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1 Introduction

Generation of high-throughput genomic data has become routine in modern bi-
ology. While the focus remains in many cases on the identification of molecular
species, such as mRNA transcripts, that differ between two conditions, the data

is often of great interest for elucidating differences in pathway activity. Standard
algorithms, such as limma [Smyth 2004]and SAM [Tusher , Tibshirani and Chu 2001],
are widely used for identifying transcripts (hereon referred to genes) that differ
statistically between two groups. Later, as multiple datasets became avail-

able on the same biological process, people began to combine information from
multiple studies to improve the power of statistical analysis in each study
[Conlon, Song and Liu 2006], [Kendziorski et al. 2003], [Yuan and Kendziorski 2006],
[Cui et al. 2005], and [Scharpf et al. 2009)].

It is often the case in cancer studies that the identification of important genes by
these approaches fails. The realization that genes are often disregulated in only
a subset of tumors led to the development of Cancer Outlier Profile Analysis
(COPA) [MacDonald, 2006]. Outlier genes are defined to be ones that are over-
or under- expressed in a subset of tumor samples compared to normal samples.
The difference between outlier differential expressed gene and normal differen-
tial expressed gene is that outlier gene may have the same level of expression in
majority of tumor samples as that of normals. A few statistics for finding outlier
genes have been proposed [MacDonald, 2006], [Tibshirani, R. and Hastie, 2007],
and [Wu, 2007].

The data can also be used to elucidate pathway activity through gene set anal-
ysis, also termed gene set enrichment analysis. In this case the statistic is used
to rank all genes, and the relative rank of genes within a pathway is used, typ-
ically in a Wilcoxon Rank Sum Test, to determine if the genes associated with
a pathway are distributed non-randomly. The issue for cancer studies is the
fact that pathways are often disregulated due to changes in different genes in
different samples, making the outlier statistic of great use for ranking genes for
gene set analysis. This is the focus of the work here.

In addition, we now have several types of high-throughput data available in a sin-
gle study, which provides significantly more information if it can be integrated.
Therefore, we are interested in capturing those genes that are over-expressed,
hypo-methylated and copy number amplified in a subset of data. The subset of
samples that are over-expressed for a gene may not be the same as the subset



of samples that are hypo-methylated for that gene. We call this type of outlier
pattern uniform outlier . On the other hand, we may be interested in genes that
are over-expressed in a subset of samples but behave the same as normals in
methylation and CNV data. We call this type of outlier pattern subtype outlier
. Here we follow and generalize Ghosh’s approach [Ghosh 2010] of defining a
statistic for outlier measure based on the p-value of tumor samples compared
to the empirical distribution of gene expression for controls.

2 Method

2.1 Empirical p-values for tumors

We assume that we have totally D studies. For study d, we have Ny con-
trol samples and Ny4; tumor samples. The gene expression data are stored
in a matrix, with each row representing a single gene and each column rep-
resenting one sample. Therefore, the expression value for gene g is denoted as
[X!Ll:l? e 7Xg71;N10’ Xg71;N10+1’ T 7Xg71>N10+N11’ T ’X97D7NDO+ND1] And the to-
tal expression matrix is G by (Nig + N11 + -+ Npo + Np1)

The idea is that we compare each observation in our tumor samples to the
empirical distribution of expression values of the same gene for normal samples
in the same study. Now for gene g in study d, for each expression in tumor
samples we calculate the up-tail empirical p-value as

1 Nao
D = — I(X < Xgdi 1
Dot = N ; (Xg.d,Nap+1 < Xg.d,i) (1)

The corresponding lower-tail empirical p-value is calculated as

1 Nao
bodl = — 3 I(X > X, a 2
Po.al = N ; (Xg,d,Nao+1 > Xg,d.i) (2)

Therefore, in either case we come up with G % (N11 + - - - + Np1) matrix.

2.2 Uniform Outlier

Now for each gene, we conduct a Bonferroni correction. Setting the significance
level to be a, we turn the py 4, to be a binary matrix Mg q.:

o
Ni+---+Np1
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Mg.di = 1(Pg,a1 <



Finally, we sum over 1y q,; for each gene and obtain the summarized statistic
Sy, which measures the number of outlier samples for gene g across all studies.
The idea is that we treat tumor samples from all studies equally. If there are
consistent number of outlier samples for a given gene across all the studies, this
gene would be identified as an outlier gene.

