table objects, particularly of matrix and data.frame types, can be
used as input to GEVA as long as they include the logFC and p-value columns.
The geva.merge.input function receives two or more table arguments and
extracts their corresponding columns to include in the final merge. For
example, given two data.frame objects defined as dt1 and dt1 in the global
environment, the command for this step becomes:

dt1 and dt2 are examples of input data.frames

containing logFC and adj.P.Val columns

ginput <- geva.merge.input(dt1, dt2)

The code above will produce a GEVAInput object, which stores all
the relevant information regarding the input. Arguments are passed indi-
vidually and can also be named to define the columns in the final merge
(e.g., cond1=dt1, cond2=dt2 to append the extracted columns as "cond1"
and "cond2"). Note that some arguments from geva.read.tables, includ-
ing col.values, col.pvals, and col.other, have the same principle as in
geva.merge.input1 (see Alternative 1).

1Actually, geva.read.tables calls internally the geva.merge.input function upon
reading each table file.

5

3.3 Alternative 3 – Results from limma

If the DE analysis is being performed from a specific R package such as
limma, the results can be converted to a matrix or data.frame and passed
as arguments to geva.merge.input as demonstrated in the previous section
(see Alternative 2). For example, if limma was used to produce two MArrayLM
objects (i.e., DE results using linear model fit), these can be converted to
data.frame using limma::topTable, then passed to geva.merge.input as
demonstrated below:

malm1 and malm2 are MArrayLM objects produced by

limma (e.g., using eBayes)

dt1 <- topTable(malm1, number=999999, sort.by="none")
dt2 <- topTable(malm2, number=999999, sort.by="none")
ginput <- geva.merge.input(dt1, dt2)

The code above will produce a GEVAInput object, which stores all the
relevant information regarding the input. Since both dt1 and dt2 already
include "logFC" and "adj.P.Value" columns, geva.merge.input can be
called using the defaults parameters.

3.4 Alternative 4 – Ideal input data (for tests only)

Be it due the abscence of experimental data or merely for didatical
reasons, there may be some situations where the features in this package have
to be immediately accessed and tested without needing to provide any real
data, since two or more DE analyses must be performed before using GEVA.
In this sense, the geva.ideal.example function can be used to generate a
random input that simulates real processed inputs by GEVA. The function is
called as follows:

6

(optional) Sets the initial seed to reproduce the

results presented here

set.seed(1)
Generates a random GEVAInput with 10000 probes

and 6 columns

ginput <- geva.ideal.example()

The code above will generate a GEVAInput object with random values
within a normal distribution and some random outliers to simulate the relevant
results. In addition, all columns are grouped into experimental condition
groups (factors) so that factor-dependent and factor-specific results could be
produced by the end of the analysis test. Note that although the output is
essentially “random”, the same result can be reproduced by using set.seed
before geva.ideal.example.

4 Input data post-processing (optional)

Considering that the final results will strongly depend on the input
values in the concatenated tables, some tweaks in the obtained GEVAInput
can be done to improve them in terms of statistics and presentation. Some
features implemented in GEVA that allow this kind of post-processing of the
GEVAInput objects are presented over the following sub-sections.

4.1 Numeric table correcting

First off, one may want to eliminate primary sources of errors from the
numeric tables before proceeding to the next steps. The calculations become
prone to bias when missing values (NA) or infinite numbers (Inf) are present,
so except in rare cases where their inclusion is intentional, removing them is
a reasonable choice.

7

In this sense, the geva.input.correct function will remove all missing
(NA), not-a-number (NaN), and infinite (Inf or -Inf) values from GEVAInput
upon calling the following command:

Removes the rows containing missing and infinite values

ginput <- geva.input.correct(ginput)

The validation is only applied to the numeric tables in GEVAInput (i.e.,
@values and @weights slots). As a result, if any invalid values were found,
their rows are removed. However, there is an exceptional case where one
column is entirely made of invalid values which would cause all rows to be
marked as invalid, so geva.input.correct removes such columns in advance
to prevent the exclusion of the entire table.

