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1 Requirements

NOTE: cummeRbund 2.0 was designed in conjunction with the release of cu�inks 2.0. While we attempted to
preserve backwards-compatability, it is highly recommended that you update your cu�inks installation to version
≥2.0 to take full advantage of the improvements in modeling, reporting, and visualization that have been incorporated.

� Cu�inks ≥ v2.0.1

� SQLite

� R ≥ v3.0

� Packages:

� RSQLite

� ggplot2 ≥ v0.9.3

� reshape2

� plyr

� fastcluster

� rtracklayer

� Gviz

� BiocGenerics ≥ 0.3.2

� Recommended:

* Hmisc
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2 Introduction

cummeRbund is a visualization package for Cu�inks high-throughput sequencing data. It is designed to help you
navigate through the large amount of data produced from a Cu�di� RNA-Seq di�erential expression analysis. The
results of this analysis are typically a large number of inter-related �les that are not terribly intuitive to navigate
through. cummeRbund helps promote rapid analysis of RNA-Seq data by aggregating, indexing, and allowing you
easily visualize and create publication-ready �gures of your RNA-Seq data while maintaining appropriate relationships
between connected data points. CummeRbund is a multifaceted suite for streamlined analysis and visualization of
massively parallel RNA di�erential expression data sequencing data.

CummeRbund begins by re-organizing output �les of a cu�di� analysis, and storing these data in a local SQLite
database. CummeRbund indexes the data to speed up access to speci�c feature data (genes, isoforms, TSS, CDS,
etc.), and preserves the various relationships between these features. Access to data elements is managed via the
RSQLite package and data are presented in appropriately structured R classes with various convenience functions
designed to streamline your work�ow. This persistent database storage means that inter-connected expression values
are rapidly accessible and quickly searchable in future analyses.

CummeRbund de�nes two types of data classes, 'pointer' or reference classes describe SQL connections to the
database without directly containing data, and 'data' classes that retrieve a subset of related data points such as
associated features from a given gene or gene set. Each class type has methods for direct access to FPKM vales,
di�erential expression information, statistical test results, raw and normalized fragment counts, individual replicate
FPKM values, and additional annotation information for features. Output formats allow for browsing and analysis of
data in standard R objects (data.frame, list, etc). CummeRbund was designed to provide analysis and visualization
tools analogous to microarray data. In this regard, numerous plotting methods are provided for visualization of
RNA-Seq data quality and global statistics, and simple routines for plotting expression levels for one or thousands
of genes, their isoforms, TSS groups, or CDS groups.

The base class, cu�Set is a 'pointer' to cu�di� data that are stored out-of-memory in a sqlite database.
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3 CummeRbund Classes

3.1 Cu�Set Class

A pointer class to control access to the sqlite tables holding the Cu�inks data. The primary slot is DB which contains
the RSQLite connection object. This can be accessed using the DB() accessor. The additional slots (genes, isoforms,
TSS, and CDS) are each instances of the Cu�Data class and are pointers to sets of tables for each data subtype.
They can be accessed with similar accessor wrappers. This is the default class created by readCu�inks. By default,
Cu�Data accessor methods applied to a Cu�Set class will operate on the 'genes' slot. The runInfo() method can be
used to retrieve information about the actual cu�di� run itself, including command-line arguments used to generate
the results �les.

3.2 Cu�Data Class

The Cu�Data class is also a pointer class to the SQL backend, but each instance is speci�c for a data subtype (genes,
isoforms, TSS, CDS). Again, there is an DB slot (accessible using DB()) that contains the RSQLite connection
object. There are several accessor, setter, and plotting methods that allow for global analysis of all features within
a Cu�Data class.Subsetting is currently being re-written, however, it is primarily done through the 'gene_id' �eld.
Available slots for the Cu�Data class are:

� DB: RSQLite connection object

� tables: A list of tables in the SQLite DB that contain the cu�inks data.

� �lters: A list of �lters for subsetting (not implemented yet).

� type: A character �eld describing the data (ie. 'genes','isoforms','TSS','CDS','other')

� idField: The name of the identifying index �eld for this object (eg. 'gene_id' for type='gene', or 'isoform_id'
for type='isoform')

Making the best use of either the Cu�Set or Cu�Data classes will enable you to keep the entire dataset out of memory
and signi�cantly improve performance for large cu�inks datasets.

3.3 Cu�Dist Class

The Cu�Dist class is an pointer class that contains the results of the various 'distribution tests' performed by cu�di�.
These include di�erential promoter usage, di�erential splicing, and di�erential CDS usage. These are independent
tests from the di�erential analysis of gene-, isoform-, TSS-, and CDS-level features and therefore have their own
container type to distinguish them as such. The 'promoters', 'relCDS', and 'splicing' slots of a Cu�Set class are all
Cu�Dist instances.

Available slots for the Cu�Dist class are:

� DB: RSQLite connection object

� tables: A list of tables in the SQLite DB that contain the distribution test data.

� type: A character �eld describing the data (ie. 'promoters','relCDS','splicing')

� idField: The name of the identifying index �eld for this object (eg. 'TSS_group_id' for type='promoters', or
'CDS_id' for type='relCDS', etc.)

3.4 Cu�FeatureSet Class

The Cu�FeatureSet class is a data-storage container that holds all available data for a pre-determined list of features.
Slots for FPKM data, di�erential regulation data, and feature-level annotation are all available. Unlike the previous
classes, this class contains no connection information to the SQL database, but rather contains several slots with
data.frame objects storing multiple-features worth of information. There are available accessors, and plotting methods
that are designed to present multiple-features worth of information (eg. heatmaps, scatterplots, etc) Available slots
for a Cu�FeatureSet object include:

� annotation: Holds all feature-level annotation information for all features in object.
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� fpkm: A data frame of FPKM data across all conditions, for all features in object.

� repFpkm: A data frame of deconvolved FPKM values across individual replicates, for all features in object.

� di�: A data frame of di�erential expression/regulation data for all features in object.

� count: A data frame containing raw and normalized fragment counts, variance, dispersion, and uncertainty for
all features in object.

� genome: A character string indicating which build of the genome the associated features are derived from. (e.g.
`hg19',`mm9')

A specialized sub-class of Cu�FeatureSet is the Cu�GeneSet class. This subclass adds additional slots to contain
all isoforms, TSS, and CDS information for a given set of gene_ids. The Cu�GeneSet class is designed to aggregate
all relevant information for a set of genes into one object for easy analysis and/or manipulation. The Cu�GeneSet
object adds the following slots:

� ids: A 'character' list of all gene_ids used in object.

� isoforms: A Cu�FeatureSet object for all isoforms of genes in object.

� TSS: A Cu�FeatureSet object for all TSS of genes in object.

� CDS: A Cu�FeatureSet object for all CDS of genes in object.

3.5 Cu�Feature Class

The Cu�Feature class is designed for single-feature-level data analysis and plotting. The methods available for this
object are designed to analyze or visualize information about a speci�c feature. This is a 'data' object, as opposed
to a 'pointer' object to the database backend. There is a validity requirement that a Cu�Feature object only point
to data from a single feature. Available slots for a Cu�Feature object include:

� annotation: Holds feature-level annotation information for a given feature.