2.3 Subtype Outlier

Now for each gene within each study, we conduct a Bonferroni correction. Set-
ting the significance level to be «, we turn the py 4; to be a binary matrix
Mg,d,i

~ N Q
Mg,di = 1(Dg,a1 < ﬂ) (4)

Next, we sum over 74 4 for each gene within each study and obtain the summa-
rized statistics sq4 4, which measures the number of outlier samples for gene g in
study d. Finally, we set S, = max(sg,q4,d =1,---, D) By taking the maximum
number of outlier sample numbers among the studies, we are able to capture
genes that are over-expressed in a proportion of tumor samples in one study but
behave exactly as normals in all the rest of studies.

3 Data preparation

In order to work with coGPS, we need to prepare the apporpriate data input
format. The first argument exprslist is a list storing expression data and the
corresponding class label of samples. As an example, here we have expression
data, methylation data and copy number data for 25 normal people and 44
patients.

library (coGPS)

data (Exon_exprs_matched)

data (Methy_exprs_matched)

data (CNV_exprs_matched)
data(Exon_classlab_matched)
data(Methy_classlab_matched)
data(CNV_classlab_matched)
head (Exon_exprs_matched[,1:5])

vV V.V Vv Vv Vv VvV

X1 X2 X3 X4 X5
TTLL10 6.717344 7.037852 6.767719 6.420387 6.327140
B3GALT6 6.391804 7.063906 7.088237 6.923357 6.437467
SCNN1D 6.439294 7.363256 6.960123 6.329735 6.056324



PUSL1  6.977590 7.238936 7.501508 6.716543 6.929376
VWAl 8.652309 9.483455 9.331383 8.586654 8.117134
ATAD3B 5.597828 6.759150 6.568391 6.101554 6.011183

> head (Methy_exprs_matched[,1:5])
X1 X2 X3 X4 X5

TTLL10 0.92614513 0.92341822 0.74665674 0.89014933 0.92416166
B3GALT6 0.41558269 0.48709422 0.52353576 0.36409685 0.50031962
SCNN1D 0.58554773 0.37659892 0.15732190 0.62241624 0.68238374
PUSL1 0.06496585 0.11335588 0.04692521 0.05516385 0.05518681
VWAL 0.11405662 0.08245048 0.03221226 0.11885276 0.12259966
ATAD3B 0.03805213 0.03612167 0.03043765 0.03785675 0.03026946
> head (CNV_exprs_matched[,1:5])

X1 X2 X3 X4 X5
TTLL10 1.876122 2.618898 1.649337 1.899147 2.413655
B3GALT6 1.297597 1.517815 2.155240 1.845882 1.113260
SCNN1D 1.987613 2.090843 2.472659 1.977962 1.927649
PUSL1 2.231360 2.085793 1.414651 2.402684 2.015025
VWAL 1.786645 2.012630 2.576627 2.050612 2.111320
ATAD3B 2.209892 1.561455 2.962057 2.001006 1.861121

Each element of exprslist is a list with the first element being exprs and
the second element being classlab. Each row of exprs represents one gene and
each column represents one sample. exprs should have both row names showing
gene names and column names showing sample names.classlab is a zero-one
vector indicating the status of samples. We use 0 for the baseline group, usually

the normal group, and 1 for the comparison group, usually the tumor group.

VVVVVVVVVVVVYV

#texprslist[[i]]$exprs should be in matrix format
Exon_exprs<-as.matrix (Exon_exprs_matched)
Methy_exprs<-as.matrix(Methy_exprs_matched)
CNV_exprs<-as.matrix (CNV_exprs_matched)
#texprslist[[i]]$classlab should be in vector format
Exon_classlab<-unlist(Exon_classlab_matched)
Methy_classlab<-unlist (Methy_classlab_matched)
CNV_classlab<-unlist(CNV_classlab_matched)

#make an exprslist consisting 3 studies

trylist<-list()

trylist[[1]]<-1ist (exprs=Exon_exprs,classlab=Exon_classlab)
trylist[[2]]<-1ist (exprs=Methy_exprs,classlab=Methy_classlab)
trylist[[3]]<-1ist (exprs=CNV_exprs,classlab=CNV_classlab)



4 Analysis

Once we have specified the input data exprslist, we can apply PCOPA to
obtain the desired statistics. Here suppose we are interested to find outlier genes
that tend to have either over-expression, or hypo-methylated, or amplified copy
number outlier samples. Therefore we set side to be c("down","up","down")
and type to be "subtype".

> a7<-PCOPA(trylist,0.05,side=c("up", "down", "up"),type="subtype")

If we are interested to find outlier genes that tend to have over-expression,
hypo-methylated and amplified copy number outlier samples. Therefore we set
type to be "uniform".