4.2 Filtering values below statistical significance

The GEVAInput stores a table of transformed p-values as weights
(@weights slot, called by inputweights function) employed in some
calculations during the summarization step (discussed in the next section).
While the inclusion of weights is used to minimize statistical errors, it also
follows the assumption that all rows have at least one significant p-value.
In this sense, the geva.input.filter function can be used to remove rows
whose p-values are all above a certain threshold (e.g., 0.05), as demonstrated
below:

Removes the rows that are entirely composed by

insignificant values

ginput <- geva.input.filter(ginput, p.value.cutoff = 0.05)

The correction above is applied using a threshold of α < 0.05 for
(corrected) p-values. Just like any other statistical procedure, the value of
0.05 given to the p.value.cutoff argument is arbitrary and it is upon the
user’s choice to define the best delimiter of significance.

8

4.3 Renaming the row names

Although large-scale experimental data is usually targeted to the context
of each gene, it is particularly common in microarrays to use multiple probes
that detect the expression levels for one or more genes. If one desires to use
gene names as primary row identifiers instead of probes, these genes must
replace the probes names accordingly. However, multiple genes per probe
become duplicates, so one of them must chosen to provide unique identifiers
for row names. In this sense, the geva.input.rename.rows function is used
to perform the renaming while also solving such duplicates as demonstrated
below:

Replaces the row names with the "Symbol" column while

selecting the most significant duplicates

ginput <- geva.input.rename.rows(ginput,
attr.column = "Symbol")

In the example above, the ginput has an additional column called
"Symbol" (accessed by featureTable(ginput)$Symbol) which is used to
replace the row names, but the attr.column argument could also be a
character vector with the same length of the number of rows. By de-
fault, the above code will select the duplicates which have the least p-
values (i.e., lowest error probability), which is also specified by applying
the dupl.rm.method="least.p.vals" parameter. Alternatively, the param-
eter dupl.rm.method="order" can be used to select the duplicated value
that appears first in the row order.

9

5 SV Analyses

By concluding the input step, a GEVAInput object that stores logFC
values and weights becomes available in the current session. The next step will
be to calculate the summarization and variation (SV) from the concatenated
input data to produce the SV points, which are used in intermediate steps
before the final classification.

5.1 Summarization

The geva.summarize function takes a GEVAInput object and performs
the summarization, as demonstrated below:

Summarizes ginput to find the SV points

gsummary <- geva.summarize(ginput)

The code above uses the default parameters for summary.method and
variation.method ("mean" and "sd", respectively) but other methods are
available such as "median" and "mad" (median absolute deviation, or MAD).
In this context, they could be specified as follow:

Summarizes ginput using median and MAD

gsummary <- geva.summarize(ginput,
summary.method = "median",
variation.method = "mad")

In addition, all the summarization methods specified in summary.method
and variation.method are implemented to take weights into account (except
if not available or when weights are equivalent).

As a result, geva.summarize returns a GEVASummary object storing the
table of S and V values. From this point, all objects defined by intermediate
steps can be plotted as a SV-plot, a type of scatter plot where each point

10

(called SV-point) represents a gene’s central logFC value (S) and logFC
variation (V). For instance, a plot can be produced by calling the plot
function on a GEVASummary object:

plot(gsummary)

Figure 1: SV-plot produced from a GEVASummary object using the
geva.summarize function with default parameters.

5.2 Delimitation by quantiles

After obtaining the GEVASummary object, the next step will be calcu-
lating the quantiles for every SV-point. That can be done by calling the
geva.quantiles function as shown below:

Calculates the quantiles from a GEVASummary object

gquants <- geva.quantiles(gsummary)

11

The code above produces a GEVAQuantiles object which stores the
relevant partitions where the SV-points belong to. These partitions can be
viewed by calling plot on the produced object:

plot(gquants)

Figure 2: SV-plot produced from a GEVAQuantiles object using the
geva.quantiles function with default parameters.

By default, the quantile detection is performed automatically using
the parameter quantile.method="range.slice" (for more methods, call
?geva.quantiles). However, the quantile delimiters can also be specified in
the initial.thresholds argument like the following example:

Calculates the quantiles from a GEVASummary object

using custom delimiters

gquants <- geva.quantiles(gsummary,
initial.thresholds = c(S=1, V=0.5))

12

In this second example, thresholds of 1 and 0.5 were defined for S and
V axes. As it can be noted from the SV-plot below, the results are purposely
exaggerated and may not represent a good separation between relevant points,
but this option is particularly useful to fine-tuning the quantile delimiters in
situations where the automatic methods did not present a satisfatory outcome.