� fpkm: A data frame of FPKM data across all samples for a given feature.

� repFpkm: A data frame of deconvolved FPKM values across all replicates for a given feature.

� di�: A data frame of di�erential expression/regulation data for a given feature.

� count: A data frame containing raw and normalized fragment counts, variance, dispersion, and uncertainty for
a given feature.

A specialized sub-class of Cu�Feature is the Cu�Gene class. This subclass adds additional slots to contain all
isoform, TSS, and CDS information for a given gene. The Cu�Gene object adds the following slots:

� id: The common 'gene_id' for all data in object

� isoforms: A Cu�Feature object for all isoforms of a given gene.

� TSS: A Cu�Feature object for all TSS of a given gene.

� CDS: A Cu�Feature object for all CDS of a given gene.

� features: A data.frame object containing feature information for the transcript models describing the gene.
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4 Reading cu�di� output

cummeRbund was designed to process the multi-�le output format for a 'cu�di�' di�erential expression analysis. In
this type of analysis, a user will use a reference .gtf �le (either known annotation or a .gtf �le created from a cu�inks
assembly or merge of assemblies) and quantitate the expression values and di�erential regulation of the annotation(s)
in the .gtf �le across two or more SAM/BAM �les. By design, cu�di� produces a number of output �les that contain
test results for changes in expression at the level of transcripts, primary transcripts, and genes. It also tracks changes
in the relative abundance of transcripts sharing a common transcription start site, and in the relative abundances of
the primary transcripts of each gene. Tracking the former allows one to see changes in splicing, and the latter lets
one see changes in relative promoter use within a gene.

Note:Early versions of Cu�di� required that transcripts in the input GTF be annotated with certain attributes
in order to look for changes in primary transcript expression, splicing, coding output, and promoter use. This is no
longer the case with >=v1.1.1 of cummeRbund, however we still recommend the use of both the following attributes
in your GTF �le to enable all downstream features of cummeRbund.

These attributes are:

� tss_id: The ID of this transcript's inferred start site. Determines which primary transcript this processed
transcript is believed to come from. Cu�compare appends this attribute to every transcript reported in the
.combined.gtf �le.

� p_id The ID of the coding sequence this transcript contains. This attribute is attached by Cu�compare to
the .combined.gtf records only when it is run with a reference annotation that include CDS records. Further,
di�erential CDS analysis is only performed when all isoforms of a gene have p_id attributes, because neither
Cu�inks nor Cu�compare attempt to assign an open reading frame to transcripts.

cu�di� calculates the FPKM of each transcript, primary transcript, and gene in each sample. Primary transcript
and gene FPKMs are computed by summing the FPKMs of transcripts in each primary transcript group or gene
group. The results are output in FPKM tracking �les, the structure of which can be found in the cu�inks manual.

There are four FPKM tracking �les:

� isoforms.fpkm_tracking Transcript FPKMs

� genes.fpkm_tracking Gene FPKMs. Tracks the summed FPKM of transcripts sharing each gene_id

� cds.fpkm_tracking Coding sequence FPKMs. Tracks the summed FPKM of transcripts sharing each p_id,
independent of tss_id

� tss_groups.fpkm_tracking Primary transcript FPKMs. Tracks the summed FPKM of transcripts sharing each
tss_id

cu�di� also performs di�erential expression tests between supplied conditions. This tab delimited �le lists the
results of di�erential expression testing between samples for spliced transcripts, primary transcripts, genes, and cod-
ing sequences. For detailed �le structure see cu�inks manual.

Four .di� �les are created:

� isoform_exp.di� Transcript di�erential FPKM.

� gene_exp.di� Gene di�erential FPKM. Tests di�erence sin the summed FPKM of transcripts sharing each
gene_id

� tss_group_exp.di� Primary transcript di�erential FPKM. Tests di�erences in the summed FPKM of tran-
scripts sharing each tss_id

� cds_exp.di� Coding sequence di�erential FPKM. Tests di�erences in the summed FPKM of transcripts sharing
each p_id independent of tss_id

In addition, cu�di� also performs di�erential splicing, CDS usage, and promoter usage tests for each gene across
conditions:
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� splicing.di� Di�erential splicing tests.

� CDS.di� Di�erential coding output.

� promoters.di� Di�erential promoter use.

All of these output �les are related to each other through their various tracking_ids, but parsing through indi-
vidual �les to query for important result information requires both a good deal of patience and a strong grasp of
command-line text manipulation. Enter cummeRbund, an R solution to aggregate, organize, and help visualize this
multi-layered dataset.
One of the principle bene�ts of using cummeRbund is that data are stored in a SQLite database. This allows for
out-of-memory analysis of data, quick retrieval, and only a one-time cost to setup the tables. By default, cummeR-
bund assumes that all output �les from cu�di� are in the current working directory. To read these �les, populate
the 'cu�Data.db' database backend, and return the Cu�Set pointer object, you can do the following.

> library(cummeRbund)

> cuff<-readCufflinks()

> cuff

CuffSet instance with:

3 samples

400 genes

1203 isoforms

662 TSS

906 CDS

1062 promoters

1986 splicing

990 relCDS

Again, by default dir is assumed to be the current working directory and cuff<-readCufflinks() should work if
all appropriate �les are in the current working directory. We now also recommend that you use both the genome and
gtfFile arguments to readCu�inks(). This will allow cummeRbund to archive the transcript structure information
located in the .gtf �le associated with your particular cu�di� run, as well as associate these transcripts with an
appropriate genome build (e.g. 'hg19', 'mm9', etc) so as to allow for transcript-level visualizations and future
integration with other external resources. Should you need to rebuild the SQLite backend for any reason, you can
add the option rebuild=T to readCu�inks. Once the database is created, readCu�inks will default to using the SQL
backend and should not need to rebuild this database. Each R session should begin with a call to readCu�inks so
as to initialize the database connection and create an object with the appropriate RSQLite connection information.

4.1 Adding additional feature annotation

Gene- or feature-level annotation can be permanently added to the database tables for future querying. If you have
a data.frame where the �rst column contains the 'tracking_id' (eg. 'gene_id' for genes, 'isoform_id' for isoforms,
etc). You can easily add feature level annotation using the addFeatures() function:

> #annot<-read.table("gene_annotation.tab",sep="\t",header=T,na.string="-")

> #addFeatures(cuff,annot,level="genes")

By default, features added to a Cu�Set object are assumed to be gene-level annotations, but the level can selected
using the argument level . Features added to a Cu�Data object are assumed to be of the same type as the 'type'
value for that given object (e.g. gene-level features for 'genes', isoform-level features for isoforms, etc.)
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5 Global statistics and Quality Control

Several plotting methods are available that allow for quality-control or global analysis of cu�inks data. A good
place to begin is to evaluate the quality of the model �tting. Overdispersion is a common problem in RNA-Seq data.
As of cu�inks v2.0 mean counts, variance, and dispersion are all emitted, allowing you to visualize the estimated
overdispersion for each sample as a quality control measure.

