K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 365 286 436 391 77 43 776 192 311 864 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  365  211  103  148  229  238  981  188  732    67
##  [2,]  286   21  262  833  928  944  982   98  576   524
##  [3,]  436  950  148  363  492  323   77   54  252   914
##  [4,]  391  960  845  744  842  437  614  723  353   196
##  [5,]   77  900   90  785  510  741  913  261   59    73
##  [6,]   43  177  320  689  941  187  907  344  429   607
##  [7,]  776  750  682  331  642  807  578  661  801   971
##  [8,]  192  242  362  570  564  996  868  384  568   748
##  [9,]  311  805  675  934  898   83   91  426  476   179
## [10,]  864  480  618  366  934  921  667  675  629   444
## [11,]  687  902   78  907  597  647  320   38  768   689
## [12,]  557  427   55  842  721  552   53  613  568   671
## [13,]  430   99   17  708  769  580  661  631  164   801
## [14,]  575  181  948  318  528  290  679  114  349   374
## [15,]  315  994  154  863  312  379  373  453   16   193
## [16,]  445  739  512   51  205   77  869  767  423   824
## [17,]   13  661  631  416  138  267  161  987  769   933
## [18,]  994   20  623  157  738   26  135  680  223   274
## [19,]  107  543  925  479   53   56  838  483  683   865
## [20,]  738  840  856   18  274  549  677  830  680   398
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 3.46 3.53 3.82 3.11 3.29 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 3.457666 4.100294 4.185938 4.193071 4.284514 4.397856 4.407696 4.432943
##  [2,] 3.526604 3.543692 4.097799 4.122683 4.217476 4.265636 4.293315 4.357092
##  [3,] 3.818838 3.907562 3.970704 4.116406 4.155963 4.175135 4.193522 4.234616
##  [4,] 3.105474 3.125755 3.230213 3.259517 3.321878 3.332636 3.369827 3.387917
##  [5,] 3.287269 3.315326 3.497916 3.535462 3.562311 3.626131 3.677656 3.767352
##  [6,] 3.582441 4.183429 4.388845 4.793897 4.827571 4.940233 5.067369 5.070554
##  [7,] 3.523182 3.592953 3.688657 3.710470 3.756354 3.789179 3.819890 3.895851
##  [8,] 2.718018 2.864140 2.965590 3.073566 3.106157 3.110425 3.150832 3.237219
##  [9,] 2.589770 2.747512 2.972554 3.059462 3.088324 3.115193 3.127617 3.183310
## [10,] 2.865907 2.990510 3.067158 3.125141 3.175073 3.220253 3.220861 3.334884
## [11,] 3.706606 3.783263 3.859053 4.153796 4.176097 4.180736 4.343596 4.366957
## [12,] 3.127348 3.214287 3.252302 3.272900 3.319045 3.462682 3.474549 3.478402
## [13,] 4.490811 4.749738 4.778674 4.959962 4.981484 4.986135 4.989786 5.059060
## [14,] 3.571378 3.660410 3.703144 3.791979 3.868399 3.955882 4.044435 4.169817
## [15,] 2.603422 3.185501 3.280572 3.465840 3.593597 3.615787 3.646447 3.648670
## [16,] 2.616732 3.050702 3.079465 3.323135 3.327200 3.338836 3.357430 3.375353
## [17,] 4.778674 4.916860 4.982559 5.107493 5.136715 5.191339 5.259487 5.274708
## [18,] 2.942758 2.981166 3.147516 3.175475 3.181385 3.425969 3.523775 3.529840
## [19,] 4.086391 4.129631 4.200740 4.408984 4.409119 4.427310 4.554311 4.602414
## [20,] 2.561204 2.565487 2.695595 2.981166 3.061995 3.089798 3.090920 3.093601
##           [,9]    [,10]
##  [1,] 4.451966 4.475409
##  [2,] 4.437975 4.504148
##  [3,] 4.269572 4.272317
##  [4,] 3.401931 3.403662
##  [5,] 3.775698 3.864313
##  [6,] 5.151974 5.175346
##  [7,] 4.019706 4.153218
##  [8,] 3.268406 3.416803
##  [9,] 3.202088 3.222036
## [10,] 3.401002 3.433616
## [11,] 4.371364 4.436539
## [12,] 3.508446 3.514234
## [13,] 5.104209 5.193526
## [14,] 4.177199 4.232175
## [15,] 3.650747 3.663923
## [16,] 3.387486 3.481242
## [17,] 5.291771 5.373455
## [18,] 3.617175 3.623105
## [19,] 4.616869 4.662361
## [20,] 3.101901 3.126057

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       1                              1                  0.963
##  2                       1                              1                  0.963
##  3                       1                              1                  0.988
##  4                       1                              1                  0.981
##  5                       1                              1                  0.991
##  6                       0.774                          1                  0.944
##  7                       1                              1                  0.963
##  8                       1                              1                  0.963
##  9                       0.868                          1                  0.944
## 10                       0.996                          1                  0.948
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1         -0.174        -0.292         -0.112                    0.635 
##  2         -0.720        -0.0535        -0.985                   -1.08  
##  3         -0.181        -0.206         -0.132                   -0.518 
##  4          0.229        -0.215          0.496                    0.435 
##  5         -0.104        -0.148         -0.470                    0.478 
##  6         -0.174        -0.175         -0.0945                   0.612 
##  7         -0.184        -0.0110        -0.128                   -1.37  
##  8          0.436         0.483         -1.25                     0.0386
##  9         -0.236        -0.0443        -0.0258                   0.237 
## 10         -0.728        -0.322         -0.524                    0.465 
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.218 0.219 0.23 0.282 0.257 ...