Figure 3: SV-plot produced from a GEVAQuantiles object using
the geva.quantiles function using the initial.thresholds = c(S=1,
V=0.5) parameter.

Note that the quantile detection does not define an absolute cutoff,
but partitionizes the SV space into estimated regions containing qualitative
classifications for the SV points. These classifications may change after
combining the GEVAQuantiles with the results from the next steps.

5.3 Clustering

In this step, a cluster analysis is applied to separate relevant points from
the agglomeration of non-differentially expressed genes. Such agglomeration

13

is mostly proeminent at the bottom-center region of a SV plot and essentially
portraits the least relevant portion of the results.

5.3.1 Basic usage of the wrapper function

The geva.cluster function is the top-level function for clusters analysis
and acts as a wrapper for more specific functions used to group SV points. The
inner function is specified by the cluster.method argument with one of the
following parameters: (i) "hierarchical", calls the geva.hcluster function
for hierarchical clustering; (ii) "density", calls the geva.dcluster function
for density-based clustering; and (iii) "quantiles", calls the geva.quantiles
function shown in the previous section. Likewise, optional parameters from
the top funtion are passed to these calls.

In this section, only hierarchical and density-based clustering methods
are going to be discussed. Both methods use the resolution argument, a
single numeric between 0 and 1 that defines the ratio of output clusters. If
the resolution is 0.0 (zero), the least number of clusters is assigned (i.e.,
usually one or two), while if 1.0 then the maximum amount of clusters is
assigned (i.e., aproximately one cluster per point for hierarchical clustering).
For example, to apply geva.cluster using hierarchical clustering at 30% of
the resolution, the function is called as follows:

Applies cluster analysis (30% resolution)

gcluster <- geva.cluster(gsummary,
cluster.method="hierarchical",
resolution=0.3)

The returned cluster data can be plotted using the generic plot function:

plot(gcluster)

14

Figure 4: SV-plot produced from a GEVACluster object using the
geva.cluster function with the hierarchical method and 30% of resolu-
tion.

5.3.2 Combining clusters with summarized data (Optional)

Apart from its usage as a wrapper, the geva.cluster function can also
concatenate the summarized and grouped data into a single object by setting
grouped.return=TRUE in the arguments. With this setup, the function will
return a GEVAGroupedSummary object, which is a GEVASummary that includes
the list of group sets (GEVACluster or GEVAQuantile objects). The code
below illustrates this specific use case:

Applies cluster analysis with default parameters and

returns a GEVAGroupedSummary

ggroupedsummary <- geva.cluster(gsummary,
grouped.return = TRUE)

Alternatively, multiple group sets (clusters and quantiles) can
be combined directly to the summarized data by appending each of

15

them with groupsets<-, which also converts the GEVASummary to a
GEVAGroupedSummary object. For example, assuming that gquants and
gcluster are output values from the previous quantiles (geva.quantiles)
and clustering (geva.cluster) steps, respectively, the code would be:

Makes a safe copy of the summary data

ggroupedsummary <- gsummary
Appends the quantiles data

groupsets(ggroupedsummary) <- gquants
Appends the clustered data

groupsets(ggroupedsummary) <- gcluster

Draws a SV plot with grouped highlights (optional)

plot(ggroupedsummary)

Figure 5: SV-plot produced from a GEVAGroupedSummary object after ap-
pending the GEVAQuantiles and GEVACluster objects from previous steps.

16

6 Attaining and accessing the results

After obtaining the quantiles and clusters from the summarized data
in the previous step, now the entire data can be taken together to prospect
the final classifications for each gene. This section presents the final steps to
obtain the results table and some basic method to access it.