> disp<-dispersionPlot(genes(cuff))

> disp

iPS hESC Fibroblasts

1 100 10000 1 100 10000 1 100 10000

1e+01

1e+04

1e+07

count

di
sp

er
si

on

sample_name

iPS

hESC

Fibroblasts

(a) Count vs dispersion plot by condition for all genes.

Alternatively a call to dispersionPlot(cuff) directly will allow you to visualize the full model �t.
The squared coe�cient of variation is a normalized measure of cross-replicate variability that can be useful for

evaluating the quality your RNA-seq data. Di�erences in CV 2 can result in lower numbers of di�erentially expressed
genes due to a higher degree of variability between replicate fpkm estimates.

> genes.scv<-fpkmSCVPlot(genes(cuff))

> isoforms.scv<-fpkmSCVPlot(isoforms(cuff))

To assess the distributions of FPKM scores across samples, you can use the csDensity plot (Figure 1).

> dens<-csDensity(genes(cuff))

> dens

> densRep<-csDensity(genes(cuff),replicates=T)

> densRep

Boxplots can be visualized using the csBoxplot method (Figure 2).

> b<-csBoxplot(genes(cuff))

> b

> brep<-csBoxplot(genes(cuff),replicates=T)

> brep

A matrix of pairwise scatterplots can be drawn using the csScatterMatrix() method.

> s<-csScatterMatrix(genes(cuff))

>

Individual Pairwise comparisons can be made by using csScatter . You must specify the sample names to use for
the x and y axes:
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(a) The squared coe�cient of variation allows visualization of cross-replicate variability between conditions and can
be a useful metric in determining data quality at the gene level (left) or isoform level (right). Here we demonstrate
the variability of each individual ENCODE project RNA-seq conditions.
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> s<-csScatter(genes(cuff),"hESC","Fibroblasts",smooth=T)

> s

> dend<-csDendro(genes(cuff))

> dend.rep<-csDendro(genes(cuff),replicates=T)
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(b) Dendrogram with replicates=TRUE can identify
outlier replicates.

MvsA plots can be useful to determine any systematic bias that may be present between conditions. The Cu�Data
method MAplot() can be used to examine these intensity vs fold-change plots. You must specify the sample names
to use for the pairwise comparison with x and y:

> m<-MAplot(genes(cuff),"hESC","Fibroblasts")

> m

> mCount<-MAplot(genes(cuff),"hESC","Fibroblasts",useCount=T)

> mCount
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Volcano plots are also available for the Cu�Data objects.

> v<-csVolcanoMatrix(genes(cuff))

> v

For individual pairwise comparisons, you must specify the comparisons by sample name.

> v<-csVolcano(genes(cuff),"hESC","Fibroblasts")

> v
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6 Accessing Data

Cu�di� run information

Run-level information such as run parameters, and sample information can be accessed from a Cu�Set object by
using the runInfo and replicates methods:

> runInfo(cuff)

param

1 cmd_line

2 version

3 SVN_revision

4 boost_version

5 genome

value

1 cuffdiff -L iPS,hESC,Fibroblasts -p 6 chr1_snippet.gtf -o iPS_hESC_fibro iPS_rep1.bam,iPS_rep2.bam H1_rep1.bam,H1_rep3.bam NHLF_rep1.bam,NHLF_rep2.bam

2 1.4.0

3 3285

4 104900

5 hg19

> replicates(cuff)

file sample_name replicate rep_name total_mass

1 iPS_rep1.bam iPS 0 iPS_0 173431

2 iPS_rep2.bam iPS 1 iPS_1 173007

3 H1_rep1.bam hESC 0 hESC_0 754749

4 H1_rep3.bam hESC 1 hESC_1 762643

5 NHLF_rep1.bam Fibroblasts 0 Fibroblasts_0 876775

6 NHLF_rep2.bam Fibroblasts 1 Fibroblasts_1 1412130

norm_mass internal_scale external_scale

1 706934 0.958068 0.584877

2 706934 1.037970 0.584877

3 706934 0.989851 1.513060

4 706934 1.010250 1.513060

5 706934 0.840416 1.223240

6 706934 1.198470 1.223240

Features/Annotation

Feature-level information can be accessed directly from a Cu�Data object using the fpkm, repFpkm, count , di�Data,
or annotation methods:

> gene.features<-annotation(genes(cuff))

> head(gene.features)

gene_id class_code nearest_ref_id gene_short_name

1 XLOC_000001 <NA> <NA> <NA>

2 XLOC_000001 <NA> <NA> <NA>

3 XLOC_000001 <NA> <NA> <NA>

4 XLOC_000001 <NA> <NA> <NA>

5 XLOC_000001 <NA> <NA> <NA>

6 XLOC_000001 <NA> <NA> <NA>

locus length coverage seqnames start end width

1 chr1:11873-29961 NA NA chr1 11874 12227 354

2 chr1:11873-29961 NA NA chr1 12646 12697 52

3 chr1:11873-29961 NA NA chr1 13221 14409 1189

4 chr1:11873-29961 NA NA chr1 11874 12227 354
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5 chr1:11873-29961 NA NA chr1 12595 12721 127

6 chr1:11873-29961 NA NA chr1 13403 14409 1007

strand source type score phase isoform_id exon_number

1 + nearCoding exon NA NA TCONS_00000003 1

2 + nearCoding exon NA NA TCONS_00000003 2

3 + nearCoding exon NA NA TCONS_00000003 3

4 + coding exon NA NA TCONS_00000002 1

5 + coding exon NA NA TCONS_00000002 2

6 + coding exon NA NA TCONS_00000002 3

oId nearest_ref class_code TSS_group_id CDS_id

1 uc010nxr.1 uc010nxr.1 = TSS1 <NA>

2 uc010nxr.1 uc010nxr.1 = TSS1 <NA>

3 uc010nxr.1 uc010nxr.1 = TSS1 <NA>

4 uc010nxq.1 uc010nxq.1 = TSS1 P1

5 uc010nxq.1 uc010nxq.1 = TSS1 P1

6 uc010nxq.1 uc010nxq.1 = TSS1 P1

gene_name

1 <NA>

2 <NA>

3 <NA>

4 <NA>

5 <NA>

6 <NA>

> gene.fpkm<-fpkm(genes(cuff))

> head(gene.fpkm)

gene_id sample_name fpkm conf_hi conf_lo

1 XLOC_000001 Fibroblasts 16.1506 182.9240 0.00000

2 XLOC_000002 Fibroblasts 0.0000 0.0000 0.00000

3 XLOC_000003 Fibroblasts 0.0000 0.0000 0.00000

4 XLOC_000004 Fibroblasts 14237.7000 78180.9000 0.00000

5 XLOC_000005 Fibroblasts 48.0566 90.6526 5.46055

6 XLOC_000006 Fibroblasts 0.0000 0.0000 0.00000

quant_status stdev

1 OK 83.3867

2 OK 0.0000

3 OK 0.0000

4 OK 31971.6000

5 OK 21.2980

6 OK 0.0000

> gene.repFpkm<-repFpkm(genes(cuff))

