
Using copa

James W. MacDonald

June 4, 2025

1 Overview

In certain cancers (lymphoma, sarcoma, leukemia), it is common to have recurrent
chromosomal rearrangements that may be a causal factor in the progression of
the disease Rowley (2001). However, until recently these rearrangements have
not been commonly found in other carcinomas Tomlins et al. (2005). Tomlins et
al. describe a method they call Cancer Outlier Profile Analysis (COPA) that can be
used to detect recurrent chromosomal rearrangements using microarray data. Their
method however is limited to use with the Oncomine website www.oncomine.
org, and does not at this time either pre-filter the data for likely candidates, nor
compute any sort of inferential statistic.

2 Introduction

The idea behind COPA is very simple; it is well known that genetic translocations
occur in cancer cells, and that these translocations can result in the up-regulation of
oncogenes that may affect the progression of the cancer. This happens when the 5’
activation domain of a constitutively expressed (or up-regulated) gene is fused to
the 3’ portion of a given oncogene, thus increasing the expression of the oncogene.
This translocation can happen between the activating gene and multiple oncogenes,
as was shown by Tomlins et al., as well as others Fonseca et al. (2004).

Since a given translocation is only likely to occur once per sample, if there
were multiple partners for a given activating gene, we would expect to see certain
cancer samples with a high expression of say, gene A, whereas other cancer sam-
ples might have high expression of gene B, but these samples would be mutually
exclusive. In addition, we would expect that the normal samples would not have
high expression for either gene A nor B. We can use this idea to both pre-filter
genes as well as finding interesting genes that may be involved in translocations.

1

www.oncomine.org
www.oncomine.org


Common methods for detecting differences between tumor and normal
samples will not work for finding these genes (e.g., t-tests); we need to find those
genes where only a subset of the samples have high expression. To do this, we cen-
ter and scale the data (on a row-wise basis) using the median and median average
difference (MAD). We can then select a common value (default is 5) as a cutoff for
’outlier’ status and apply this to all genes. We then simply look for pairs of genes
that have a large number of mutually exclusive outlier (cancer) samples, but few or
no normal outliers. The candidate gene pairs will be ranked based on the sum of
outlier samples for each pair, as this seems to be the most reasonable criterion for
ranking.

Since there may be several gene pairs with the same number of outliers we
need to add an additional criterion to rank the ties. We use a modification of the
ranking scheme used by Tomlins et al.. They simply ranked the genes using the
75th, 95th and 99th percentiles of the centered and scaled expression values. Since
we are looking at pairs rather than individual genes, we take the difference between
the 75th percentile of the tumor and normal samples, and then compute the sum
of these differences for each gene pair. This value quantifies how different the
outlier pairs are from their corresponding normals. We chose the 75th percentile
for ranking rather than say, the 95th because the values at the higher percentile are
what caused the gene pairs to be selected in the first place, so we want to use a less
extreme percentile to distinguish between the tied pairs.

3 Using copa

To search for gene pairs that may be involved in translocations is very simple.
Just load the copa package, and run the copa function using your microarray
expression values. For this vignette, we will be using the colonCA package, which
contains an ExpressionSet with normal and tumor colon expression data.

> library(copa)
> library(colonCA)
> data(colonCA)
> head(pData(colonCA), 10)

expNr samp class
1 1 -1 t
2 2 1 n
3 3 -2 t
4 4 2 n
5 5 -3 t

2



6 6 3 n
7 7 -4 t
8 8 4 n
9 9 -5 t
10 10 5 n

We will use the third column of the phenoData object as our classlabel,
which tells copawhich samples are tumor and which are normal. There is no need
to pre-filter the expression data; copa has an internal pre-filtering step that selects
the top pct(percentile) of the data, based on the number of outliers. The default is
to use the 95th percentile as a cutoff; if this results in more than 1000 genes, copa
will give a warning and allow you to abort the run (and presumably re-run with a
higher value for pct).

One thing to keep in mind is that copa is going to be computing all pair-
wise sums of outliers, which can get to be a large number of computations really
quickly (hence the warning at n = 1000). Although this portion of the function is
written in C, and is actually quite fast, a large number of comparisons will tend to
slow things down.

> rslt <- copa(colonCA, as.numeric(pData(colonCA)[,3]))

We can now look at a plot showing the number of outliers for each gene.