6.1 Final concatenation and factor analysis

In this final analysis step, the geva.finalize function takes a
GEVASummary object as argument in addition to the other values returned
from the intermediate steps, including the GEVAQuantiles and GEVACluster
objects. Alternatively, a GEVAGroupedSummary object containing these inter-
mediate results can be provided alone. The function will correct the quantiles
based on the clustered points and return a classification that fits better
both group assignments. Furthermore, if factors (groups of experimental
conditions) were defined for the input columns, geva.finalize will also look
for DE variations according to these factors, thereby unlocking two additional
possible classifications ("factor-dependent" and "factor-specific").
The possible use cases are discussed in the following sub-sections:

6.1.1 Alternative 1 – Without factors

If factors were not included, no additional steps are required. The
function call is done by passing the GEVASummary, GEVAQuantiles and
GEVACluster from previous steps:

Calculates the final classifications based on the

intermediate results from previous steps

gresults <- geva.finalize(gsummary, gquants, gcluster)

Or, if a GEVAGroupedSummary object is provided:

17

Calculates the final classifications based on the

intermediate results from previous steps

gresults <- geva.finalize(ggroupedsummary)

Note that, without factors, the only relevant classification is "similar"
(i.e., genes with similar logFC values among all experiments).

6.1.2 Alternative 2 – With factors

Factors can be accessed and assigned to a GEVAInput object using
factors and factors<-, respectively, and both accessors are valid for
GEVASummary as well. The factors being set must be a factor or character
vector whose length is equivalent to the number of columns, and it must
contain at least two values per level to be considered since the factor analysis
is based on ANOVA.

For instance, considering a GEVASummary object that stores a GEVAInput
with 9 columns (experimental results), if one wants to separate these columns
into 3 factors (‘g1’, ‘g2’, and ‘g3’), the following code could be applied:

Assigning factors to an example input with 9 columns

Example with GEVAInput

factors(ginput) <- c('g1', 'g1', 'g1',
'g2', 'g2', 'g2',
'g3', 'g3', 'g3')

Example with GEVAInput (using factor class)

factors(ginput) <- factor(c('g1', 'g1', 'g1',
'g2', 'g2', 'g2',
'g3', 'g3', 'g3'))

18

Example with GEVASummary

factors(gsummary) <- c('g1', 'g1', 'g1',
'g2', 'g2', 'g2',
'g3', 'g3', 'g3')

By including factors in the current analysis, some optional arguments
related to the factor analysis become available in geva.finalize. The
p.value, for instance, determines the significance cutoff employed in ANOVA
tests (by default, this value is 0.05 for α < 0.05). In this case, the function
call becomes:

Calculates the final classifications based on the

intermediate results from previous steps

gresults <- geva.finalize(gsummary, gquants, gcluster,
p.value=0.05)

Or, if a GEVAGroupedSummary object is provided:

Calculates the final classifications based on the

intermediate results from previous steps

gresults <- geva.finalize(ggroupedsummary, p.value=0.05)

The results can be plotted into a SV plot similarly as in the previous
steps, but now only the relevant points will be colored while the rest are
painted in black or gray:

plot(gresults)

19

Figure 6: SV-plot produced from a GEVAResults object using the
geva.finalize function with 0.05 as p-value cutoff.

20

6.2 Accessing and extracting the results

The returned GEVAResults object from geva.finalize represents the
concatenation of all previous steps in addition to the results table and, if
applicable, the intermediate steps from the factor analysis. The results
table stores the final gene classifications, including the relevant ("similar",
"factor-dependent", and "factor-specific") and irrelevant ("sparse"
and "basal") ones. Each classification can be briefly described as follows:

• basal: Genes with similar but mild logFC that approximates to zero.
Note that despite this name they not necessarily represent basal levels
of gene expression, especially if the control group from DE analysis is
not under normal conditions;

• sparse: Genes with high logFC variation but lacking any relationship
to the experimental conditions or the factors;

• similar: Genes with relevant logFC (far from zero) and low logFC
variance;

• factor-dependent: Genes with low logFC variance within the specified
factors, but high variance between diferent factors;

• factor-specific: Genes with low logFC variance within one specific
factor.