> head(gene.repFpkm)

gene_id sample_name replicate rep_name raw_frags

1 XLOC_000001 Fibroblasts 0 Fibroblasts_0 12.000100

2 XLOC_000002 Fibroblasts 0 Fibroblasts_0 0.000000

3 XLOC_000003 Fibroblasts 0 Fibroblasts_0 0.000000

4 XLOC_000004 Fibroblasts 0 Fibroblasts_0 0.333333

5 XLOC_000005 Fibroblasts 0 Fibroblasts_0 137.100000

6 XLOC_000006 Fibroblasts 0 Fibroblasts_0 0.000000

internal_scaled_frags external_scaled_frags fpkm

1 14.278800 11.672900 11.1815

2 0.000000 0.000000 0.0000

3 0.000000 0.000000 0.0000

4 0.396629 0.324245 28475.5000

5 163.134000 133.362000 57.8929
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6 0.000000 0.000000 0.0000

effective_length status

1 NA OK

2 NA OK

3 NA OK

4 NA OK

5 NA OK

6 NA OK

> gene.counts<-count(genes(cuff))

> head(gene.counts)

gene_id sample_name count variance uncertainty

1 XLOC_000001 Fibroblasts 20.072500 1.05160e+04 1.77636e-15

2 XLOC_000002 Fibroblasts 0.000000 0.00000e+00 0.00000e+00

3 XLOC_000003 Fibroblasts 0.000000 0.00000e+00 0.00000e+00

4 XLOC_000004 Fibroblasts 0.198315 1.98315e-01 0.00000e+00

5 XLOC_000005 Fibroblasts 131.575000 3.35882e+03 5.68434e-14

6 XLOC_000006 Fibroblasts 0.000000 0.00000e+00 0.00000e+00

dispersion status

1 1311.870000 OK

2 0.000000 OK

3 0.000000 OK

4 0.198315 OK

5 2161.890000 OK

6 0.000000 OK

> isoform.fpkm<-fpkm(isoforms(cuff))

> head(isoform.fpkm)

isoform_id sample_name fpkm conf_hi conf_lo

1 TCONS_00000001 Fibroblasts 10.99630 118.178 0

2 TCONS_00000002 Fibroblasts 0.00000 0.000 0

3 TCONS_00000003 Fibroblasts 5.15434 132.926 0

4 TCONS_00000004 Fibroblasts 0.00000 0.000 0

5 TCONS_00000005 Fibroblasts 0.00000 0.000 0

6 TCONS_00000006 Fibroblasts 14237.70000 78180.900 0

quant_status stdev

1 OK 53.59085

2 OK 0.00000

3 OK 63.88583

4 OK 0.00000

5 OK 0.00000

6 OK 31971.60000

> gene.diff<-diffData(genes(cuff))

> head(gene.diff)

gene_id sample_1 sample_2 status value_1 value_2

1 XLOC_000001 iPS hESC NOTEST 20.21750 3.47386e-01

2 XLOC_000002 iPS hESC NOTEST 0.00000 0.00000e+00

3 XLOC_000003 iPS hESC NOTEST 0.00000 0.00000e+00

4 XLOC_000004 iPS hESC OK 0.00000 6.97259e+05

5 XLOC_000005 iPS hESC OK 355.82300 6.96704e+02

6 XLOC_000006 iPS hESC NOTEST 1.51396 0.00000e+00

log2_fold_change test_stat p_value q_value

1 -5.86292e+00 7.13525e-01 0.47552100 1.00000000

2 0.00000e+00 0.00000e+00 1.00000000 1.00000000

3 0.00000e+00 0.00000e+00 1.00000000 1.00000000
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4 1.79769e+308 1.79769e+308 0.00857693 0.02109120

5 9.69385e-01 -2.98373e+00 0.00284757 0.00840284

6 -1.79769e+308 -1.79769e+308 0.24382400 1.00000000

significant

1 no

2 no

3 no

4 yes

5 yes

6 no

Condition and feature names

Vectors of sample names and feature names are available by using the samples and featureNames methods:

> sample.names<-samples(genes(cuff))

> head(sample.names)

[1] "iPS" "hESC" "Fibroblasts"

> gene.featurenames<-featureNames(genes(cuff))

> head(gene.featurenames)

[1] "XLOC_000001" "XLOC_000002" "XLOC_000003" "XLOC_000004"

[5] "XLOC_000005" "XLOC_000006"

Convenience functions

To facilitate Bioconductor-like operations, an 'FPKM-matrix' can be returned easily using the fpkmMatrix method:

> gene.matrix<-fpkmMatrix(genes(cuff))

> head(gene.matrix)

iPS hESC Fibroblasts

XLOC_000001 20.21750 3.47386e-01 16.1506

XLOC_000002 0.00000 0.00000e+00 0.0000

XLOC_000003 0.00000 0.00000e+00 0.0000

XLOC_000004 0.00000 6.97259e+05 14237.7000

XLOC_000005 355.82300 6.96704e+02 48.0566

XLOC_000006 1.51396 0.00000e+00 0.0000

A matrix of replicate FPKM values can be retrieved by using repFpkmMatrix

> gene.rep.matrix<-repFpkmMatrix(genes(cuff))

> head(gene.rep.matrix)

iPS_0 iPS_1 hESC_0 hESC_1

XLOC_000001 17.2049 22.92880 0.000 6.21918e-01

XLOC_000002 0.0000 0.00000 0.000 0.00000e+00

XLOC_000003 0.0000 0.00000 0.000 0.00000e+00

XLOC_000004 0.0000 0.00000 1377990.000 8.35811e+05

XLOC_000005 319.0300 390.45500 687.563 7.21983e+02

XLOC_000006 0.0000 3.02791 0.000 0.00000e+00

Fibroblasts_0 Fibroblasts_1

XLOC_000001 11.1815 20.6009

XLOC_000002 0.0000 0.0000

XLOC_000003 0.0000 0.0000

XLOC_000004 28475.5000 0.0000

XLOC_000005 57.8929 38.0084

XLOC_000006 0.0000 0.0000
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Similarly, a matrix of normalized counts can be generated by using countMatrix

> gene.count.matrix<-countMatrix(genes(cuff))

> head(gene.count.matrix)

iPS hESC Fibroblasts

XLOC_000001 11.440900 0.494996 20.072500

XLOC_000002 0.000000 0.000000 0.000000

XLOC_000003 0.000000 0.000000 0.000000

XLOC_000004 0.000000 5.680560 0.198315

XLOC_000005 486.456000 2495.560000 131.575000

XLOC_000006 0.481711 0.000000 0.000000

6.1 Writing your own SQL accessors

Since the cu�Data.db is a SQLite database backend, if you are familiar with SQL and/or RSQLite query construction,
you can simply design your own SQL queries to access the data that you are after.
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7 Creating Gene Sets

Gene Sets (stored in a Cu�GeneSet object) can be created using the getGenes method on a Cu�Set object. You
must �rst create a vector of 'gene_id' or 'gene_short_name' values to identify the genes you wish to select:

> data(sampleData)

> myGeneIds<-sampleIDs

> myGeneIds

[1] "XLOC_001363" "XLOC_001297" "XLOC_001339" "XLOC_000132"

[5] "XLOC_001265" "XLOC_000151" "XLOC_001359" "XLOC_000069"

[9] "XLOC_000170" "XLOC_000105" "XLOC_001262" "XLOC_001348"

[13] "XLOC_001411" "XLOC_001369" "XLOC_000158" "XLOC_001370"

[17] "XLOC_001263" "XLOC_000115" "XLOC_000089" "XLOC_001240"

> myGenes<-getGenes(cuff,myGeneIds)

> myGenes

CuffGeneSet instance for 20 genes

Slots:

annotation

fpkm

repFpkm

diff

count

isoforms CuffFeatureSet instance of size 45

TSS CuffFeatureSet instance of size 23

CDS CuffFeatureSet instance of size 36

promoters CuffFeatureSet instance of size 20

splicing CuffFeatureSet instance of size 23

relCDS CuffFeatureSet instance of size 20

The same fpkm, repFpkm, count , annotation, di�Data, samples, and featureNames methods are available for in-
stances of the Cu�GeneSet class, but additional accessor methods are available for the promoters, relCDS , and
splicing slot data as well.