> a8<-PCOPA(trylist,0.05,side=c("up","down", "up"),type="uniform")

After calculating the statistics, we can use PlotTopPCOPA to view the ex-
pression patterns of top ranked genes. For study ¢, PlotTopPCOPA first
sorts the expression value exprslist[[i]]$exprs[j,] among the baseline sam-
ples(e.g. normal ones) and comparison group (e.g. tumor ones)seperately for
selected gene j, and then plot the sorted expression values. The first argu-
ment exprslist should be the same one as for PCOPA ; the second argument
PCOPAresult should be an output of PCOPA; the third argument topcut de-
termines how far we would go down the top ranked list; and the last argument
typelist is a vector specifying the titles for each graph corresponds to a specific
study.

> PlotTopPCOPA(trylist,a8,topcut=1,typelist=c("Exon", "Methy","CNV"))
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We can run permutations to obtain the p-value for PCOPA statistics.
> perma7<-permCOPA(trylist,0.05,side=c("up", "down","up"),type="subtype", perms=2)

For gene specific permutation pvalue:

> pvaluea7<-sapply(1:length(a7),function (i)
+ length (which(perma7[i,]>a7[i]))/ncol(perma7))

For pvalue calculation using all genes’ permutation COPA values:

> dista7<-as.vector(perma?)
> pvaluea7<-sapply(1:length(a7),function (i)
+ length(which(dista7>a7[i]))/length(dista7))

5 Downstream analysis

Now we can apply gene set enrichment analysis to the obtained PCOPA statis-
tics.



> library(limma)

> data(human_c1)

> genename<-rownames (Exon_exprs)
> test_setl_a7<-rep(1,length(Hs.gmtl.c1))

> for(i in 1:length(Hs.gmtl.c1))

+ 1

+ set<-Hs.gmtl.c1l[[i]]

+ matched<-match (genename, set)

+ index<-is.na(matched)==FALSE

+ if (sum(as.numeric (index))>0)

+ 1

+ test_setl_a7[i]<-wilcoxGST (index,a7)
+
+
+
+
+
+

test_setl_a7[i]<-NA

6 Patient specific outlier gene list

In clinical settings, people are extremely interested in finding the outlier gene
list for each specific patient. Here our package provides such a solution. Usually
we focus on only those top ranked outlier genes over all samples. In other words,
we want each of the gene on our patient specific outlier gene list to be among
the top PCOPA scored outlier genes in all samples. We allow the user to set
the number of top genes. In practice, the user may pick up a specific number
which she or he thinks reasonable. Or the user may first run a permutation test
to get the null distribution of PCOPA scores and use p-values after bonferroni
correction or g-values derived from the p-values to select all significant genes.
Caution should be paid to the order of samples in the generation of patient
specific outlier gene list. Suppose one only wants to have the PCOPA scores
and the down stream analysis of GSE , no matching of samples in different data
types are required. But if one wants to generate patient specific outlier gene
list, one has to put all the samples in each data type in the same order. In other
words, exprslist[[i]]$exprs[, j] should correspond to the sample j in each
data type 1.

> IndividualList7<-PatientSpecificGeneList (trylist,0.05,side=c("down","up", "down"),
+ type="subtype", TopGeneNum=100)

The individual outlier gene list for patient 1 in exon data, methylation data and
CNV data are:

> IndividualList7[[1]]



[[1]1]
[1] "CDKN2C" "BOLA1" "RSPO1" "GYPC"

[[2]1]

[1] "vAMP3" "FOXD2" "CGN" "TBCE" "TRIM58" "TRAPPC3" "STX6"
[8] "CPSF3" "PPM1B"

([31]

[1] "KCNAB2" "PLEKHO1" "ZNF687" "PSRC1" "ID2" "EML4" "TCF7L1"
[8] "ATOH8" "HNRPLL"

The corresponding ones for patient 33 are:

> IndividuallList7[[33]]

[[1]1]
character (0)
[[2]]
[1] "PHF13" "FOXE3" "ACTN2" "RYR2" "Clorf101" "TRIM58"
[7] "CSF3R"  "GRIK3"  "EPHA10" "RGS16"  "SOX11"  "MORN2"
[13] "VAMPS"  "IMP4" "HOXD8"  "S0S1" "KCNG3"
[[3]1]
[1] "PLEKHO1" "ZNF687" "EX01" "CLCC1"  "PSRC1"  "TNFSF4"
[7] "ACBD&" "DYNC2LI1" "ATOHS8" "PTPN18" "LRP1B"
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