The function results.table can be used to return the table of final
gene classifications:

tail(results.table(gresults), 10)

classification specific.factor

probe_9991 basal NA
probe_9992 basal NA
probe_9993 basal NA

21

classification specific.factor

probe_9994 basal NA
probe_9995 basal NA
probe_9996 basal NA
probe_9997 basal NA
probe_9998 factor-specific Cond_2
probe_9999 basal NA
probe_10000 basal NA

On the other hand, the top.genes function may be a rather practical
way to return the most relevant results. It extracts by default the "similar",
"factor-dependent", and "factor-specific" results, and can attach ad-
ditional columns (e.g., gene symbols) specified by the add.cols arguments.
The code below shows an usage example of top.genes:

Extracts the top genes only

dtgens <- top.genes(gresults)

Extracts the top genes and appends the "Symbol" column

dtgens <- top.genes(gresults, add.cols = "Symbol")

Prints the last lines of the top genes table (optional)

print(tail(dtgens, 10))

Symbol classification specific.factor

probe_8487 GENE_K8487 factor-dependent NA
probe_8740 GENE_D8740 factor-dependent NA
probe_8823 GENE_I8823 factor-specific Cond_1
probe_9136 GENE_J9136 similar NA

22

Symbol classification specific.factor

probe_9312 GENE_D9312 factor-dependent NA
probe_9495 GENE_E9495 factor-dependent NA
probe_9601 GENE_G9601 factor-specific Cond_3
probe_9758 GENE_H9758 factor-specific Cond_3
probe_9893 GENE_M9893 factor-dependent NA
probe_9998 GENE_N9998 factor-specific Cond_2

The resulting table can then be exported using functions such has
write.table from the R base package.

6.3 Shortcut function and reanalysis

The geva.quick function accepts a GEVAInput object and performs all
intermediate functions from the summarization to the final concatenation.
Optional (...) arguments are passed to the internal calls to geva.summarize,
geva.quantiles, geva.cluster and geva.finalize, ultimately returning
a GEVAResults object. The basic usage is described as follows:

Generates a random GEVAInput example

ginput <- geva.ideal.example()
Performs all intermediate steps with geva.quick

The resolution is used by the call to geva.cluster

gresults <- geva.quick(ginput, resolution=0.25)
> Found 4 clusters and 31 significant genes

gresults <- geva.quick(ginput, resolution=0.4)
> Found 16 clusters and 116 significant genes

This function can be applied to a GEVAResults object as well to restore
the parameters that produced this result, whereas optional (...) arguments
can overwrite them:

23

Generates a random GEVAInput example

ginput <- geva.ideal.example()
Performs all intermediate steps with geva.quick

The summary.method is used by the call to geva.summarize

gresults <- geva.quick(ginput, summary.method='mean')
> Found 60 significant genes

gresults <- geva.quick(gresults, summary.method='median')
> Found 95 significant genes

In the example above, the entire analysis was redone using the overwrit-
ten summary.method argument. Therefore, by following this pattern, users
can tweak different parameters depending on their statistical choice regarding
the current biological context.

References

[1] Gordon K Smyth. “Limma: linear models for microarray data”. In: Bioin-
formatics and computational biology solutions using R and Bioconductor.
Springer, 2005, pp. 397–420.

[2] Michael I Love, Wolfgang Huber, and Simon Anders. “Moderated esti-
mation of fold change and dispersion for RNA-seq data with DESeq2”.
Genome biology 15.12 (2014), pp. 1–21.

[3] Itamar J G Nunes. “Gene expression analysis platform (GEAP): uma
plataforma flexível e intuitiva para análise de transcriptoma”. LUME
UFRGS (2018).

[4] M Aleksi Kallio et al. “Chipster: user-friendly analysis software for
microarray and other high-throughput data”. BMC genomics 12.1 (2011),
pp. 1–14.

24

	Introduction
	Installation
	Data input
	Alternative 1 – Tab-delimited Text Files
	Alternative 2 – Multiple table objects
	Alternative 3 – Results from limma
	Alternative 4 – Ideal input data (for tests only)

	Input data post-processing (optional)
	Numeric table correcting
	Filtering values below statistical significance
	Renaming the row names

	SV Analyses
	Summarization
	Delimitation by quantiles
	Clustering

	Attaining and accessing the results
	Final concatenation and factor analysis
	Accessing and extracting the results
	Shortcut function and reanalysis