> #FPKM values for genes in gene set

> head(fpkm(myGenes))

gene_id sample_name fpkm conf_hi conf_lo

1 XLOC_000069 Fibroblasts 2.05083e-01 8.94501e-01 0.000

2 XLOC_000069 hESC 1.77686e+02 2.15888e+02 139.484

3 XLOC_000069 iPS 1.90000e+01 3.88149e+01 0.000

4 XLOC_000089 Fibroblasts 1.39701e+04 2.19187e+04 6021.450

5 XLOC_000089 hESC 7.18339e+03 7.92296e+03 6443.810

6 XLOC_000089 iPS 1.41690e+03 1.96558e+03 868.215

quant_status stdev

1 OK 0.344709

2 OK 19.101000

3 OK 9.907450

4 OK 3974.300000

5 OK 369.785000

6 OK 274.340000

> #Isoform-level FPKMs for gene set

> head(fpkm(isoforms(myGenes)))
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isoform_id sample_name fpkm conf_hi conf_lo

1 TCONS_00000179 Fibroblasts 0.205083 0.894501 0.00000

2 TCONS_00000179 hESC 20.360900 33.840500 6.88119

3 TCONS_00000179 iPS 7.694340 16.356900 0.00000

4 TCONS_00000180 Fibroblasts 0.000000 0.000000 0.00000

5 TCONS_00000180 hESC 157.325000 198.673000 115.97800

6 TCONS_00000180 iPS 11.305600 27.105700 0.00000

quant_status stdev

1 OK 0.344709

2 OK 6.739800

3 OK 4.331280

4 OK 0.000000

5 OK 20.674000

6 OK 7.900050

> #Replicate FPKMs for TSS groups within gene set

> head(repFpkm(TSS(myGenes)))

TSS_group_id sample_name replicate rep_name raw_frags

1 TSS93 iPS 0 iPS_0 14.16970

2 TSS93 iPS 1 iPS_1 7.35392

3 TSS93 hESC 1 hESC_1 84.28660

4 TSS93 hESC 0 hESC_0 61.70490

5 TSS93 Fibroblasts 1 Fibroblasts_1 0.00000

6 TSS93 Fibroblasts 0 Fibroblasts_0 1.00000

internal_scaled_frags external_scaled_frags fpkm

1 14.78990 25.287200 10.637900

2 7.08493 12.113500 5.095950

3 83.43110 55.140800 23.569500

4 62.33760 41.199800 17.610500

5 0.00000 0.000000 0.000000

6 1.18989 0.972736 0.410165

effective_length status

1 NA OK

2 NA OK

3 NA OK

4 NA OK

5 NA OK

6 NA OK

>

As of cummeRbund v2.0 Cu�GeneSet classes can be created from any type of identi�er ('gene_id','isoform_id','TSS_group_id',
or 'CDS_id'). When you pass a list of identi�ers that are not gene_id to getGenes(), the function attempts to lookup
the parent gene_id for each feature and returns all relevant information for the given genes and all of their sub-
features (not just the sub-features passed to getGenes()). If you are interested in just retrieving information for a
given set of features, please use the new getFeatures() method described later.

More recent versions of cummeRbund allow for subsetting of conditions as well, by passing a vector of condition
names to getGenes using the sampleIdList argument.

> myGeneset.pluri<-getGenes(cuff,myGeneIds,sampleIdList=c("hESC","iPS"))

> myGeneset.pluri

CuffGeneSet instance for 20 genes

Slots:

annotation

fpkm

repFpkm
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diff

count

isoforms CuffFeatureSet instance of size 45

TSS CuffFeatureSet instance of size 23

CDS CuffFeatureSet instance of size 36

promoters CuffFeatureSet instance of size 20

splicing CuffFeatureSet instance of size 23

relCDS CuffFeatureSet instance of size 20

>

7.1 Geneset level plots

There are several plotting functions available for gene-set-level visualization:
The csHeatmap() function is a plotting wrapper that takes as input either a Cu�GeneSet or a Cu�FeatureSet

object (essentially a collection of genes and/or features) and produces a heatmap of FPKM expression values. The
'cluster' argument can be used to re-order either 'row', 'column', or 'both' dimensions of this matrix. By default,
the Jensen-Shannon distance is used as the clustering metric, however, any function that produces a dist object can
be passed to the 'cluster' argument as well.

> h<-csHeatmap(myGenes,cluster='both')

> h

> h.rep<-csHeatmap(myGenes,cluster='both',replicates=T)

> h.rep

If you prefer barplots over heatmaps for genesets (although this is not necessarily recommended for large gene
sets). You can use the expressionBarplot() method on a Cu�FeatureSet or a Cu�GeneSet object.

> b<-expressionBarplot(myGenes)

> b

The csScatter() method can be used to produce scatter plot comparisons between any two conditions.

> s<-csScatter(myGenes,"Fibroblasts","hESC",smooth=T)

> s

The volcano plot is a useful visualization to compare fold change between any two conditions and signi�cance
(-log P-values).

> v<-csVolcano(myGenes,"Fibroblasts","hESC")

> v

Similar plots can be made for all sub-level features of a Cu�GeneSet class by specifying which slot you would
like to plot (eg. isoforms(myGenes),TSS(myGenes),CDS(myGenes)).

> ih<-csHeatmap(isoforms(myGenes),cluster='both',labRow=F)

> ih

> th<-csHeatmap(TSS(myGenes),cluster='both',labRow=F)

> th

Dendrograms can provide insight into the relationships between conditions for various genesets (e.g. signi�cant
genes used to draw relationships between conditions). As of v1.1.3 the method csDendro() can be used to plot a
dendrogram based on Jensen-Shannon distances between conditions for a given Cu�FeatureSet or Cu�GeneSet .

> den<-csDendro(myGenes)
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(a) Heatmaps provide a convenient way to visualize the
expression of entire gene sets at once.
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alize variance between replicates.
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(b) A heatmap of TSS-level FPKM values for all genes
in a Cu�GeneSet object.
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8 Individual Genes

An individual Cu�Gene object can be created by using the getGene() function for a given 'gene_id' or 'gene_short_name'.
As of cummeRbund ≥ v2.0 you can also use isoform_id, tss_group_id, or cds_id values to retrieve the corresponding
parent gene object.