> plotCopa(rslt, idx = 1, col = c("lightgreen","salmon"))

Figure 1 shows the outlier status of the ’top’ gene pair (based on having
the most outlier samples). If using an Affymetrix GeneChip for which there is an
annotation package, one can label the plots with the corresponding gene symbol
by specifying the lib argument. Unfortunately, the colonCA data is based on a
Hum6000 Affy chip, for which there is no annotation package.

This plot doesn’t look that impressive, as there are only a few samples that
fulfill the criterion for outlier status. We can look at how many gene pairs there are
with a given number of outliers using the tableCopa function.

> tableCopa(rslt)

9 8 7 6
24 130 254 894

We might then want to know which genes have 9. We can list them out
using the summaryCopa function.

3



> plotCopa(rslt, idx = 1, col = c("lightgreen","salmon"))

Hsa.891

0
4

8

Hsa.19784

0
2

4
6

Figure 1: Plot of ’Top’ Gene Pair

4



> summaryCopa(rslt, 9)

Number.of.pairs Probe.ID.1 Probe.ID.2
1 9 Hsa.891 Hsa.19784
2 9 Hsa.21562 Hsa.891
3 9 Hsa.140 Hsa.891
4 9 Hsa.22762 Hsa.891
5 9 Hsa.1765 Hsa.891
6 9 Hsa.1862 Hsa.891
7 9 Hsa.17564 Hsa.891
8 9 Hsa.891 Hsa.8831
9 9 Hsa.41247 Hsa.891
10 9 Hsa.23249 Hsa.891
11 9 Hsa.25536 Hsa.891
12 9 Hsa.21847 Hsa.891
13 9 Hsa.627 Hsa.8214
14 9 Hsa.20324 Hsa.891
15 9 Hsa.27085 Hsa.891
16 9 Hsa.891 Hsa.22614
17 9 Hsa.627 Hsa.594
18 9 Hsa.1331 Hsa.891
19 9 Hsa.2739 Hsa.891
20 9 Hsa.1799 Hsa.891
21 9 Hsa.3969 Hsa.891
22 9 Hsa.1574 Hsa.891
23 9 Hsa.627 Hsa.2772
24 9 Hsa.845 Hsa.891

We might now want to know how significant this result is. We can test
this hypothesis by permuting the class labels of the samples many times and then
checking to see how often we see pairs of genes with a certain number of outliers.
By permuting the class labels we are mixing up the tumor and normals, so any pair
with a large number of outliers by definition has arisen by chance. If we get many
gene pairs with say, 9 outliers then it is fairly likely that our observed results could
have arisen by chance as well. However, if the opposite is true, then we have some
reassurance that the observed results are not a chance event, and these gene pairs
may well be undergoing some sort of recombination.

> prm <- copaPerm(colonCA, rslt, 9, 24)

Counting permutations...
100

5



> sum(prm >= 9)

[1] 4

In this instance, there are 4 times that the permuted data resulted in a num-
ber of outliers as large or larger than what we observed. This indicates that there
may well be some recombination going on here, and it might be worthwhile to
explore further.

A few notes about this function. First, it repeatedly re-runs the copa
function after permuting the classlabels, so any caveats that I gave above about the
number of genes to use above applies a hundred fold here. Note that the percentile
cutoff used to create the copa object will be re-used for the permutations, so if the
cutoff is too lenient, you may repeatedly be queried because of too many genes.

Second, the default for this function is 100 permutations. This is enough
to get a basic idea, but is far too few to calculate a p-value or false discovery rate
(FDR). For that, one should use at least 500 - 1000 permutations. Even at 1000
permutations, the smallest p-value will be 0.001 (actually the smallest will be 0, but
the second smallest will be 0.001). Running copaPerm here on approximately
91 genes takes about 90 seconds. Increasing either the number of genes or the
permutations may necessitate an overnight run.

References

R. Fonseca et al. Genetics and cytogenetics of multiple myeloma: a workshop
report. Cancer Research, 64:1546–1558, 2004.

J.D. Rowley. Chromosome translocations: dangerous liaisons revisited. Nature
Reviews Cancer, 1:245–250, 2001.

S.A. Tomlins et al. Recurrent fusion of tmprss2 and ets transcription factor genes
in prostate cancer. Science, 310:644–648, 2005.

6


	Overview
	Introduction
	Using copa