> myGeneId<-"PINK1"

> myGene<-getGene(cuff,myGeneId)

> myGene

CuffGene instance for gene XLOC_000172

Short name: PINK1

Slots:

annotation

features

fpkm

repFpkm

diff

count

isoforms CuffFeature instance of size 2

TSS CuffFeature instance of size 2

CDS CuffFeature instance of size 2

> head(fpkm(myGene))

gene_id sample_name fpkm conf_hi conf_lo

1 XLOC_000172 Fibroblasts 3045.930 4529.840 1562.020

2 XLOC_000172 hESC 441.939 523.916 359.961

3 XLOC_000172 iPS 640.208 914.562 365.853

quant_status

1 OK

2 OK

3 OK

> head(fpkm(isoforms(myGene)))

isoform_id sample_name fpkm conf_hi conf_lo

1 TCONS_00000480 Fibroblasts 2213.850 3284.980 1142.7100

2 TCONS_00000481 Fibroblasts 832.083 1760.820 0.0000

3 TCONS_00000480 hESC 326.979 388.108 265.8500

4 TCONS_00000481 hESC 114.960 166.530 63.3891

5 TCONS_00000480 iPS 640.208 914.562 365.8530

6 TCONS_00000481 iPS 0.000 0.000 0.0000

quant_status

1 OK

2 OK

3 OK

4 OK

5 OK

6 OK

8.1 Gene-level plots

> gl<-expressionPlot(myGene)

> gl

> gl.rep<-expressionPlot(myGene,replicates=TRUE)

> gl.rep

> gl.iso.rep<-expressionPlot(isoforms(myGene),replicates=T)

> gl.iso.rep
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> gl.cds.rep<-expressionPlot(CDS(myGene),replicates=T)

> gl.cds.rep
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(a) Expression plot of a single gene.
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(d) Expression plot of all CDS for a single gene with
replicate FPKMs exposed.

> gb<-expressionBarplot(myGene)

> gb

> gb.rep<-expressionBarplot(myGene,replicates=T)

> gb.rep

> igb<-expressionBarplot(isoforms(myGene),replicates=T)

> igb

> gp<-csPie(myGene,level="isoforms")

> gp
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8.1.1 Gene Feature plots

If you included both the genome build and gtfFile in your call to readCu�inks() then you will be able to access some
of the transcript-structure level features that are now being integrated into cummeRbund. For now, these features
are extended only to the single gene, Cu�Gene objects.

Feature data are loaded into the �features�table of the cu�Data.db database. When a Cu�Gene object is created
using getGene(), all relative features are selected from this table and a �features±lot is added to the resulting object.

> head(features(myGene))

seqnames start end width strand source type score

1 chr1 20959948 20960428 481 + coding exon NA

2 chr1 20964335 20964622 288 + coding exon NA

3 chr1 20966385 20966485 101 + coding exon NA

4 chr1 20970983 20971165 183 + coding exon NA

5 chr1 20972053 20972216 164 + coding exon NA

6 chr1 20974998 20975125 128 + coding exon NA

phase gene_id isoform_id exon_number oId

1 NA XLOC_000172 TCONS_00000480 1 uc001bdm.2

2 NA XLOC_000172 TCONS_00000480 2 uc001bdm.2

3 NA XLOC_000172 TCONS_00000480 3 uc001bdm.2

4 NA XLOC_000172 TCONS_00000480 4 uc001bdm.2

5 NA XLOC_000172 TCONS_00000480 5 uc001bdm.2

6 NA XLOC_000172 TCONS_00000480 6 uc001bdm.2

nearest_ref class_code TSS_group_id CDS_id gene_name

1 uc001bdm.2 = TSS264 P364 PINK1

2 uc001bdm.2 = TSS264 P364 PINK1

3 uc001bdm.2 = TSS264 P364 PINK1

4 uc001bdm.2 = TSS264 P364 PINK1

5 uc001bdm.2 = TSS264 P364 PINK1

6 uc001bdm.2 = TSS264 P364 PINK1

The Gviz package can be used to display features in a 'track'-like format. In particular, the GeneRegionTrack
class creates a mechanism by which we can start to visualize transcript-level structures in their genomic context.
cummeRbund implements the makeGeneRegionTrack() method to quickly create a GeneRegionTrack from the gene
features.

> genetrack<-makeGeneRegionTrack(myGene)

> plotTracks(genetrack)
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We can then use some of the additional features from the Gviz package to add additional tracks from an external
data source.

Note: This feature is now deprecated owing to developmental constraints. It is still provided with cummeRbund,
but is no longer supported.
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9 Data Exploration

The cummeRbund package is more than just a visualization tool as well. We are working to implement several
di�erent means of data exploration from gene and condition clustering, �nding features with similar expression
pro�les, as well as incorporating Gene Ontology analysis.

9.1 Overview of signi�cant features

The sigMatrix() function can provide you with a �quick�and�dirty� view of the number of signi�cant features of a
particular type, and at a given alpha (0.05 by default). For example:

> mySigMat<-sigMatrix(cuff,level='genes',alpha=0.05)

>
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(a) Signi�cant features overview matrix. This plot describes the number of signi�-
cant genes at a 5%FDR for each pairwise interaction tested.

9.2 Creating gene sets from signi�cantly regulated genes

One of the primary roles of a di�erential expression analysis is to conduct signi�cance tests on each feature (genes,
isoforms, TSS, and CDS) for appropriate pairwise comparisons of conditions. The results of these tests (after multiple
testing correction of course) can be used to determine which genes are di�erentially regulated. cummeRbund makes
accessing the results of these signi�cance tests simple via getSig(). This function takes a Cu�Set object and will scan
at various feature levels ('genes' by default) to produce a vector of feature IDs. By default getSig() outputs a vector
of tracking IDs corresponding to all genes that reject the null hypothesis in any condition tested. The default feature
type can be changed by adjusting the 'level' argument to getSig(). In addition, a alpha value can be provided on
which to �lter the resulting list (the default is 0.05 to match the default of cu�di�).

> mySigGeneIds<-getSig(cuff,alpha=0.05,level='genes')

> head(mySigGeneIds)
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[1] "XLOC_000004" "XLOC_000005" "XLOC_000008" "XLOC_000009"

[5] "XLOC_000011" "XLOC_000013"

> length(mySigGeneIds)

[1] 207

By default getSig() outputs a vector of tracking IDs corresponding to all genes that reject the null hypothesis in any
condition tested. The default feature type can be changed by adjusting the 'level' argument to getSig(). In addition,
a alpha value can be provided on which to �lter the resulting list (the default is 0.05 to match the default of cu�di�).
Signi�cance results for speci�c pairwise comparisons can be retrieved as well by specifying the two conditions as 'x'
and 'y'. In this case, p-values are adjusted to reduce the impact of multiple-testing correction when only one set of
tests is being conducted.

> hESC_vs_iPS.sigIsoformIds<-getSig(cuff,x='hESC',y='iPS',alpha=0.05,level='isoforms')

> head(hESC_vs_iPS.sigIsoformIds)

[1] "TCONS_00000006" "TCONS_00000013" "TCONS_00000015"

[4] "TCONS_00000018" "TCONS_00000034" "TCONS_00000041"

> length(hESC_vs_iPS.sigIsoformIds)

[1] 118

The values returned for each level of this list can be used as an argument to getGenes, to create a Cu�GeneSet
object of signi�cantly regulated genes (or features).

> mySigGenes<-getGenes(cuff,mySigGeneIds)

> mySigGenes

CuffGeneSet instance for 207 genes

Slots:

annotation

fpkm

repFpkm

diff

count

isoforms CuffFeatureSet instance of size 717

TSS CuffFeatureSet instance of size 399

CDS CuffFeatureSet instance of size 577

promoters CuffFeatureSet instance of size 207

splicing CuffFeatureSet instance of size 399

relCDS CuffFeatureSet instance of size 207

>

Alternatively, you can use the getSigTable() method to return a full test-table of 'signi�cant features' x 'pairwise
tests' for all comparisons. Only features in which the null hypothesis can be rejected in at least one test are reported.

> mySigTable<-getSigTable(cuff,alpha=0.01,level='genes')

> head(mySigTable,20)

hESCvsFibroblasts iPSvsFibroblasts iPSvshESC

XLOC_000005 1 1 1

XLOC_000008 0 1 1

XLOC_000009 1 1 1

XLOC_000011 0 1 1

XLOC_000013 0 1 0

XLOC_000014 1 NA 0
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XLOC_000016 0 0 1

XLOC_000017 0 1 0

XLOC_000018 1 1 0

XLOC_000019 0 1 1

XLOC_000025 1 NA 1

XLOC_000026 1 1 0

XLOC_000027 0 1 1

XLOC_000029 1 1 0

XLOC_000032 1 NA 0

XLOC_000034 1 0 1

XLOC_000036 0 1 1

XLOC_000044 1 NA 1

XLOC_000047 1 1 1

XLOC_000048 1 1 0

9.3 Exploring the relationships between conditions

9.3.1 Distance matrix

Similarities between conditions and/or replicates can provide useful insight into the relationship between various
groupings of conditions and can aid in identifying outlier replicates that do not behave as expected. cummeRbund
provides the csDistHeat() method to visualize the pairwise similarities between conditions:

> myDistHeat<-csDistHeat(genes(cuff))

>
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(a) JS distance heatmap between conditions across all gene features.

Again with the replicates argument, distances between individual replicates can be presented.

> myRepDistHeat<-csDistHeat(genes(cuff),replicates=T)

>
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(a) JS distance heatmap between replicate samples across all gene features.

This method can be used to explore similarities between conditions for all features, or just those features con-
tained within a Cu�GeneSet class. Additionally, the samples.not.genes=F argument will display distances between
individual genes or features across conditions.

9.3.2 Dimensionality reduction

Dimensionality reduction is an informative approach for clustering and exploring the relationships between conditions.
It can be useful for feature selection as well as identifying the sources of variability within your data. To this end, we
have applied two di�erent dimensionality reduction strategies in cummeRbund: principal component analysis (PCA)
and multi-dimensional scaling (MDS). We provide the two wrapper methods, PCAplot and MDSplot

> genes.PCA<-PCAplot(genes(cuff),"PC1","PC2")

> genes.MDS<-MDSplot(genes(cuff))

> genes.PCA.rep<-PCAplot(genes(cuff),"PC1","PC2",replicates=T)

> genes.MDS.rep<-MDSplot(genes(cuff),replicates=T)

CummeRbund also includes a convenience wrapper around the NMFN function nnmf for non-negative matrix
factorization. You can use the csNMF() method for either Cu�Data and Cu�FeatureSet objects.
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9.4 Partitioning

K-means clustering is a useful tool that can be helpful in identifying clusters of genes with similar expression pro�les.
In fact, these pro�les are learned from the data during the clustering. csCluster() uses the pam() method from the
clustering package to perform the partitioning around medoids. In this case however, the distance metric used by
default is the Jensen-Shannon distance instead of the default Euclidean distance. Prior to performing this particular
partitioning, the user must choose the number of clusters (K) into which the expression pro�les should be divided.

> ic<-csCluster(myGenes,k=4)

> head(ic$cluster)

XLOC_000069 XLOC_000089 XLOC_000105 XLOC_000115 XLOC_000132

1 2 2 3 2

XLOC_000151

1

> icp<-csClusterPlot(ic)

> icp

As of v1.1.1 of cummeRbund, the output of csCluster is a modi�ed pam object. This replaces the default plotting
behavior of the original csCluster plot to allow for further analysis of the clustering results. The original plotting
behavior has been recapitulated in the csClusterPlot() method.
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(a) PAM clustering with JS distance for a Cu�GeneSet.
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9.5 Speci�city

In some cases, a researcher may be interested in identifying features that are 'condition-speci�c'. Or, more likely,
producing an ordered list of genes based on their speci�city for a given condition. We de�ne a speci�city score (S)
as the following:

Sg,i = 1− JSD(pg, q̂i) (1)

Where JSD is the Jensen-Shannon distance, pg is the expression pro�le of a given gene g expressed as a density
(probability) of log10FPKM + 1, and q̂i is the unit vector of 'perfect expression' in a particular condition i.

We have created a method, csSpeci�city() that outputs a matrix (with identical shape to that produced by
fpkmMatrix()) of speci�city scores (S) across all conditions for all features in a Cu�FeatureSet or Cu�GeneSet .

> myGenes.spec<-csSpecificity(myGenes)

> head(myGenes.spec)

iPS_spec hESC_spec Fibroblasts_spec

XLOC_000069 0.3404865 0.5281363 0.03949159

XLOC_000089 0.2843602 0.3315380 0.35041646

XLOC_000105 0.3006743 0.3138327 0.35217793

XLOC_000115 1.0000000 0.0000000 0.00000000

XLOC_000132 0.2940644 0.3073414 0.36481155

XLOC_000151 0.4977991 0.3247807 0.11444635

S = 1.0 if the feature is expressed exclusively in that condition. The �ndSimilar() method outlined below is another
method that can be used to identify genes based on speci�city but has the added feature that you can determine
similarity to a more complex q expression pro�le.
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9.6 Finding similar genes

Another common question in large-scale gene expression analyses is 'How can I �nd genes with similar expression
pro�les to gene x?'. We have implemented a method, �ndSimilar to allow you to identify a �xed number of the most
similar genes to a given gene of interest. For example, if you wanted to �nd the 20 genes most similar to "PINK1",
you could do the following:

> mySimilar<-findSimilar(cuff,"PINK1",n=20)

> mySimilar.expression<-expressionPlot(mySimilar,logMode=T,showErrorbars=F)
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(a) Top 20 most similar genes to 'PINK1'.

By default, �ndSimilar will return a Cu�GeneSet of similar genes matching your criteria. Recently a few additional
features have been added as well to enhance this type of exploration:

� If 'returnGeneSet' is set to FALSE, then �ndSimilar returns a data.frame of distance-ranked similar genes with
distances. This is useful if you would like to see a rank-ordered list of similar genes.

� The 'distThresh' argument allows you to pass a value [between 0-1] to be used as a distance threshold instead
of an arbitrary 'n' number of genes. setting distThresh=1.0 will return all genes ranked by their distance to
your gene of interest.

You are also able to provide your own expression pro�le in lieu of a 'gene_id'. The vector provided must match
the order and length of samples().

> myProfile<-c(500,0,400)

> mySimilar2<-findSimilar(cuff,myProfile,n=10)

> mySimilar2.expression<-expressionPlot(mySimilar2,logMode=T,showErrorbars=F)

�ndSimilar() also uses the Jensen-Shannon distance between the probability distributions of each gene across
conditions to determine the similarity. We have found this to be a more robust way to determine distance between
genes using the high dynamic range of FPKM data. Future versions may allow for other dissimilarity measures to
be used instead.
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10 Miscellaneous

� In appropriate plots, using the argument replicates=T will allow you to visualize replicate-level FPKM values
either in lieu of or in addition to condition-level FPKMs.

� As of v1.1.3 we attempt to provide new visual cues in most plots that will indicate the quanti�cation status for
a particular feature in each given condition. We have enabled this feature by default for most plots to suggest
a measure of reliability for each feature in a particular condition. In most cases, this feature can be disabled
by setting 'showStatus=FALSE'.

� CummeRbund will now work with the hidden '�no-di�' argument for cu�di�. This will quantify features against
.bam �les but not do di�erential testing. This is useful when you want to aggregate very large numbers of
conditions, and cannot a�ord the time or space for the di�erential test results. (Not recommended unless you
have a SPECIFIC need for this).

� All plotting functions return ggplot objects and the resulting objects can be manipulated/faceted/altered using
standard ggplot2 methods.

� There are occasional DB connectivity issues that arise. Not entirely sure why yet. If necessary, just readCufflinks
again and this should solve connectivity issues with a new RSQLite connection object. If connectivity continues
to be a problem, try cuff<-readCufflinks(rebuild=T)

� I am still working on fully documenting each of the methods. There are a good number of arguments that
exist, but might be hard to �nd without looking at the reference manual.
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11 Known Issues

� Large cu�di� runs (e.g. ≥10 conditions) produce very large results �les. These will take some time to parse
and populate the cu�Data.db sqlite database. While this is only a one time cost, the process can take a while.
We are working on making the table writes and indexing signi�cantly faster.

� Cu�di� does not 'require' that gene_ids, isoform_ids, TSS_group_ids, or CDS_ids be unique in your reference
gtf �le. In fact, duplicate IDs will be aggregated by cummeRbund in the indexing phase and will produce
undesireable e�ects. Please ensure that all of your IDs are unique prior to running cu�di� (see cu�merge for
help) to avoid this issue.
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12 Session info

> sessionInfo()

R version 4.5.0 (2025-04-11 ucrt)

Platform: x86_64-w64-mingw32/x64

Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default

LAPACK version 3.12.1

locale:

[1] LC_COLLATE=C

[2] LC_CTYPE=English_United States.utf8

[3] LC_MONETARY=English_United States.utf8

[4] LC_NUMERIC=C

[5] LC_TIME=English_United States.utf8

time zone: America/New_York

tzcode source: internal

attached base packages:

[1] grid stats4 stats graphics grDevices utils

[7] datasets methods base

other attached packages:

[1] cluster_2.1.8.1 cummeRbund_2.51.0

[3] Gviz_1.53.0 rtracklayer_1.69.0

[5] GenomicRanges_1.61.0 GenomeInfoDb_1.45.4

[7] IRanges_2.43.0 S4Vectors_0.47.0

[9] fastcluster_1.3.0 reshape2_1.4.4

[11] ggplot2_3.5.2 RSQLite_2.4.0

[13] BiocGenerics_0.55.0 generics_0.1.4

loaded via a namespace (and not attached):

[1] DBI_1.2.3 bitops_1.0-9

[3] deldir_2.0-4 gridExtra_2.3

[5] httr2_1.1.2 biomaRt_2.65.0

[7] rlang_1.1.6 magrittr_2.0.3

[9] biovizBase_1.57.0 matrixStats_1.5.0

[11] compiler_4.5.0 mgcv_1.9-3

[13] GenomicFeatures_1.61.3 png_0.1-8

[15] vctrs_0.6.5 ProtGenerics_1.41.0

[17] stringr_1.5.1 pkgconfig_2.0.3

[19] crayon_1.5.3 fastmap_1.2.0

[21] backports_1.5.0 dbplyr_2.5.0

[23] XVector_0.49.0 labeling_0.4.3

[25] Rsamtools_2.25.0 rmarkdown_2.29

[27] UCSC.utils_1.5.0 bit_4.6.0

[29] xfun_0.52 cachem_1.1.0

[31] jsonlite_2.0.0 progress_1.2.3

[33] blob_1.2.4 DelayedArray_0.35.1

[35] BiocParallel_1.43.3 jpeg_0.1-11

[37] parallel_4.5.0 prettyunits_1.2.0

[39] VariantAnnotation_1.55.0 R6_2.6.1

[41] stringi_1.8.7 RColorBrewer_1.1-3

[43] rpart_4.1.24 Rcpp_1.0.14

[45] SummarizedExperiment_1.39.0 knitr_1.50
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[47] base64enc_0.1-3 splines_4.5.0

[49] Matrix_1.7-3 nnet_7.3-20

[51] tidyselect_1.2.1 rstudioapi_0.17.1

[53] dichromat_2.0-0.1 abind_1.4-8

[55] yaml_2.3.10 codetools_0.2-20

[57] curl_6.2.3 lattice_0.22-7

[59] tibble_3.2.1 plyr_1.8.9

[61] Biobase_2.69.0 withr_3.0.2

[63] KEGGREST_1.49.0 evaluate_1.0.3

[65] foreign_0.8-90 BiocFileCache_2.99.5

[67] xml2_1.3.8 Biostrings_2.77.1

[69] pillar_1.10.2 filelock_1.0.3

[71] MatrixGenerics_1.21.0 checkmate_2.3.2

[73] RCurl_1.98-1.17 ensembldb_2.33.0

[75] hms_1.1.3 scales_1.4.0

[77] glue_1.8.0 lazyeval_0.2.2

[79] Hmisc_5.2-3 tools_4.5.0

[81] interp_1.1-6 BiocIO_1.19.0

[83] data.table_1.17.4 BSgenome_1.77.0

[85] GenomicAlignments_1.45.0 XML_3.99-0.18

[87] latticeExtra_0.6-30 colorspace_2.1-1

[89] AnnotationDbi_1.71.0 nlme_3.1-168

[91] htmlTable_2.4.3 restfulr_0.0.15

[93] Formula_1.2-5 cli_3.6.5

[95] rappdirs_0.3.3 S4Arrays_1.9.1

[97] dplyr_1.1.4 AnnotationFilter_1.33.0

[99] gtable_0.3.6 digest_0.6.37

[101] SparseArray_1.9.0 rjson_0.2.23

[103] htmlwidgets_1.6.4 farver_2.1.2

[105] memoise_2.0.1 htmltools_0.5.8.1

[107] lifecycle_1.0.4 httr_1.4.7

[109] bit64_4.6.0-1
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